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PREFACE.

The flattering manner in which the Glasgff-jo Edition of Kewton's Prin-

cipia has been received, a second impression being already on the verge

of^ publication, has induced the projectors and editop of that work, to

render, as they humbly conceive, their labours still liiore acceptable, by

presenting these addition^ vohmres to thd public. From amongst the

several testimonies of the esteem in which their former endeavours have

been held, it may suffice, to avoid the charge of self-eulogy, to select the

following, which, coming from the high authority of French mathematical

criticism, must be considered at once as the more decisive and impartial.

It fias been said by one of the first geometers of France, that *^ L'edition

de Glasgow fait honneur aux pi'esses de cette ville iftdtusfrieuse. Gn peut

affirmer que jamais Fart typographique ne rendit un- plus bel hommag*

a la memoire de Newton. Le merite ^e I'impression, quoique tres-remar-

quable, n'est pas ce que les editeurs ont recherche avec le plus de soin,

pour tant le materiel de leur travail, ils pouvaient s'en rapporter k ['habi*-

lite de leur artistes : mais le choix des meilleures editions, la revision la

plus Scrupuleuse du texte et des epreuves, la recherche attentive des fautes

qui pourraient ^chapper meme au lecteur studieujt, et passer inaper^ues

ce travail consciencieux de rintelligence et du savoir, voilJi ce qui ^leve

cette edition au-dessus de toutes celles qui I'ont prec^i^e.

" Les editeurs de Glasgow ne s*etaient charges que d'un travail de re-

vision. S'iU avaient conpu le projet dtamelioj'er et completer Voeimre des
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VI PREFACE.

commentateurSf ih auraient sans doute employe, comme eux, les travaux des

successews de Nekton sur les questions iraitees dans le livre des Prmcipes.

" Les descendans de Newton sont nombreux, et leur genealogie est

prouvee par des titres incontestibles ; ceux qui vivent aujourd'hui verraient

sans doute avec satisfaction que Ton format un tableau de leur famille, en

reunissant les productions les plus remarquables dont I'ouvrage de Newton

a fourni le germe: que ce livre immortel soit entoure de tout ce Ton peut

regarder comme ses developpemens : voila son meilleur commentaire.

Uedition de Glasgow pourrait done etre continuee, et prodigieusement

enrichie'*

The same philosopher takes occasion again to remark, that ** Le plus

beau monument que Ton puisse elever a la gloire de Newton, c'est une

bonne edition de ses ouvrages : et il est etonnant que les Anglais en aient

laisse ce soin aux nations etrangeres. Les presses de Glasgow viennent

de reparer, en partie, le tort de la nation Anglaise : la nouvelle edition

des Principes est efFectivement la plus belle, la plus correcte et la plus com-

mode qui ait parujusqi^ici. La collation des anciennes editions, la revi-

sion des calculs, &c. ont ete confiees a un habile mathematicien et rien

n'a ete neglige pour eviter toutes les erreurs et toutes les omissions.

*' II faut esperer que les editeurs continueront leur belle entreprise, et

qiCils y seront assez encourages pour nous donner, non seulement torn les

ouvrages de Newton, mais ceux des savans qui ont complete ses travaux."

The encouragement here anticipated has not been withheld, nor has

the idea of improving and completing the comments of "The Jesuits",

contained in the Glasgow Newton, escaped us, inasmuch as long before

these hints were promulgated, had the following work, which is composed

principally as a succedaneum to the former, been planned, and partly writ-

ten. It is at least, however, a pleasing confirmation of the justness of our

own conceptions, to have encountered even at any time with these after-

suggestions. The plan of the work is, nevertheless, in several respects,

a deviation from that here so forcibly recommended.

The object of the first volume is, to make the text of the Principia, by
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supplying numerous steps in the very concise demonstrations of the pro-

positions, and illustrating them by every conceivable device, as easy as

can be desired by students even of but moderate capacities. It is univei*-

sally known, that Newton composed this wonderful work in a very hasty

manner, merely selecting from a huge mass of papers such discoveries as

would succeed each other as the connecting links of one vast chain, but

without giving himself the trouble of explaining to the world the mode of

fabricating those links. His comprehensive mind could, by the feeblest

exertion of its powers, condense into one view many syllogisms of a pro-

position even heretofore uncontemplated. What difficulties, then, to him

would seem his own discoveries ? Surely none ; and the modesty for

which he is proverbially remarkable, gave him in his own estimation so

little the advantage of the rest of created beings that he deemed these

difficulties as easy to others as to himself: the lamentable consequence of

which humility has been, that he himself is scarcely comprehended at this

day—a century from the birth of the Principia.

We have had, in the first place, the Lectures of Whiston, who des-

cants not even respectably in his lectures delivered at Cambridge, upon

the discoveries of his master. Then there follow even lower and less

competent interpreters of this great prophet of science—for such Newton

must have been held in those dark days of knowledge—whom it would be

time mis-spent to dwell upon. But the first, it would seem, who properly

estimated the Principia, was Glairaut. After a lapse of nearly half a cen-

tury, this distinguished geometer not only acknowledged the truths of the

Principia, but even extended the domain of Newton and of Mathematical

Science. But even Clairaut did not condescend to explain his views and

perceptions to the rest of mankind, farther than by publishing his own

discoveries. For these we owe a vast debt of gratitude, but should have

been still more highly benefited, had he bestowed upon us a sort of run-

ning Commentary on the Principia. It is generally supposed, indeed,

that the greater portion of the Commentary called Madame Chastellet's,

was due to Clairaut. The best things, however, of that work are alto-
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gether unworthy of so great a master ; at the most, showing the perforra-

pnce WAS not one of his own seeking. At any rate, this work does not

ileserve tjie name of a Commentary on the Principia. The same may

safely be affirmed of many other productions intended to facilitate New-

ton. Pemberton's View, although a bulky tome, is little more than

a eulogy. Maclaurin's speculations also do but little, elucidate the

dark passages of the Principia, although written more immediately for

that purpose. This is also a heavy unreadabje performance, and not

worthy a place on the same shelf with the Qth^v works of that great

geometer. Another great rnathematician, scarcely inferior to Maclaurin,

has also laboured unprofitably in the same field. Emerson's Comment^

is a book as small in value as it is in bulk, affording no helps worth th^

perusal to the student. Thorpe's notes to the First Book of the Princi-

pia, however, are of a higher character, and in many instances do really

facilitate the reading of Newton. Jebb's notes upon certain sections deserve

the same commendation ; and praise ought not to be withheld from several

other commentators, who have more or less succeeded in making small

portions of the Principia more accessible to the student—such as the Rev.

Mr. Newton's work, Mr. Carr's, Mr. Wilkinson's, Mr. Lardner's, &c.

It must be confessed, however, that all these fall far short in value of the

very learned labours, contained in the Glasgow Newton, of the Jesuits

Le Seur and Jacquier, and their great coadjutor. Much remained, how-

ever, to be added even to this erudite production, and subsequently to its

first appearance much has been excogitated, principally by the mathema-

ticians of Cambridge, that focus of science, and native land of the Princi-

pia, of which, in the composition of the following pages, the author has

liberally availed himself. The most valuable matter thus afforded are the

Tutorial MSS. in circulation at Cambridge. Of these, which are used in

explaining Newton to the students by the Private Tutors there, the author

confesses to have had abundance, and also to have used them so far as seem-

ed auxiliary to his own resources. But at the same time it roust be remark-

ed, that litde has been tlie assistance hence derived, or, indeed, from all
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Other known sources, which from the first have been constantly at com-

mand.

Tlje plan of the work being to make those parts of Newton easy which

are required to be read at Cambridge and Dublin, that portion of the

Principia which is better read in tlie elementary works on Meclianics,

viz. the preliminary Definitions, Laws of Motion, and their Corollaries,

has been disregarded. For like reasons the fourth and fifth sections have

been but little dwelt upon. The eleventh section and third book have

not met with the attention their importance and intricacy would seem to

demand, partly from the circumstance of an excellent Treatise on Physics,

by Mr. Airey, having superseded the necessity of such labours; and

partly because in the second volume the reader will find the same subjects

treated after the easier and more comprehensive methods of Laplace.

The first section of the first book has been explained at great length,

and it is presumed that, for the first time, the true principles of what has

been so long a subject of contention in the scientific world, have there

been fully established. It is humbly thought (for in these intricate specu-

lations it is folly to be proudly confident), that what has been considered

in so many lights and so variously denominated Fluxions, Ultimate Ratios,

Differential Calculus, Calculus of Derivations, &c. &c. is here laid down

on a basis too firm to be shaken by future controversy. It is also hoped

that the text of this section, hitherto held almost impenetrably obscure, is

now laid open to the view of most students. The same merit it is with some

confidence anticipated will be awarded to the illustrations of the 2nd, 3rd,

6th, 7th, 8th, and 9th sections, which, although not so recondite, require

much explanation, and many of the steps to be supplied in the demon-

stration of almost every proposition. Many of the things in the first

volume arc new to the author, but very probably not original in reality

—

so vast and various are the results of science already accumulated. SuflSce

it to observe, that if they prove useful in unlocking the treasures of the

Principia, the author will rest satisfied with the meed of approbation,

which he will to that extent have earned from a discriminating and im-

partial public
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The second volume is designed to form a sort of Appendix or Supple-

ment to the Principia. It gives the principal discoveries of Laplace, and,

indeed, will be found of great service, as an introduction to the entire

perusal of the immortal work of that author—the Mecanique Celeste.

This volume is prefaced by much useful matter relative to the Integra-

tion of Partial Differences and other difficult branches of Abstract Ma-

thematics, those powerful auxiliaries in the higher departments of Physical

Astronomy, and which appear in almost every page of the Mecanique

Celeste. These and other preparations, designed to facilitate the com-

prehension of the Newton of these days, will, it is presumed, be found

fully acceptable to the more advanced readers, who may be prosecuting

researches even in the remotest and most hidden receptacles of science

;

and, indeed, the author trusts he is by no means unreasonably exorbitant

in his expectations, when he predicates of himself that throughout the

undertaking he has proved himself a labourer not unworthy of reward,

THE AUTHOR.







A COMMENTARY

ON

NEWTON'S PRINCIPIA,

SECTION I. BOOK I.

1. This section is introductoi-y to the succeeding part of the work. It

comprehends the substance of the metliod of Exhaustions of the Ancients,

and also of the Modej-n Theories, vai'iously denominated Fluxions^ Dif-

ferential CalculuSi Calculus of Derivations, Functions, &c. &c. Like

them it treats of the relations which Indefinite quantities bear to one ano-

ther, and conducts in general by a nearer route to precisely the same

results.

2. In what precedes this section, fnite quantities only are considered,

such as the spaces described by bodies moving uniformly infinite times

with finite velocities ; or at most, those described by bodies whose mo-

tions are uniformly accelerated. But what follows relates to the motions

of bodies accelerated according to various hypotheses, and requires the

consideration of quantities indefinitely small or great, or of such whose

Ratios, by their decrease or increase, continually approximate to certain

Limiting Values, but which they cannot reach be the quantities ever so

much diminished or augmented. These Limiting Ratios are called by

Newton, " Prime and Ultimate Ratios," Prime Ratio meaning the Limit

from which the Ratio of two quantities diverges, and Ultimate Ratio that

towards which the Ratio converges. To prevent ambiguity, the term Li-

miting Ratio will subsequently be used throughout this Commentary.
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LEMMA I.

3. Quantities and the Ratios of Quantities.] Hereby Newton
would infer the truth of the Lemma not only for quantities mensurable

by Integers, but also for such as may be denoted by Vulgar Fractions.

The necessity or use of the distinction is none ; there being just as much
reason for specifying all other sorts of quantities. The truth of the Lemma
does not depend upon the species of quantities, but upon their confor-

mity with the following conditions, viz.

4. That they tend continually to equality, and approach nearer to each

other than by any given difference. They must tend continually to equa-

lity, that is, every Ratio of their successive corresponding values must be

nearer and nearer a Ratio of Equahty, the number of these convergen-

cies being without end. By given difference is merely meant any that can

be assigned or proposed.

5. Finite Time.] Newton obviously introduces the idea of time in this

enunciation, to show illustratively that he supposes the quantities to con-

verge continually to equality, without ever actually reaching or passing that

state ; and since to fix such an idea, he says, " before the end of that

time," it was moreover necessaiy to consider the time Finite. Hence

our author would avoid the charge of " Fallacia Suppositionis," or of

" shifting the hypothesis." For it is contended that if you frame certain

relations between actual quantities, and afterwards deduce conclusions

from such relations on the supposition of the quantities having vanished,

such conclusions are illogically deduced, and ought no more to subsist

than the quantities themselves.

In the Scholium at the end of this Section he is more explicit. He
says, The ultimate Ratios, in "which quantities vanish, are not in reality the

Ratios of Ultimate quantities ,• but the Limits to nsohich the Ratios of quan-

tities continually decreasing always approach ; "which they never can pass

beyond or arrive at, unless the quantities are continually and indefinitely

diminished. After all, however, neither our Author himself nor any of

his Commentators, though much has been advanced upon the subject, has

obviated this objection. Bishop Berkeley's ingenious criticisms in the

Analyst remain to this day unanswered. He therein facetiously denomi-

nates the results, obtained from the supposition that the quantities, before
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considered finite and real, have vanished, the " Ghosts of Departed

Quantities " and it must be admitted there is reason as well as wit in the

appellation. The fact is, Newton himself, if we may judge from his own

words in the above cited Scholium, where he says, " If two quantities,

whose DIFFERENCE IS GIVEN are augmented continually, their Ultimate

Ratio will be a Ratio of Equality," had no knowledge of the true nature

of his Method of Prime and Ultimate Ratios. If there be meaning in

words, he plainly supposes in this passage, a mere Approximation to be

the same with an Ultimate Ratio. He loses sight of the condition ex-

pressed in Lemma I. namely, that the quantities tend to equality nearer

than by any assignable difference, by supposing the difference of the quan-

tities continually augmented to be given, or always the same. In this

sense the whole Earth, compared with the whole Earth minus a grain of

sand, would constitute an Ultimate Ratio of equality ; whereas so long as

any, the minutest difference exists between two quantities, they cannot be

said to be more than nearly equal. But it is now to be shown, that

,

6. If two quantities tend continually to equality, and approach to one

another nearer than by any assignable difference, their Ratio is ULTIMATE-

LY a Matio of ABSOLUTE equality. This may be demonstrated as fol-

lows, even without supposing the quantities ultimately evanescent.

It is acknowledged by all writers on Algebra, and indeed self-evident, that

if in any equation put = 0, there be quantities absolutely different in kind,

the aggregate of each species is separately equal to 0. For example, if

A + a + B V~2 + b V~2 + C V~^^^ = 0,

since A + a is rational, (B + b) V^2 surd and C V — 1 imaginary,

they cannot in any way destroy one another by the opposition of signs,

and therefore

A + a = 0, B + b = 0, C = 0.

In the same manner, if logarithms, exponentials, or any other quantities

differing essentially from one another constitute an equation like the above,

they must separately be equal to 0. This being premised, let L, L' de-

note the Limits, whatever they are, towards which the quantities L + I,

L' + 1' continually converge, and suppose their difference, in any state of

the convergence, to be D. Then

L + 1_L'— 1' = D,

or L — L' + 1 — r — D = 0,

and since L, U are fixed and definite, and 1, 1', D always variable, the

former are independent of the latter, and we have

A2
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L
L — L' = 0, or j-> = 1, accurately. Q. e. d.

This way of considering the question, it is presumed, will be deemed

free from every objection. The principle upon which it rests depending

upon the nature of the variable quantities, and not upon their evanescence,

(as it is equally true even for constant quantities provided they be of dif-

ferent natures), it is hoped we have at length hit upon the true and lo-

gical method of expounding the doctrine of Prime and Ultimate Ratios,

or of Fluxions, or of the Differential Calculus, &c.

It may be here remarked, in passing, that the Method of Indeterminate

Coefficients, which is at bottom the same as that of Prime and Ultimate

Ratios, is treated illogically in most books of Algebra. Instead of

" shifting the hypothesis," as is done in Wood, Bonnycastle and others,

by making x r= 0, in the equation

a + bx + cx2+dx3+ = 0,

it is sufficient to know that each term x being indefinitely variable, is he-

terogeneous compared with the rest, and consequently that each term

must equal 0.

T. Having established the truth of Lemma I. on incontestable princi-

ples, we proceed to make such applications as may produce results useful

to our subsequesnt comments. As these applications relate to the Limits

of the Ratios of the Differences of Quantities, we shall term, after Leib-

nitz, the Method of Prime and Ultimate Ratios,

THE DIFFERENTIAL CALCULUS.

8. According to the estabhshed notation, let a, b, c, &c , denote con-

stant quantities, and z, y, x, &c., variable ones. Also let A z, A y, A x,

&c., represent the difference between any two values of z, y, x, &c., re-

spectively,

9. Required the Limiting or Ultimate Ratio of A (a x) and A x, i. e.

the Limit of the Difference ofa Rectangle having one side (a) constant, and

the other (x) variable, and of the Difference of the variable side.

Let L be the Limit sought, and L + 1 any value whatever of the va-

rying Ratio. Then

A (a x) a (x + A x) — ax
, xt r.

L = a.
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In this instance the Ratio is the same for all values of x. But if in the

Limit we change the characteristic A into d, we have

d (a x)
= a""

:
(b)

or " ^

d (a x) = a d X-

d (a x), d X being called the Differentials of a x and x respectively.

A{x2)
10. Required the Limit of '

^.-v '

Let L be the Limit required, and L + 1 the value of the Ratio gene-

rally. Then
A (x *) (x + A x) *— x *

Ax " Ax
2 X A X + ^ X 2

AX -=2X + AX. .

.-. L — 2x + l — Ax=0
and since L— 2 x and 1 — Ax are heterogeneous

L — 2 X = 0,

or

L = 2x.

and .*.

or

d(x2) = 2xdx (c)

A (x")
1 L Generallyi required the Limit of ^

-.

Let L and L + 1 be the Limit of the Ratio and the Ratio itself re-

spectively. Then

T J_ 1 _ ^(^°) _ (X + AX)°— X°
^ + ^ - Ax - AX

n. (n — 1)= n x"-» + —^^"2 -. X "-' A X + &c.

and L — n x ° — * being essentially different from the other terms of

the series and from 1, we have

d(x°)

jj X =L = nx°-'ord(x") = nx''-*dx (d)

or in words,

AS
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The Differential of any power or root of a variable quantity is equal to

the product of the Differential of the quantity itself, the same powei' or

root MINUS one of the quantity, and the index of the po'wer or root.

We have here supposed the Binomial Theorem as fully established by

Algebra. It may, however, easily be demonstrated by the general prin-

ciple explained in (7).

12. From 9 and 11 we get

d (a X °) = n a X " - * d X (e)

„ . ,, ^ .
,A (a + bx° + cx°> + exP + &c.)

13. Required the Limit of
-—

Let L be the Limit sought, and L + 1 the variable Ratio of the finite

differences; then

A(a + bx" + cx'° + &c.)

^ + ^ = AX
a + b(x+ Ax)° + c(x + Ax)*" + &c.—a—bx"—ex"— &c.

— Ax
= nbx''-^ +mcx'"-» +&c. + Pax + Q(Ax)2 + &c.

P, Q, &c. being the coefficients of A x, A x * + &c. And equating the

homogeneous determinate quantities, we have

dfa + bx^^+cx'^+ Scc.) ^ , , , , , « ,«-^—^ ^ ^ = L = nbx'*-^ + racx"'-»+pexP-» + &c...(f)

A(a + bx'' + cx" + &c.)

'

14. Required the Limit of -^^
*

By 11 we have

d. (a + bx" + cx"" + &c.)

'

d(a + bx- + &c.)
=r(a + bx'»+cx- + &c.)'-»

and by 13

d(a+bx" + cx'" + &c.) = (nbx"-» + mcx""-* + &c.) dx
dfa+bx'*+cx™+&c )''

.-.
-^^ -^ ^= r(nbx'»-'+mcx'°-'+ &c.)(a+bx'^+&c.)'->..(g)

the Limiting Ratio of the Finite Differences A(a + bx'^4-cx™ + &c.),

A X, that is the Ratio of the Differentials ofa + bx'^4-cx'" + &c.,

and X.

A+Bx"+Cx°' + &c.
15. Required the Ratio of the Differentials^ a4-bx' + Cxi^4-&c

and X, or the Limiting Ratio of their Finite Differences.

Let L be the Limit required, and L + 1 the varying Ratio. Then "^

__ A + B (x 4- A x)*^ + C (x + A x)" + &c. A + B X ° + &c.

^ "* ^ - a + b(x + Ax)' + c(x + Ax)/* + &c. ~ a+ bx' +&C.
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which being expanded by the Binomial Theorem, and properly reduced

gives

L X ( a 4- b X' + &c.)' + L X JP. Ax + Q (A x)* +&c. + 1 X fa+bx' + &c.

+ P. A X + Q (A x)^ + &C.J =(a+bx' + cx^ + &c.) X (nBx"-'

+ m C X «-» + &c.) — (A + Bx"+Cx'"+ &c.) X (v b x -
-

'

+ /t c X A*- 1 + &c) + P'. A X + Q' (A x) 2 + &c.

P, Q, F, Q' &c. being coefficients of a x, (a x) "^ &c. and independent of

them.

Now equating those homogeneous terms which are independent of the

powers of a x, we get

L(a + bx' + &c.)^ = (a + bx' + &c.)--(nBx''-»4-mCx'"-'+&c.)
— (A + Bx" + Cx'^ + &c.) — (cbx'-' + /icx/*-' + &c.)

J ..
^ + B x-^+Cx-^ + Scc. , ^ „and puttmg u = a"+ b x ' + cxm + &cr ^« ^^^^ ^^^^^

d u d u
g~^ = L, and therefore g-^ =

(a+bx'+&c.)(nBx+"-'mCx^-'+&c.)-(A+Bx"+&c.)(vbx'-'+AtcxM-^+&c.)

(a + bx' + cx'' + &c.) *

the Ratio required.

16. Hence and from 1 1 we have the Ratio of the Differentials of

(A + Bx-+Cx"' + &c.) P

(a4-bx'+ cx/^ + &c.) 1 ^^ ^ »
^"^ "* short, from what has al-

ready been delivered it is easy to obtain the Ratio of the Differentials of

any Algebraic Function "whatever of one variable and of that variable.

N. B. By Function of a variable is meant a quantity anyhow involving

that variable. The term was first used to denote the Powers of a quan-

tity, as X % x ^, &c. But it is now used in the general sense.

The quantities next to Algebraical ones, in point of simplicity, are Ex-

ponential Functions; and we therefore • proceed to the investigation of

their Differentials.

17. Required the Ratio of the Differentials of ^^ and x ; or the Limit-

ing Ratio of their Differences.

Let L be the required Limit and L + 1 the varying Ratio ; then

A(a^) 3^ + -^* — a*
L + 1 = AX AX

a^'^— 1

= a'^ X A X
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But since

ay = (l+a — i)y

y. (y — 1)= 1 + y (a — 1) + •'-^•^2 \ (a - 1) 2 +

y.(y_l)(y-2)
273 (a — 1) + &c.,

it is easily seen that the coefficient of y in the expansion is

, (a-Jip (a-l)3
a — 1 — 2 + -g — &c.

Hence

a* (a—1)^ (a^l)3
^ + ^ = Z^ {(a—1— —2 + 3 — ^^•) A X + P (^x)2 + &c.}

and equating homogeneous quantities, we have

d. (a^) ^ (a_l)2 (a_l)3

= A a^ (h)

or the Ratio of the Differentials of any Exponential and its exponent is

equal to the product of the Exp07iential and a constant Quantity.

Hence and from the preceding articles, the Ratio of the Differentials of

any Algebraic Function of Exponentials having the same variable index,

may be found. The Student may find abundance of practice in the Col-

lection of Examples of the Differential and Integral Calculus, by Messrs.

Peacock, Herschel and Babbage.

Before we proceed farther in Diiferentiation of quantities, let us inves-

tigate the nature of the constant A which enters the equation (h).

For that purpose, let (the two first terms have been already found)

a^= 1 +Ax + Px2 + Qx3+&c.
Then, by 13,

d (a ^)

^^ = A + 2Px + 3Qx'* + 4Rx' + &c.

But by equation (h)

d (a^)
1 also = A a *

= A + A2x + APx2 + A.Qx3 + &c.

.-. A4-2Px + 3Qx24.4Rx3 + &c. rrA + A'^x + APx^ + ficc.

and equating homogeneous quantities^ we get

2 P = A % 3 Q = A P, 4 R = A Q, &c. = &c.
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whence

P= 2»Q- 3 -2. 3'^ = ~i~ = 27374 ^^' ^^'

Therefore,

A' A' A*a^=l + Ax + -2-x'' + 273x' + 37374 x ^ + &c.

Again, put A x = 1, then

X 111
a = 1 + 1 + 2 + 2T3 + 27171 + &^-

= 2.718281828459 as is easily calculated

= e

by supposition. Hence

loff. a
A = 41 (k)

(a^l)'' (a- 1)3 ^ log. a
.-. a - 1 2 + 3 &c. = 13^3 = 1. a

for the system whose base is e, 1 being the characteristic of that Bystem,

This system being that which gives

(e-1)* (e-l)3
€ 1 2 + 3 &C* — ^

is called Natural from being the most simple.

Hence the equation (h) becomes

d(a^)

17 a. JRequired the Ratio of the Differentials of 1 (x) and x.

Let 1 X = u. Then e " = x

.-. d X = d (e '») = 1 e X e '» d u = e " d u, by 16

d(lx) 11
.-. "dlT = iT =-....-.... (m)

Ix
In any other system whose base is a, we have log. (x) = j^.

d loff. X 1 1

••• "dV = U ^ X (")

We are now prepared to differentiate any Algebraic, or Exponential

Functions of Logarithmic Functions, provided there be involved but

one variable.

Before we differentiate circular functions, viz. the sines, cosines, tan-

gents, &c., of circular arcs, we shall proceed with our comments on the

text as far as Lemma VIII.
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LEMMA II.

18. In No. 6, calling L and L' Limits of the circumscribed and inscribed

rectilinear figures, and L + 1, L,' + V any other values of them, whose

variable difference is D, the absolute equality of L and L' is clearly de-

monstrated, without the supposition of the bases A B, B C, C D, D E,

being infinitely diminished in number and augmented in magnitude. In

the view there taken of the subject, it is necessary merely to suppose them

variable.

LEMMA IIL

19. This Lemma is also demonstrable by the same process in No. 6,

as Lemma II.

Cor. 1. The rectilinear figures cannot possibly coincide with the curvi-

linear figure, because the rectilinear boundaries albmcndoE,
aKbLcMdDE cut the curve a b E in the points a, b, c, d, E in

finite angles. The learned Jesuits, Jacquier and Le Seur, in endeavour-

ing to remove this difficulty, suppose the four points a, 1, b, K to coincide,

and thus to form a small element of the curve. But this is the language

of Indivisibles, and quite inadmissible. It is plain that no straight line,

or combination of straight lines, can form a curve line, so long as we un-

derstand by a straight line " that which lies evenly between its extreme

points," and by a curve line, " that which does not lie evenly between its

extreme points ;" for otherwise it would be possible for a line to be

straight and not straight at the same time. The truth is manifestly this.

The Limiting Ratio of the inscribed and circumscribed figures is that of

equality, because they continually tend to a fixed area, viz, that of the

given intermediate curve. But although this intermediate curvilinear

area, is the Limit towards which the rectilinear areas continually tend and

approach nearer than by any difierence
;
yet it does not follow that the

rectilinear boundaries also tend to the curvihnear one as a limit. The

rectilinear boundaries are, in fact, entirely heterogeneous with the interme-

diate one, and consequently cannot be equal to it, nor coincide therewith.

We will now clear up the above, and at the same time introduce a strik-

ing illustration of the necessity there exists, of taking into consideration

the nature of quantities, rather than their evanescence or infinitesimaUty.
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Take the simplest example of Lemma II., in the case of the right-

angled triangle a E A, having its two legs A a, A E equal.

The figure being constructed as in the text of Lemma II, it fol-

lows jfrom that Lemma, that the Ultimate Ratio of the inscribed and cir-

cumscribed figures is a ratio of equality ; and moreover it would also

follow from Car. 1. that either of these

coincided ultimately with the triangle

a E A. Hence then the exterior boundary

albmcndoE coincides exactly with

a E ultimately, and they are consequently

equal in the Limit. As we have only

straight lines to deal with in this example,

let us try to ascertain the exact ratio of

a E to the exterior boundary.

If n be the indefinite number of equal

bases A B, B C, &c., it is evident, since

A a = A E, that the whole length of

albmcndoE = 2nxAB. Also since

K\ n 1

b \
L \ n

c\
M \ o

d^
B C D E

= &c.b = b c

= V a P + b 1 * = V 2. A B, we have a E = n V 2. A B.

Consequently,

albmcndoE:aE: ; 2: V2: : V~2 : 1.

Hence it is plain the exterior boimdary cannot possibly coincide with

a E. Other examples might be adduced, but it must now be sufficiently

clear, that Newton confounded the ultimate equality of the inscribed and

circumscribed figures, to the intermediate one, with their actual coinci-

dence, merely from deducing their Ratios on principles of approximation

or rather of Exhaustion, instead of those, as explained in No. 6 ; which

relate to the homogeneity of the quantities. In the above example the

boundaries being heterogeneous inasmuch as they are incommensurable,

cannot be compared as to magnitude, and unless lines are absolutely equal,

it is not easy to believe in their coincidence.

Profound as our veneration is, and ought to be, for the Great Father

of Mathematical Science, we must occasionally perhaps find fault with

his obscurities. But it shall be done with great caution, and only with

the view of removing them, in oi'der to render accessible to students in

general, the comprehension of " This greatest monument of human ge-

nius."

20. Car. 2. 3. and 4. will be explained under Lemma VII, which re-

lates to the Limits of the Ratios of the chord, tangent and the arc.



12 A COMMENTARY ON [Sect. L

LEMMA IV.

21. Let the areas of the parallelograms inscribed in the two figures be

denoted by

P, Q, R, &c.

p, q, r, &c.

respectively ; and let them be such that

P : p : : Q : q : : R : r, &c. : : m : n.

Then by compounding these equal ratios, we get

P + Q+R + :p + q4.r + ::m:n
But P + Q + R . . . . and p + q + r + . . . . have with the curvili-

near areas an ultimate ratio of equality. Consequently these curvilinear

areas are in the given ratio of m : n.

Hence may be found the areas of certain curves, by comparing their

incremental rectangles with those of a known area.

Ex. 1. Required the area of the common Apollonian parabola comprised

between its vertex and a given ordinate.

Let a c E be the parabola,

whose vertex is E, axis E A and

Latus-Rectum = a. Then A A'

being its circumscribing rectan-

gle, let any number of rectan-

gles vertically opposite to one

another be inscribed in the areas

a E A, a E A', viz. A b, b A'

;

B c, c B', &c.

K
^^^^^^

1

b ^\^ m

c n

d

\

A'

B'

C

And since
A B

A b = A K. A B

A'b = A' 1. A' B' = ^^^^. A' B'

D E

from the equation to the parabola.

A b g. AB
•'•A'b - AK. A'B'

Also

or

(Aa)*—•Bb'^rzaxAE—axBE = aXAB

(A a + B b) X A' B' = a X A B



NEWTON'S PRINCIPIA.Book I.]

a X AB ^ „

,

•*•
A^ B' = A a + B b

A b _ Aa + Bb 2Bb + Ka
*•
A' b

-

13

Ka
= 2 + BbBb - B b

. . A b
Hence, since in the Limit ~r~^ becomes fixed or of the same nature with

the first term, we have

A b

A'b
= 2

ultimately.

And the same may be shown of all other corresponding pairs of rec-

tangles ; consequently by Lemma IV.

a E A : a E A' : : 2 : 1

.*. a E A : rectangle A A' : : 2 : 3.

or the area of a 'parabola is equal to trvo thirds of its circumscribing rec-

tangle.

Ex. 2. To compare the area of a semielUpse "joith that of a semicircle

described on the same diameter.

^.^^-^ r
Ql

^<y
^^^^ X/p' r' "-^X

r ^M sr
B

Taking any two corresponding inscribed rectangles P N, P' N ; we

have

P N : F N : : P M : P' M : : a : b

a and b being the semiaxes major and minor of the ellipse ; and all other

corresponding pairs of inscribed rectangles have the same constant ratio

;

consequently by Lemma IV, the semicircle has to the semielUpse the ratio

of the major to the minor axis.

As another example, the student may compare the area of a cycloid

with that of its circumscribing rectangle, in a manner very similar to

Ex. 1.

This method of squaring curves is very limited in its application. In

the progress of our remarks upon this section, we shall have to exhibit a

general way of attaining that object.

^_
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LEMMA V.

22. For the definition of similar rectilinear figures, and the truth of this

Lemma as it applies to them, see Euclid's Elements B. VI, Prop. 4, 19

and 20.

The farther consideration of this Lemma must be deferred to the ex-

planation of Lemma VII.

LEMMA VL

23. In the demonstration of this Lemma, " Continued Curvature" at

any point, is tacitly defined to be such, that the arc does not make nsoith the

tangent at that point, an angle equal to ajinite rectilinear angle.

In a Commentary on this Lemma if the demonstration be admitted,

any other definition than this is plainly inadmissible, and yet several of

the Annotators have stretched their ingenuity to substitute notions of

continued curvature, wholly inconsistent with the above. The fact is,

this Lemma is so exceedingly obscure, that it is difficult to make any

thing of it. In the enunciation, Newton speaks of the angle betiaeen the

chord and tangent ultimately vanishing, and in the demonstration, it is

the angle between the arc and tangent that must vanish ultimately. So

that in the Limit, it would seem, the arc and chord actually coincide.

This has not yet been established. In Lemma III, Cor. 2, the cointi-

dence ultimately of a chord and its arc is implied ; but this conclusion by

no means follows from the Lemma itself, as may easily be gathered from

No. 19. The very thing to be proved by aid of this Lemma is, that the

Ultimate Ratio of the chord to the arc is a ratio of equality, it being

merely subsidiary to Lemma VII. But if it be already considered that

they coincide, of course they are equal, and Lemma VII becomes nothing

less than " argumentum in circulo."

Newton introduces the idea of curves of " continued curvature," or

such as make no angle with the tangent, to intimate that this Lemma does

not apply to curves of non-continued curvature, or to such as do make a

Jinite angle isoith the tangent. At least this is the plain meanmg of his

words. But it may be asked, are there any curves whose tangents are

inclined to them ? The question can only be resolved, by again admitting
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the arc to be ultimately coincident with the chord ; and by then showing,

that curves may be imagined whose chord and tangent ultimately shall be

inclined at a finite angle. The Ellipse, for instance, whose minor axis

is indefinitely less than its major axis, is a curve of that kind ; for taking

the tangent at the vertex, and putting a, b, for the semiaxes, and y, x, for

the ordinate and abscissa, we have

b^
y2 = —, X (2ax — x'')

and

b /2 a

= a\/T" X 1 = V 2a
a -s/ X

.*. since b is indefinitely smaller than a V x, x is indefinitely greater than

y, and supposing y to be the tangent cut off by the secant x parallel to

the axis, x and y are sides of a right angled a, whose hypothenuse is the

chord. Hence it is plain the Z- opposite x is ultimately indefinitely

greater than the z_ opposite to y. But they are together equal to a right

angle. Consequently the angle opposite x, or that between the chord and

tangent, is ultimately finite. Other cases might be adduced, but enough

has been said upon what it appears impossible to explain and establish as

logical and dhect demonstration. We confess our inabihty to do this,

and feel pretty confident the critics will not accompUsh it

24. Having exposed the fallacy of Newton's reasoning in the proof of

this Lemma, we shall now attempt something by way of substitute.

Let AD be the tangent to the curve at the

'point A, and A B its chord. Then if ^ be

supposed to move indefinitely near to A, the

angle BAD shall indefinitely decrease, pro-

vided the curvature be not indefinitely great.

Draw RD passing through B at right an-

gles to AB, and meeting the tangent AD and

normal A R in the pointsD and R respective-

ly. Then since the angle BAD equals the

angle A R B, if A R B decrease indefinitely

when B approaches A ; that is, if A R be-

come indefinitely greater than, A B; or

which is the same thing, if the curvatiu-e at A, be not indefinitely great

;

the angle BAD also decreases indefinitely. Q. e. d.

We have already explained, by an example in the last article, what is
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meant by curvature indefinitely great. It is the same with Newton's ex-

pression " continued curvature." The subject will be discussed at length

under Lemma XI.

As vanishing quantities are objectionable on account of their nothing-

ness as it has already been hinted, and it being sufficient to consider va-

riable quantities, to get their limiting ratios, as capable of indefinite diminu-

tion, the above enunciation has been somewhat modified to suit those

views.

LEMMA VII.

25. This Lemma, supposing the two preceding ones to have beenfully esta-

blished, would have been a masterpiece of ingenuity and elegance. By
the aid of the proportionality of the homologous sides of similar curves,

our author has exhibited quantities evanescent by others of any finite

magnitude whatever, apparently a most ingenious device, and calculated

to obviate all objections. But in the course of our remarks, it will be

shown that Lemma V cannot be demonstrated without the aid of this

Lemma.

First, by supposing A d, A b always finite, the angles at d and b and

therefore those at D and B which are equal to the former are virtually

considered finite, or R D cuts the chord and tangent at finite angles.

Hence the elaborate note upon this subject of Le Seur and Jacquier is

rendered valueless as a direct comment.

Secondly. In the construction of the figure in this Lemma, the de-

scription of a figure similar to any given one, is taken for granted. But

the student would perhaps like to know how this can be effected.

Lemma V, which is only enunciated, from being supposed to be a mere

corollary to Lemma III and Lemma IV, would afford the means immedi-

ately, were it thence legitimately deduced. But we have clearly shown

(Art. 19.) that rectilinear boundaries, consisting of lines cutting the inter-

mediate curve ultimately atjinite angles, cannot be equal ultimately to the

curvilinear one, and thence we show that the boundaries formed by the

chords or tangents, as stated in Lemma III, Cor. 2 and 3, are not ulti-

mately equal, by consequence of that Lemma, to the curvilinear one.

Newton in Cor. 1, Lemma III, asserts the ultimate coincidence, and

therefore equality of the rectilinear boundary whose component lines cut

the curve at finite angles, and thence would establish the succeeding cor-
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ollaries a fortiori. But the truth is that the curvilinear boundary is the

limit, as to magnitude, or length, of the tangential and chordal bounda-

ries ; although in the other case, it is a limit merely in respect of area.

Yet, we repeat it, that Lemma V cannot be made to follow from the

Lemmas preceding it. According to Newton's implied definition of simi-

lar curves, as explained in the note of Le Seur and Jacquier, they are the

curvilinear limits of similar rectilinear fgures. So they might be consi-

dered, if it were already demonstrated that the limiting ratio of the chord

and arc is a ratio of equality ; but this belongs to Lemma VII. Newton

himself and all the commentators whom we have perused, have thus

committed a solecism. Even the best Cambridge MSS. and we have

seen many belonging to the most celebrated private as well as college tu-

tors in that learned university, have the same error. Nay most of them

are still more inconsistent. They give definitions of similar curves wholly

diiFerent from Newton's notion of them, and yet endeavour to prove

Lemma V, by aid of Lemma VII. For the verification of these asser-

tions, which may else appear presumptuously gratuitous, let the Cantabs

peruse their MSS. The origin of all this may be traced to the falsely

deduced ultimate coincidence of the curvilinear and rectilinear boundaries,

in the corollaries of Lemma III. See Art. 19.

We now give a demonstration of the Lemma without the assistance of

similar curves, and yet independently of quantities actually evanescent. '

By hypothesis the secant R D cuts the chord and tangent at finite an-

gles. Hence, since

A + B + D = 180°

.-. B + D = 180° — A
or L -h 1 -l-L'-l- 1' = 180° — A

L and \J being the limits of B and D and 1, V their variable parts as in

Art. 6 ; and since by Lemma VI, or rather by Art. 24, A is indefinitely

diminutive, we have, by collecting homogeneous quantities

L + L' = 180°

But A B, A D being ultimately not indefinitely great, it might easily

be shown from Euclid that L = L', and ••. A B = A D ultimately, (see

Art. 6 ) and the intermediate arc is equal to either of them.
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OTHERWISE,

If we refer the curve to its axis,

A a, B b being ordinates, &c. as

in the annexed diagram. Then, _

by Euclid, we have

AD« = AB^ + BD^ + 2BD.Bd
A D = 1 + B D.

B D + 2 B d

"AB^"^ AB^
Now, since by Art. 24 or Lemma VI, the z. B A D is indefinitely less

than either of the angles B or D, .-. B D is indefinite compared with A B
AD

or A D. Hence L being the limit of . —p, and 1 its variable part, if we

extract the root of both sides of the equation and compare homogeneous

terms, we get,

L = 1 or &c. &c.

26. Having thus demonstrated that the limiting Ratio of the chord, arc

and tangent, is a ratio of equality, "when the secant cuts the chord and tangent

at FINITE angles, we must again digress from the main object of this work,

to take up the subject of Article 17. By thus deriving the limits of the rati-

os of the finite differences of functions and their variables, directly from the

Lemmas of this Section, and giving to such limits a convenient algorithm

or notation, we shall not only clear up the doctrine of limits by nume-

rous examples, but also prepare the way for understanding the abstiniser

parts of the Principia. This has been before observed.

Required to find the Limit of the Finite Differences of the sine of a cir-

cidar arc and of the arc itself, ^or the Ratio of their Differentials.

Let X be the arc, and a x its finite variable increment. Then L being

the limit required and L -|- 1 the variable ratio, we have

L + l = A sin. X _ sin. (x -|- a x) — sin. x

AX AX
_ sin. X. cos. (a x) + cos. x. sin. (a x) — sin. x

A X

sin. X

A X

sin. (a x) sin.x. cos. ax= cos. x. ^ A
A X AX

Now by Lemma VII, as demonstrated in the preceding Article, the li-

mit of
sm. A X

A X
. - J cos. (a x)
is 1, and i -,

A X

SUl. X

A X
have no definite limits.
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Consequently putting

sin. (a x)
COS. X. ^ = COS. X + r,AX '

we have
sin. X. COS. A X sin. xL + 1 = COS. X + 1' + AX AX

and equating homogeneous terms

L = COS. X

or adopting the differential symbols

d. sin. X—T = cos X
d X

or

d sin. X = d X. cos. x

27. Hence and from the rules for the differentiation of algebraic, expo-

nential, &c. functions, we can differentiate all other circular functions of

one variable, viz. cosines, tangents, cotangents, secants, &c.

Thus,

}
(a)

or

or

dsin.(|-x)

d. cos. X

— dx

d. cos. X

= ^°^- G-^) =
<2 - -^^"^-^

= sin. X

= — sm. Xd- ^
(b)

d. COS. X = — d X. sin. x

Again, since for radius 1, which is genei'ally used as being the most simple,

1
1 + tan. ^ X = sec. * x =

2 tan. X. d. tan. x = d.

cos. ^ X

1 — 2 cos. X. d. COS. X
cos. " X COS. X

See 12 (d). Hence and from (b) immediately above, we have

J d X. sin. X
tan. X. d. tan. x = ,

—

COS. ^ X

.'. d. tan. X = d X. 3— (c)
COS. ^ X

Again,

cot. X =
tan. X

B2
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Therefore,

1 ^ J 1 — d. tan. X ,-„ ,,
d. cot. X = d. — = r (12. d)

tan. X tan. ^ x ^ '

— d X — d X
tan. * X. COS. * x sin. * x

Again,

(d)

sec X =
COS. Xdj 1 — d COS. X /,« j\

. sec. X = d. = 5 (12. d)
COS. X COS. '^ X ^

d X. sin. X
COS.

(e)

and lastly since cosec. x = sec. (- — x)

we have

d. (~ — x) Sin. (- — x^
J ji f^ \ V2 / V2 /
d. cosec. X = d. sec f — — xj =

COS.
(i-'')

— d X. COS. x
(0

sin. ' X

Any function of sines, cosines, &c. may hence be differentiated.

28. In articles 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 26 and 27, are to

be found forms for the differentiation of any function of one variable,

whether it be algebraic, exponential, logarithmic, or circular.

In those Articles we have found in short, the limit of the ratio of the

first difference of a function, and of the first difference of its variable.

Kow suppose in this first difference of the function, the variable x should

be increased again by a x, then taking the difference between the first

difference and what it becomes when x is thus increased, we have the dif-

ference of the first difference of a function, or the second difference of a

function, and so on through all the orders of differences, making a x al-

ways the same, merely for the sake of simplicity. Thus,

A (x ^) = (x -f- A x) ^ — X ^

= 3x'^AX + 3xAX^ + AX^

and A* (x)' = 3 (x -f- Ax) = AX -H 3 (x + ax) AX^ + AX^— Sx^Ax

3 X A X* A X^

= 3. 2xax= + 3ax'
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denoting by a * the second difference.

Hence,

—
^-P = 3. 2. X + 3 A X

A X^ '

and if the limiting ratio of A * (x ^) and Ax*, or the ratio of the second

differential of x % and the square of the differential of its variable x, be

required, we should have

L + l = 3. 2. X + 3AX
and equating homogeneous terms

.\^ = L = 3. 2. X
d x^

In a word, without considering the difference, we may obtain the se-

cond, third, &c. differentials d ^ u, d ^ u, &c. of any function u of x im-

mediately, if we observe that ^— is always a function itself of x, and

make d x constant. For example, let

u = ax" + bx™ + &c.

Then, from Art. 13. we have

-3— = nax°-' + mbx"-* + &c.
d X

^'(dH) d(du) d«u., ^ . .

= n. (n— l)ax'»-« + m (m— l)bx "» -^ -j- &c.-

Similarly,

T—^ = n. (n — 1). (n — 2) a x" - ' + &c.

&c. = &c.

Having thus explained the method of ascertaining the limits of the ra-

tios of all orders of finite differences of a function, and the corresponding

powers of the invariable first difference of the variable, or the ratios of the

differentials of all orders of a function, and of the corresponding power

of the first differential of its variable, we proceed to explain the use of

these limiting ratios, or ratios of differentials, by the following

B3
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APPLICATIONS

OF THE

DIFFERENTIAL CALCULUS.

29. Let it be required to draw a tangent to a given curve at any given

point of it.

Let P be the given point, and A M'
being the axis of the curve, let P M
= y, A M = x,be the ordinate and

abscissa. Also let P' be any other

point; draw P N meeting the ordi-

nate P' M' in N, and join P P^ Now
let T P R meeting M' P' and M A in

R and T be the tangent required.

Then since by similar triangles

F N : P N : : P M MT'

.-. M T' = M T + T T' = y.
A X

Now y being supposed, as it always is in curves, a fimction of x, we have

seen that whether that function be algebraic, exponential, &c.

A X . . . d x .

in the limit, or -5— is always a definite function of x. Hence puttingAy

we have

^ = ^ + 1

A X

a7 dy

M T + TT— y(^-^ + l)

(e)

the point T will be

and equating homogeneous terms,

MT = ydiS
dy

which being found from the equation to the curve,

known, and therefore the position of the tangent P T. M T is called

the subtangent.

Ex. 1. In the common parabola,

y* = a X
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Therefore,

and

dx
dy

2y
a

MT :

2y2
~ a

= 2x

or the subtangent M T is equal to twice the abscissa.

Ex. 2. In the ellipse,

y^ =
b^

:-^(a^-x^)

23

and" it will be found by differentiating, &c. that

— (a^ — x^)
M T = -^^

Ex. 3. In the logarithmic curve,

y = a *

.. M T = A
1 a

which is therefore the same for all points.

The above method of deducing the expression for the subtangent is

strictly logical, and obviates at once the objections of Bishop Berkeley

relative to the compensation of errors in the denominator. The fact is,

these supposed errors being different in their very essence or nature from

the other quantities with which they are connected, must in their aggre-

gate be equal to nothing, as it "has been shown in Art. 6. This ingenious

critic calls P' R = z ; then, says he, (see fig. above)

^^ = dy + z
accurately

;

whereas it ought to have been

y A X
^yMT = Ay + z Ay
+AX ~ A X

A y
the finite differences being here considered. Now in the limit, 7—- becomes aA X

d y
definite function of x represented by -7—' Consequently if 1 be put for

'^ y
the variable part,of -~~, we have
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dx + ^ + A X

and it is evident from Lemma VII and Art. 25, that z is indefinite com-

z d y
pared with ax. .*. t— is indefinite compared with M T, -j—

-, and y

;

and 1 is also so ; hence

MT. || + (l + ^)MT = y

gives

which proves generally for all curves, what Berkeley established in the

case of the common parabola ; and at the same time demonstrates, as had

been already done by using T T' instead of P' R, incontestably the ac-

curacy of the equation for the subtangent.

30. If it were required to draw a tangent to any point of a curve, re-

ferred to a center by a radius-vector g and the £. 6 which g describes by

revolving round the fixed point, instead of the rectangular coordinates

X, y ; then the mode of getting the subtangent will be somewhat different.

Supposing X to originate in this center, it is plain that

X = I COS. 6 )

y = g sin. 6 J

and substituting for x, y, d x, d y, hence derived in the expression (29.

e.) we have

.
d f cos. tf — f d ^ sin. 6M T = g sm. 6 X dTihTT+TdT^^tf . . . .

(f)

Ex. In the parabola

_ 2a
^ ~ 1 — cos. 6 '

where a is the distance between the focus and vertex, or the value of g at

the vertex. Then substituting we get, after proper reductions

f «- „, 1 + COS. 4

and the distance from the focus to the extremity of the subtangent is

/I + COS. 6 cos. 6 \MT-s cos. ^ = 2 a [i-^Z^^^^ " 1 - cos. d)



Booic L] NEWTON'S PRINCIPIA. 85

- ^^
__—

1 COS. d
"^ ^'

as is well known.

30. a. The expression (f) being too complicated in practice, the following

one may be substituted for it.

Let P T be a tangent to the

curve, refei'red to the center S,

at the point P, meeting S T
drawn at right angles to S P,

in T ; and let P' be any other

point. Join P P' and produce

it to T', and let T P be pro-

duced to meet S P' produced in

R, &c. Then drawing P N parallel to S T, we have

PN
ST' = ST + TT' = j^, X S F

But

and

P N = § tan. A ^, S P' = ^ + A f

NF = SP-SN = , + A,-,,3.(^,).

Therefore, substituting and equating homogeneous terms, after having

applied Lemma VII to ascertain their limits, we get

(g)O A - dg ' • ' '
• • • •

F.x. L In the spiral of Archimedes

f = a <?;

.•.ST = ^-

we have

Ex.2. In the hyperbolic spiral

a

.-. S T = — a

31. It is sometimes useful to know the angle between the tangent and

axis.

_ _ PM dy
T--T=MT = dx (^)

See fig. to Art. 29.
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Again, in fig. Art. 30 a.

SP dg
T^-T = ST = g"dM (^)

32. It is frequently of great use, in the theory of curves and in many
other collateral subjects, to be able to expand or develope any given func-

tion of a variable into an infinite series, proceeding according to the

powers of that variable. We have already seen one use of such develop-

ments in Art. 17. This may be effected in a general manner by aid of

successive differentiations, as follows.

If u = f (x) where f (x) means any function of x, or any expression

involving x and constants ; then, as it has been seen,

d u =r u' d x

(u' being a new function of x)

Similarly

d u' = u'' d X

But

d u'' - u'" d X

&c. = &c.

X dx — d^x X du
(6 k)

and (d x) 2 by d X %

^d x' d X

'

&c. = &c.

denoting d. (d u), d. (d x) by d " u, d ^ x,

according to the received notation
;

Or, (to abridge these expressions) supposing dx constant, and .*. d^ x= 0,

d^u
dxdu' =

du
•••

dl^ = "'

(Pu
dx^ = ^'

d^u
dx^ - "

&c. = &c.

which give the various orders of fluxions required.

Ex. 1. Let u = X "

Then
du
d^rrnx--^

(a;

d--.
= n. (n-l)x«-'
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j^3 = n. (n— 1). (n_2)x—

'

&c. = &c.

d° u
j^ = n. (n — 1). (n— 2) 3. 2. 1.

Ex. 2. Let u = A + B X + C x* + D X 3 + E X * + &c.

Then,

j^ = B + 2Cx + 3Dx* + 4Ex3 + &c.

jY2 = 2 C + 2. 3 D X + 3. 4 E x2 + &c.

J^3 = 2. 3 D + 2. 3. 4 E X + &c.

&c. = &c.

Hence, if z^ be known, and ^e coefficients A, B, C, D, &c. be un-

known, the latter may be found ; for if U, U', U'', U'", &c. denote the

dud'^ud^u
values of u, j— ,

j—„ , t—, , &c.
' d x» d x^'d x^'

when X = 0, then

A = U, B = U, C = ^- U", D = 2;^; U"', E = ^^^- W",

&c. = &c.

and by substitution,

u = U + U' X + U" Y + U"'O + ^"^ (^^

This method of discovering the coefficients is named (after its inventor),

MACLAURIN'S THEOREM.

The uses of this Theorem in the expansion of functions into series are

many and obvious.

For instance, let it be required to develope sin. x, or cos. x, or tan. x,

or 1. (1 + x) into series according to the powers of x. Here

u = sin. X, or = cos. x, or = tan. x, or = 1. (1 + x),

du II
'•

a~^ = ^os. x, or = — sm. x, or = ^^2—' or = j-^ ^

d'u
^ 2 sin. X 1

d^2 = — sm. X, or = — cos. x, or = ^^^3-' or = — jr+^'
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d^u 2 + 4sin.*x 2

5^3 = — COS. X, or = sin. x, or = ^^^;t^^ » or = (T+I5-3

&c. = &c.

U =0, or = 1, or = 0, or =
U' = 1» or = 0, or = 1, or = 1

U" =0, or = — 1, or = 0, or = — I

U"' = — 1, or = 0, or = 2, or = 2

&c ;= &c.

Hence

sin. X = X -^27s + 2. 3. 4. 5 — ^^•

x* x^
COS. X = 1 — -g + iTsTi"

~" ^^•

x^ 2x^ 17 x^
tan. X = X + -3 + 37^ + 3T5I7 + &c.

x^ x^
L (1 + x) = X — 2- + -3 — &c.

Hence may also be derived

TAYLOR'S THEOREM.

For let

f(x) = A + Bx + Cx* + Dx^ + Ex* + &c.

Then

f (x + h) = A + B. (x + h) + C. (x + h) ' + D . (x + t) ' + &c.

= A + Bx + Cx2 + Dx3 + &c.

+ (B + 2 Cx + 3Dx-)h
+ (C + 3Dx + 6 Ex«) h*

+ (D + 4 Ex + 10 Fx*) h'

+ &c.

d. f(x) d.^f(x) h*

d»f(x) h^ ^
'

+ -dir^-2:3 + &^ <^)

the theorem in question, which is also of use in the expansion of series.

For the extension of these theorems to functions of two or more varia-

bles, and for the still more effective theorems of Lagrange and Laplace,

the reader is referred to the elaborate work of Lacroix. 4to.

Having shown the method of finding the differentials of any quanti-
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ties, and moreover, entered iii a small degree upon the practical applica-

tion of such differentials, we shall continue for a short space to explain

their farther utility.

33. Tojind the MAXIMA and Minima of quantities.

If a quantity increase to a certain magnitude and then decrease, the

state between its increase and decrease is its maximum. If it decrease

to a certain limit, and then increase, the intermediate state is its mi-

nimum. Now it is evident that in the change from increasing to decreas-

ing, or vice versa, which the quantity undergoes, its differential must have

changed signs from positive to negative, or vice versa, and therefore (since

moreover this change is continued) have passed through zero. Hence

W/ien a quantity is a MAXIMUM or MINIMUM, its differential z= 0. . . (a)

Since a quantity may have several different maxima and minima, (as for

instance the ordinate of an undulating kind of curve) it is useful to have

some means of distinguishing between them.

34. To distinguish betisoeen Maxima and Minima.
Lemma. To show that in Taylor's Theorem (32. c.) any one term can

be rendered greater than the sum of the succeeding ones, supposing the

coefficients of the powers of h to be finite.

Let Q h " ~
' be any term of the theorem, and P the greatest coefficient

of the succeeding terms. Then, supposing h less than unity,

P h" (1 + h + h- + . . . .minfin.) = Ph" X ^.
is greater than the sum ( S) of the succeeding terms. But supposing h to

decrease in infin.

1

Ph."
I ^ = P h " ultimately. Hence ultimately

Ph°> S

Now
Q h ° -

' : P h °
: : Q : P b,

and since Q and P are finite, and h infinitely small ; therefore Q is > P h,

Hence Q h " -
' is > P h >», and a fortiori > S.

Having established this point, let

u = f(x)

be the function whose maxima and minima are to be determined ; also

when u = max. or min. let x = a. Then by Taylor's Theorem

., u\ c, ^ du , d^u h^ d'u h^f(a-h) = f(a)_-p^h + g^. __g^.— + &0.



30 A COMMENTARY ON [Sect. I.

and

and since by the Lemma, the sign of each term is the sign of the sum of

that and the subsequent terms,

.-. f (a — h) = f (a) — -i^. M
^ ^ d a

f(a + h) =f(a) + |^. N

Now since f (a) = max. or min. f (a) is > or < than both f (a — h)

and f (a + h), which cannot be unless

d u ^
T- = 0.
d a

Hence

d^uf(a-h)=f(a)+^. MO

f(a+h) = f(a)+^. W)
d a'

and f (a) is max. or min. or neilher, according as f (a) is >, •< or = to

both f (a — h) and f (a + h), or according as

d^u .

-3

—

- IS negative^ positive, or zero

If it be zero as well as -;—, we have
d a

f(a-h) = f(a)-^. MM
f(a + h)=f(a) + i^" N- 3

and f (a) cannot = max. or min. unless

d^u „

d7^ = ^'

which being the case we have

d*u
f(a— h) = fa + ^. M''0

f(a + h) = fa + il-^. N-)
da'

and as before,
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f (a) IS max. or min. or neither^ according as -^

—

- is negative, positive, or

zero, and so on continually.

Hence the following criterion.

If in u = f (x), -y— = 0, the resulting value of x shall give u = MAX.

or MIN. or NEITHER, according as ^

—

„ is negative, positive, or zero.

If -— = 0, -;—„ = 0, and -:;
—

-, = 0, then the resulting value of u
•^dx dx^ dx^

d*u .

shall be a MAX., min. or neither according as -^—^ is negative, po-

sitive, or ZERO ; and so on continually.

Ex. 1. To find the MAX. and MIN. of the ordinate of a common para-

bola.

y = V a X

d y _ 1 V a
* * d X " 2 ' ^"^

which cannot = 0, unless x = a

.

Hence the parabola has no maxima or minima ordinates.

Ex. 2. To find the maxima and minima of y in the equation

y^ — 2axy + x^ = b^
Here

2 a ?-^ - f^f - .dy_ay — xd'^y_ dx ^dx/

a=^

dx y — ax'dx^ y — ax '

• dy «and putting -t-=^ = 0, we get

- +ab _ + b d _ + 1

^ - V (1 — a^)' y ~ a/ (1 — a«)' d x^ ~ b V (1 -

which indicate and determine both a maximum and a minimum.

Ex. 3. To divide a in such a manner that the product of the m^^ power

of the one part, and the 7i^^ power of the other shall be a maximum.

Let X be one part, then a — x = the other, and by the question

u = x*". (a — x) ° = max.

d u
^

.

.*. -r— = X "» - ^ (a— x) " - ^ X (ma — x. m + n)
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d*u
: X •" -(a

T» d u
Put^—

d X
= 0; then
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X (m 4- n — 1. m + n. x' — &c.)

ma
X = 0, or X = a, or X =

m + n'

the two former of which when m and n are even numbers give minima^

and the last the required maximum.
}_

Ex. 4. Let u = X ^
Here

d u 1 — 1. X
'T~ = u. "jTz— = 0, .*. 1. X = 1, and x = e the hyperbolic base

= 2.71828, &c.

Innumerable other examples occur in researches in the doctrine of

curves, optics, astronomy, and in short, every branch of both abstract and

applied mathematics. Enough has been said, however, fully to demon-

strate the general principle, when applied to functions of one independent

variable only.

For the maxima and minima of functions of two or more variables, see

LacroiXf 4to.

35. If in the expression (30 a. g) ST should be finite when g is infinite,

then the corresponding tangent is called an Asymptote to the curve, and

since g and this Asymptote are both infinite they are parallel. Hence

To Jlnd the Asymptotes to a curve,

In S T = §^ -i— , make ^ = a , then eachJinite value of S T gives an
s

Asymptote ; which may be drawn, by finding from the equation to the

curve the values of ^ for f
= a, (which will determine the positions of g),

then by drawing through S at right angles to g, S T, S T', S T", &c. the

several values of the subtangent of the asymptotes, and finally through

T, T', T", &c. perpendiculars to S T, S T', S T'', &c. These perpen-

diculars will be the asymptotes required.

Ex. In the hyperbola

_ b'
^ ""

a ( 1 — e cos. 6)'

Here f = a
,
gives 1 — e cos. ^ = 0, .*. cos. 6 =

'. + 6 = £. whose cos. is —
e

6

1
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= b ; whence it will be seen that
a e sm. 6 a V e '^

1

the asymptotes are equally inclined (viz. by c 6) to the axis, and pass

through the center.

The expression (29. e) will also lead to the discovery and construction

of asymptotes.

Since the tangent is the nearest straight line that can be drawn to the

curve at the point of contact, it affords the means of ascertaining the in-

clination of the curve to any line given in position ; also whether at any

point the curve be injlectedi or from concave become convex and vice ver-

sa ; also whether at any point two or more branches of the curve meet,

i. e. whether that •point be double, triple, &c.

36. To Jind the inclination of a curve at any point of it to a given line .•

fnd that of the tangent at that given point, which will be the inclination

required.

Hence if the inclination of the tangent to the axis of a curve be zero,

the ordinate will then be a maximum or minimum ; for then

tan. T _ dy __ ^
dx

(31. h)

37. To f.nd the points of Inflexion of a curve.

A B A B

Let y = f (x) be the equation to the curve a b ; then A a, B b being

any two ordinates, and ana tangent-at the point a, if we put A a = y,

and A B = h, we get

A a = f X

Bb = f(x + h)=y4-^^h + i^,

dy

1. 2
+ &c. (32. c)

But Bn = y + mn = y. 4- -r-^. h. Consequently B b is < or> B n
dx

d^y
according as -5—^ is negative or positive, i. e, the curve is concave or con-
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d * V
vea; ionaards its axis according as -,

—

\ is negative or positive.

Hence also, since a quantity in passing from positive to negative, and
vice versa, must become zero or infinity, at a point of inflexion

T—^ = or a
d X ^

Ex. In the Conchoid ofNicomedes

X y = (a + y ) V (b ^ — y »)

which gives, by making d y constant,

d'x _ 2 b *^ — b' ys — 3b'ay'
d y «

-
(b"« y ^ iirjr^)"^^!^^ _ y «)

and putting this = 0, and reducing, there results

y' + 3ay'' = 2b2a
which will give y and then x.

These points of inflexion are those which the Theory of (34) indicates

as belonging to neither maxima nor minima ; and pursuing this subject

still farther, it will be found, in like manner, that in some curves

d* v d^y
T—^ = or a , -j—^ = or a , &c. = &c.
d x* d x^

also determine Points of Inflexion.

38. Tojind DOUBLE, triple, S^c. points of a curve.

If the branches of the curve cut one another, there will evidently be as

many tangents as branches, and consequently either of the expressions.

Tan. T = ^'
(31. h)

d x ^

M T = ^-^ (29. e)
d y

'

as derived from the equation of the curve, will have as many values as

there are branches, and thus the nature and position of the point will be

ascertained.

If the branches of the curve touch, then the tangents coincide, and the

method of discovering such multiple points becomes too intricate to be in-

troduced in a brief sketch like the present. For the entire Theory of

Curves the reader is referred to Cramer's express treatise on that subject,

or to Lacroix's Different, and Integ. Calculus, 4to. edit.

39. We once more return to the text, and resume our comments. We
pass by Lemma VIII as containing no difficulty which has not been al-

ready explained.

As similar figures and their properties are required for the demonstra-
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tion of Lemma IX, we shall now use Lemma VII in establishing Lemma
V, and shall thence proceed to show what figures are similar and how to

construct them.

According to Newton's notion of similar curvilinear figures, we may
define two curoilinear Jigures to be similar when any rectilinear polygon

being inscribed in one qfthem^ a rectilinear polygon similar to the former

^

may always be inscribed in the other.

Hence, increasing the number of the sides of the polygons, and dimi-

nishing their lengths indefinitely, the lengths and areas of the curvilinear

figures will be the limits by Lemmas VII and III, of those of the recti-

linear polygons, and we shall, therefore, have by Euclid these lengths

and areas in direct and duplicate proportions of the homologous sides

respectively.

40. To construct curves similar to given ones.

If y, X be the ordinate and abscissa, and x' the corresponding abscissa

of the required curve, we have

X : y : : x' : ^ X x' = y' (a)

the ordinate of the required curve, which gives that point in it which

corresponds to the point in the given curve whose coordinates are x, y

;

and in the same manner may as many other points as we please be de-

termined.

In such curves, however, as admit a practical or mechanical construc-

tion, it will firequently be sufficient to determine but one or two values of y'.

Ex. 1. In the circle let x, measured along the diameter from its extre-

mity, be r (the radius) ; then y = r, and we have

y' = -^ X x' = x'
•' X

where x' may be of any magnitude whatever. Hence, all semicircles^ and

therefore circles, are similarJigures.

Ex. 2. In a circular arc (2 a) let x be measured along the chord (2 b),

and suppose x = f sin. a ; then y = r . vers, a

vers, a
y = — X X
•' sm. a

which gives the greatest ordinate to any semichord as an abscissa, of the

required arc, and thence since

y = r' — V r' * — x'

«

it will be easy to find the radius r' and centre, and to describe the arc

required.
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But since

y' _ r' vers, a! __ vers, a vers, a

x' T* sin. a' sin. a sm. a

therefore

- 2 sin. ' -^ , , 2 sin. ^-J
1 — COS. a 2 1 — COS. a 2

sin. a _ a . a sin. «' „ a' . a'
2 COS. — sin.— 2 COS. — sm. —

or

a a
tan. — = tan. —

,

and

which accords with Euclid, and shows that similar arcs of circles subtend

equal angles.

Ex. 3. Given an arc of a parabola, ishose latus-rectum is p, to find a

similar one, whose latus-rectum shall be p'.

In the first place, since the arc is given, the coordinates at its extremi-

ties are ; whence may be determined its axis and vertex ; and by the usual

mode of describing the parabola it may be completed to the vertex.

Now, since

y ' = p X

X, x' being measured along the axis, and when

P P

.'. y = -^ . X = — . X = 2 X^ X y

which shows that all semi-parabolas, and therefore parabolas, aj-e similar

figures. Hence, having described upon the axis of the given parabola,

any other having the same vertex, the arc of this latter intercepted be-

tv/een the points whose coordinates correspond to those of the extremi-

ties of the given arc will be the arc required.

Ex. 4. In the ellipse whose semi-diameters are a, b, if x be measured

along the axis, when x = a, y = b. Hence

b ,

y = — . X^ a

and x' or the semi-axis major being assumed any whatever, this value of

y' will give the semi-axis minor, whence the ellipse may be described.

This being accomplished, let (a, jS) (a', /S") be the coordinates at the
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extremities of apy given arc of the given ellipse, then the similar one of

the ellipse described will be that intercepted between the points whose

coordinates, (x', y') (x'', y") are given by

y' = ^ V (2 a' x' — x «)

":l::';/:^|and' i
' y' = -^ V (2 a X ' — X *)

In hke manner it may be found, that

All cycloids are similar.

Epicycloids are so, "dihen the radii of their isoheels a radii of the spheres.

Catenaries are similar when the bases a tensions, S^c. S^c.

40. If it were required to describe the curve A c b (fig. to Lemma
VII) not only similar to A C B, but also such that its chord should be of

the given length (c) ; then having found, as in the last example, the co-

ordinates (x', y') (x", y") in terms of the assumed value of the absciss^

(as a' in Ex. 4), and (a, /3), (a', /3') the coordinates at the extremities of

the given arc, we have

c = vT^^=:i?r + (y' — y'r = f K)
a function of a' : whence 2! may be found.

Ex. In the case of a parabola whose equation is y ^ = a x, it will be

found that (y'^ = ol yJ being the equation of the i-equired parabola)

a'
c = -,. (S — |3') V(/3 + /3')^ + a^

whence (a') is known, or the latus-rectum of the required parabola is so

determined, that the arc similar to the given one shall have a chord = c.

41. It is also assumed in the construction both to Lemma VII and

Lemma IX, that. If in similar figures, originating in the same point, the

chords or axes coincide, the tangents at that origin 'will coincide also.

Since the chords A B, A b (fig. to Lemma VII), the parallel secants

B D, b d, and the tangents A D, A d are corresponding sides, each to

each, to the similar figures, we have (by Lemma V)

A B : B D : : A b : b d

and z. B = z. b. Consequently, by Euclid the z. B A D = Z. b A d,

or the tangents coincide.
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To make this still clearer. Let

M B, M B' be two similar curves,

andA B, A' B' similar parts ofthem.

Let fall from A, B, A', B', the or-

dinates A a, B b, A' a', B' b' cut-

ting off the corresponding abscissae

M a, M b, M a', M b', and draw

the chords A B, A' B' ; also draw

A C, A' C at right angles to B b, B' C
Then, since (by Lemma V)

Ma
Ma'

.-.Ma
Ma'

• .-.AC

A'C
But

Ma
.-.AC;

and the Z. C = z- C
.-. the triangles A B C, A' B' C are similar, and the ^ B A C =

z. B' A' C, i. e. A B is parallel to A' B'.

Hence if B, B' move up to A, the chords A B, A' B' sha]l ultimately/

be parallel, i. e. the tangents (see Lemma III, Cor. 2 and 3, or Lemma

VI,) at A, A' are parallel.

Hence, if the chords coincide, as in fig. to Lemma VII, the tangents

coincide also.

The student is now prepared for the demonstration of the Lemma.

He will perceive that as B approaches A, new curves, or parts of curves,

A c b similar to the parts A C B are supposed continually to be described,

the point b also approaching d, which may not only be at ajinite distance

from A, but absolutely fixed. It is also apparent, that as the ratio be-

tween A B and A b decreases, the curve A c b approaches to the straight

line A b as its limit

42. Lemma XI. The construction will be better understood when

thus effected.

Take A e of any given magnitude and draw the ordinate e c meeting

A C produced in c, and upon A c describe the curve Abe (see 39)

Mb :

Mb'-
: A a : B b "»

: A'a' : B'b'i

ab : :

a'b' :

Aa : B C 1

: A' a' : B' C /

BC :

B'C
: Ma : Aa »

: : Ma' : A'a'/

A a :

BC :

. M a' : A' a'

: A' C : B' C
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A D
similar to A B C. Take A d = A e X -r—^ and erect the ordinate d bA hj

meeting A b c in b. Then, since A d, A e are the abscissae corre-

sponding to A D, A E, the ordinates d b, e c also correspond to the

ordinates D B, E C, and by Lemma V we have

d b : D B : : e c : E C : : A e : A E
: : A d : A C (by construction)

and the z. D = A d. Hence

b is in the straight line A B produced, &c. &c.

43. This Lemma may be proved, without the aid of similar curves, as

follows

:

A B D =^ . (D F + F B)

. ^, tan. a , A D . B F= A1J*.

—

-— H

and

ACE = AE^^^^" + ^^;^^

where a = z. D A F.

. AJ^ - AD^tan. g + AD.BF
•'ACE ~ A E« . tan. a + A E . C G

Now by Lemma VII, since ^ B A F is indefinite compared with F or B

;

therefore B F, C G are indefinite compared with A D or A E. Hence

if L be the limit of „ and L + 1 its varying value, we have
A v^ iLd

- AD', tan, a + A D . B F
+ A E ^ tan. a + A E . C G

and multiplying by the denominator and equating homogeneous terms

we get

L . A E *
. tan. a = A D ^ tan. a

^. . ^ABD AD^
., Limit of-^^ = ^-^,.

44. Lemma X. " Contimially increased or diminished." The woi*d

" continually" is here introduced for the same reason as '' continued

curvature" in Lemma VI.

If the force, moreover, be not ^^Jinite^'' neither will its effects be ; or

the velocity, space described, and time will not admit of comparison.
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45. Let the time A D be divided into several portions, such as D d,

A b B being the lociis of the extremities of the ordinates which D repre-

sent, the velocities acquired D B, d b, b
&c. Then upon these lines D d, &c.

as bases, there being inscribed rect-

angles in the figure A D B, and when

their number is increased and bases

diminished indefinitely, their ultimate

sum shall = the curvilinear area D d D' A
A B D (Lemma IIL) But each of these rectangles represents the space

described in the time denoted by its base ; for during an instant the ve-

locity may be considered constant, and by mechanics we have for constant

velocities S = T X V. Hence the area A B D represents the whole

space described in the time A D.

In the same manner, ACE (see fig. Lemma X) represents the time

A E. But by Lemma IX these areas are " ipso motus initio," as A D *

and A E '^ Hence, in the very beginning of the motion, the spaces de-

scribed are also in the duplicate ratio of the times.

46. Hence may be derived the differential expressions for the space

described^ velocity acquired^ &c.

Let the velocity B D acquired in the time t (AD) be denoted by v,

and the space described, by s.

Then, ultimately, we have

Dd = dt,Bn = dv,

and

Hence

Dnbd = ds=rDdxdb = dtXv.

d s - - , d s , .v=-T-,ds = vdt,dt = — (a)
d t V

Again, ifD d = d D', the spaces described in these successive instants,

are D b, D' m, and therefore ultimately the fluxion of the space repre-

sented by the ultimate state of D' m is b n r m or 2 b m B'. Hence

d (d s) = 2 X b m B' ultimately,

and supposing B' to move up to A, since in the limit at A, B' coincides

with A, and B' m with A D, and therefore b m B' or d (d s) represents

the space described " in the very beginning of the motion."

Hence by the Lemma,
d (ds) a 2dt« a dt*

or with the same accelerating force

d^ s a d t^ (b)
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With different accelerating forces d ^ s must be proportionably increased

or diminished, and .*. (see Wood's Mechanics)

d^s a Fd t^

Hence we have, after properly adjusting the units of force, &c.

d*s = Fdt'
and .*.

(c)

F

= F d t^

_ d's Y
~ dt^ ^

Hence also and by means of (a) considering d t constant,

F = ^, vdv = Fds . , . .

d t'
(d)

all of which expressions will be of the utmost use in our subsequent

comments.

47. Lemma X. Cor. I. To make this corollary intelligible it will be

useful to prove the general principle, that

Jf a body, moving i7i a curves he acted upon by any new accelerating

force, the distance between the points at "which it wotdd arrive WITHOUT

and WITH the newforce in the same time, or " error" is equal to the space

that the new force, acting solely, "would cause it to describe in that same

time.

e c

Let a body move in the curve ABC, and when at B, let an additional

force act upon it in the direction B b. Also let B D, D E, E C

;

B F, F G, G b be spaces that would be described in equal times by the

body moving in the curve, and when moved by the sole action of the new

force. Then draw tangents at the points B, D, E meeting D d, E e, C c,

each parallel to B b, in P, Q, R. Also drawF M, G R, b d parallel to

B P; MS, R N, d e parallel to D Q; and S V, N T, e c parallel to

ER.
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Now since the body at B is acted upon by forces which separately

would cause it to move through B D, B F, or, when the number of

the spaces is increased and their magnitude diminished in infinitum,

through B P, B F in same time, therefore by Law III, Cor. 1, when

these forces act together, the body will move in that time through the

diagonal up to M. In the same manner it may be shown to move from

M to N, and from N to C in the succeeding times. Hence, if the num-

ber of the times be increased and their duration indefinitely diminished,

{he. body will have moved through an indefinite number of points M, N,

&c. up to C, describing a curve B C. Also since b d, d e, e c are each

parallel to the tangents at B, D, E, or ultimately to the curve B D E C

;

.'. b d e c ultimately assimilates itself to a curve equal and parallel to

B D E C ; moreover C c is parallel to B b. Hence C c is also equal

to Bb.
Hence, then, The E7'ror caused by any disturbing force acting upon a

body moving in a curve, is equal to the space that laould be described by

means of the sole action of that force, and moreover it is parallel to the

direction of thaiforce. Wherefore, if the disturbing force be constant, it is

easily inferred from Lemmas X and IX, and indeed is shown in all books

on Mechanics, that the errors are as the squares of the times in isohich they

are generated. Also, if the disturbing forces be nearly constant, then the

eiTors areas the squares of the times quam proxime. But these conclusions,

the same as those which Note 118 of the Jesuits, Le Seur and Jacquier,

(see Glasgow edit. 1822.) leads to, do not prove the assertion of Newton

in the corollary under consideration, inasmuch as they are general for all

curves, and apply not to similar curves in particular.

48. Now let a curve similar to the above be constructed, and completing

the figure, let the points corresponding to A, B, &c. be denoted by

A', B', &c. and let the times in v/hich the similar parts of these cui^ves,

viz. B D, B' D' ; D E, D' E' ; E C, E' Of are described, be in the ratio

t : t'. Then the times in which, by the same disturbingforce, the spaces

B F, B' F'; F G, F' G'; G b, G' b' are described, are in the ratio of

t : t'. Hence, " in ipso motus initio" (by Lemma X) we have

B F : B'F : : t^ : t'^

F G : F'G' : : t^ :
\!^

&c. &c.

and therefore,

B F + F G + &c. : B' F' + F' G^ + &c. : : t
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But, (by 15,)

B F + F G + &c. = the error C c,

and

B' F 4- F G' + &c. = the error C c',

and the times in which B C, B' C are described, are in the ratio t : t'.

Hence then

Cc : C'c' : : t* : t'°

or The Errors arising from equalfarces, applied at corresponding points,

disturbing the motions of bodies in si?nilar curves, "johich describe similar

parts of those curves in proportional times, are as the squares ofthe times

in "which they are generated EXACTLY, and not " quam proxime."

Hence Newton appears to have neglected to investigate this corollary.

The corollary indeed did not merit any great attention, being limited by

several restrictions to very particular cases.

It would seem from this and the last No. that Newton's meaning in

the forces being " similarly applied," is merely that they are to be applied

at corresponding points, and do not necessarily act in directions similarly

situated with respect to the curves.

For explanation with regard to the other corollaries, see 46.

49. Lemma XI. " Finite Curvature." Before we can form any precise

notion as to the curvature at any point of a curve's being Finite, Infinite or

Infinitesimal, some method of measuring curvature in general must be de-

vised. This measure evidently depends on the ultimate angle contained by

the chord and tangent (A B, AD) or on the angle ofcontact. Now, although

this angle can have no finite value when singly considered, yet when two

such angles are compared, their ratio may be finite, and if any known
curvature be assumed of a standard magnitude, we shall have, by the

equality between the ratios of the angles of contact and the curvatures, the

curvature at any point in any curve whatever. In practice, however, it

is more commodious to compare the subtenses of the angles of contact

(which may be considered circular arcs, see Lemma VII, having radii in

a ratio of equality, and therefore are accurate measures of them), than the

angles themselves.

50. Ex. I. Let the circumference of a circle be divided into any num-
ber of equal parts and the points of division being joined, let there be f

tangent drawn at every such point meeting a perpendicular let fall from

the next point ; then it may easily be shown that these perpendiculars or

subtenses are all equal, and if the number of parts be increased, and their
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magnitude diminished, m hifinitum, they will have a ratio of equality.

Hence, the circle has the same curvature at every poi7it, or it is a airve

of uniform curvature.

51. Ex. 2. Let two circles touch one

another in the point A, having the

common tangent A D. Also let B D
be perpendicular to A D and cut the

circle A D in B'. Join A B, A B\
Then since A B, A B' are ultimately

equal to A D (Lemma VII) they are

equal to one another, and consequently

the limiting ratio of B D and B' D, is

that of the curvatures of the respective

circles A C, A D (by 17.)

But, by the nature of the circle,

AD" = 2 R X D B' — D B'2 = 2r X D B — D B«

R and r being the x*adii of the circles.

Therefore

T a. 1 - 2L?L _ 2 R — D B^

^DB'"'2r— DB
and equating homogeneous terms we have

^- ^ >

i. e. The curvatures of circles are inversely as their radii.

52. Hence, if the curvature of the circle whose radius is 1, (inch, foot,

or any other measure,) be denoted by C, that of any other circle whose

radius is r, is

C

63. Hence, if the radius r of a circle compared with 1, he ^nite, its

curvature compared with C, \sjinite ,- if r be irifinite the curvature is

infinitesimal ; if r be infinitesimal the curvature is iiifinite, and so on through

all the higher orders of ijifnites and infinitesimals. By infinites and in-

finitesimals are understood quantities indefinitely great or small.

The above sufficiently explains why curvature, compared with a given

standard (as C), can be said to hejinite or indefinite. We are yet to show

the reason of the restriction to curves o^finite curvature^ in the enuncia-

tion of the Lemma.

64. The circles which pass through A, B, G; a, b, g, (fig. Lemma XI)
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have the same tangent A D with the curve and the same subtenses. Hence

(49. and 52.) these circles idtimately have the same curvature as the curve,

i. e. A I is the diameter of that circle which has the same curvature as the

curve at A. Hence, according as A I is finite or indefinite, the curvature

at A is so likewise, compared with that of circles of finite radius.

Now A G ultimately, or

AB2
BD

whether A I be finite or not. If finite, B D a A B % as we also learn

AI =

)e finite or i

from the text.

A B*
55. If the curvature be infinitesimal or A I infinite ; then since

r> JJ

is infinite, B D must be infinitely less than A B ^, or, A B being

always considered in its ultimate state an infinitesimal of the first order,

B D is that of the third order, i. e. B D cc A B ^. The converse is

also true.

Ex. In the cubical parabola, the abscissa a as the cube of the or-

dinate; hence at its vertex the curvature is infinitely small. At other

points, however, of this curve, as we shall see hereafter, the curvature is

finite.

To show at once the different proportions between the subtenses of the

angles of contact and the conterminous arcs, corresponding to the differ-

ent orders of infinitesimal or infinite curvatures, and to make intelligible

this intricate subject, let A B ultimately considered be indefinitely small

A B^
compared with I ; then since . ^ = A B, A B ^ is infinitesimal com-

A B°
pared with A B ; and generally . p n — i

= A B, shows that A B " is

infinitely small compared with A B "^ ~ ^ so that the different orders of in-

Jinitesimals may be correctly denoted by

AB, AB^ AB^ AB*, &c.

Also since 1 is infinite compared with the infinitesimal A B, and A B
compared with A B ^, &c. the different orders of infinites may be repre-

sented by

-^ J- ^- -i- &cAB' AB^' AB^' AB^'
56. Hence if the curvature at any point of a curve be infinitesimal in

the second degree
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A B" 1

T-

„

a -T—TT-oj and B D a A B*. and conversely.BD A B* •'

And generally, if the curvature be infinitesimal in the n'** degree,

A B*^ 1
rjr-rp- a -^ , and BDcx AB°+% and conversely.BD AB" •'

Again, if the curvature be infinite in the n'"" degree,

A B^
-g^ a A B ", and B D a A B * - ", and conversely.

The parabolas of the different orders will afford examples to the above

conclusions.

57. The above is sufficient to explain the first case of the Lemma.

Case 2. presents no difficulty ; for b d, B D being inclined at any equal

angles to A D, they will be parallel and form, with the perpendiculars let

fall from b, B upon A D, similar triangles, whose sides being propor-

tional, the ratio between B D, b d will be the same as in Case 1.

Case 3. If B D converge, i. e. pass through when produced to a given

point, b d will also, and ultimately when d and D move up to A, the

difference between the angles A d b, A D B will be less than any

that can be assigned, i. e. B D and b d will be ultimately parallel

;

which reduces this case to Case 2. (See Note 125. of PP. Le Seur and

Jacquier.)

Instead of passing through a given point, B D, b d may be supposed

to touch perpetually any given curve, as a circle for instance, and B D
will still a A D ^ ; for the angles D, d are ultimately equal, inasmuch as

from the same point A there can evidently be but one line drawn touch-

ing the circle or curve.

Many other laws determining B D might be devised, but the above

will be suflScient to illustrate Newton's expression, " or let B D be deter-

mined by any other law whatever." It may, however, be farther observed

that this law must be definite or such as viiWJix B D. For instance, the

Lemma would not be true if this law were that B D should cut instead of

touch the given circle.

58. Lemma XI. Con. II. It may be thus explained. Let P be

the given point towards which the sagittae S G, s g, bisecting the chords

A B, A b, converge. S G, s g shall ultimately be as the squares of

A B, A b, &c.
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For join P B, P b and produce

them, as also P G, P g, to meet the

tangent in D, d, T, t. Then if B
and b move up to A, the angles

T P D, t P d, or the difFerences be-

tween the angles ATP and A D P,

and between A t P and A d P, may
be diminished without limit; that is,

(Lemma I), the angles at T, D and

at t, d are ultimately equal. Hence
the triangles ATS, A D B are

similar, as likewise are A t s, A d b.

Consequently

S T : D B
and

s t d b

A S : A B

Ab
and

.-. S T : s t : : DB db

Also by Lemma VII,

ST : St : : S G : sg

and by Lemma XI, Case 3,

D B : d b : : AB^ : Ab*
.•• S G : s g : : AB« Ab^

Q. e. d.

Moreover, it hence appears, that the sagittcE which cut the chords, in

ANY GIVEN RATIO WHATEVEBi and tend to a given pointy have ultimately

the same ratio as the subtenses of the angles of contact, and are as the squares

of the corresponding arcs, chords, or tangents.

59. Lemma XI. Cor. III. If the velocity of a body be constant or

"given," the space described is proportional to the time t Hence

A B a t, and .-. S G a A B 2 « t «.

60. Lemma XI. Cor. IV. Supposing B D, b d at right angles to

A D (and they have the same proportion when inclined at a given angle

to A D, and also when tending to a given point, &c.) we have
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A ADB : A A d b :

.
AD X DB Ad X db2-2
:?-?XAD: Ad

A D* , _
:: ^,.xAD:Ad

: AD^ : Ad^
Also

A ADB : A Adb

:

:f ^ xD"B:dbA d

•• Vdb ^ - " •
^"

: : (DB)^ : (db)^.

It may be observed here, that the tyro, on reverting to Lemma IX,
usually infers from it that

A A D B a A D 2 and does not ol AD =",

but then he does not consider that A D, in Lemma IX, cuts or makes a

j^7iite angle with the curve, whereas in Lemma XI it touches the curve.

61. Lemma XL Cor. V. Since in the common parabola the ab-

scissa a square of the ordinate, and likewise BDorACcx AD^or
CD", it is evident that the curve may ultimately be considered a

parabola.

This being admitted, we learn from Ex. 1, No. 4, that the curvilinear

area A C B = f of the rectangle C D. Whence the curvilinear area

A B D = ^ of C D = f of the triangle A B D, or the area A B D a
triangle A B D a A D^ &c. (by Cor. 4.) So far B D, b d have been

considered at right angles to A D. Let them now be inclined to it at a

given angle, or let them tend to a given point, or " be determined by any

other law ;" then (Lemma, Case 3, and No. 25) B D, b d will ultimately

be parallel. Hence, B D', b d' (fig. No. 26) being the corresponding

subtenses perpendicular to A D, it is plain enough that the ultimate dif-

ferences between the curvilinear areas A B D, A B D' and between

A b d, A b d' are the similar triangles B D D', b d d', which

differences are therefore as B D % b d % or as A B *, A b *, i. e.

BDD'a AB\
But we have shown that A B D a A B '.
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Consequently

ABD' = ABD+BDD' = axAB3 + bxAB*=AB5(aq:bxAB)
and b X A B being indefinite compared with a, (see Art. 6,)

ABD' = a X A B^* a A B^.

Q. e. d.

SCHOLIUM TO SECTION I.

62. Wliat Newton asserts in the Scholium, and his commentators Le

Seur and Jacquier endeavour [unsiiccessfiilly) to elucidate, with regard to

the different orders of the angles of contact or curvatures, may be briefly

explained, thus.

Let D B ex A D '". Then the diameter of curvature, which equals

A D^
-^-g (see No. 22 and 24), a A D ^ - "». Similarly if D B ot. AD", the

diameter of curvature cc A D '^ ~ ". Hence D and D' represents these

diameters, we have

T^ = —, . T-wo
—

-.. = —jAD^-^fa and a' being finite)D a' X A D^-" a'
^ o /

and if n = 2 or D' he^tiite, then D will hejinitei infinitesimal, or infinite,

according as m = 2, or is any number, (whole, fractional, or even transcen-

dental) less than 2, or any number greater than 2. Again, if m = n

then D compared with ly is finite, since D : D' : : a : a'. Ifm be less

than n in any finite degree, then n — m is positive, and D is always in-

finitely less than D'. Ifm be greater than n, thenDal
X

D' ~ a' A D "> °

and m — n being positive, D is always infinite compared with D'.

Hence then, there is no limit to the orders of diameters of curvature,

with regard to infinite and infinitesimal, and consequently not to the

curvatures. ,

63. In this Scholium Newton says, that " Those things which have

been demonstrated of curve lines and the surfaces which they comprehend

are easily applied to the curve surfaces and contents of solids." Let us

attempt this application, or rather to show,

1st, That if any number of parallelopipeds of equal bases be inscribed in

any solid, atid the same Jiumher having the same bases be also circumscribed

Vol. I. D



50 A COMMENTARY ON [Seci-. I.

about it ; then the number ofthese jparallelopipeds being increased and their

magnitude diminished IN INFINITUM, the ultimate ratios "^hich the aggre-

gates of the inscribed and circumscribed parallelepipeds have to one another

and to the solid, are ratios of equality.

Let A S T U V Z Y X W A be any portion of a solid cut ofF by three

planes A A' V, A A' Z and Z A' V, passing through the same point A',

and perpendicular to one another. Also let the intersections of these

planes with one another be A A', Af V, A' Z, and with the surface of the

solid be A U V, A Y Z and Z 1 V. Moreover let A' V, A' Z be each

divided into any number of equal parts in the points B', T', U'; D', X', Y',

and through them let planes, parallel to A A' Z and A A' V respectively,

be supposed to pass, whose intersections with the planes A A' V, A A' Z
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shaU be S B', T T', U U'; W D', X X', Y Y^ and with the plane

A' Z V, 1 B', m T', n U' ; t D', s X', o ¥', respectively. Again, let the

intersections of these planes with the curve surface be S P 1, T Q m,

URn; WPtjXQs, YRo respectively. Also suppose their several

mutual intersections to be P C, F E', P" x, P"' G', Q F', Q' H', Q'' K',

&c. ; those of these planes taken in pairs and of the plane A' Z V, being

the points C'', E', x, G', F', H', K', I', &c. and those of these pairs of

planes and ofthe curve surface, the points P, P', P", P"', Q, Q', Q'', R, &c.

Now the planes, passing through B^ T', U', being all parallel to

A A' Z, are parallel to one another and perpendicular to A A' V. Also

because the planes passing through D', X', Y' are parallel to A A' V,

they are parallel to one another, and perpendicular to A A' Z. Hence

(Euc. B. XL) S B', T T', U U', W D', X X', Y Y', as also P C, F E',

P'' X, F"' G/, Q F', Qt H', Q'' K', &c. &c. are paraUel to A A' and to

one another. It is also evident, for the same reasons, that B' 1, T'm, U' n,

ai'e parallel to A' Z and to one another, as also are D' t, X' s, Y' o to

A' V and to one another. Hence also it follows that A' B' C D',

B' C E' T', &c. are rectangles, which rectangles, having their sides equal,

are themselves equal.

Again, from the points A, P, Q, R in the curve surface, draw A B,

A D; P E, P G; Q H, Q K; R L, R N parallel to A' B', A' D';

C E', a G'; F' H', T' K', T o, I' n and meeting B' S, D' W; E' P',

G' F''; H' Q', K' Q" produced in the points B, D; E, G; H, K, re-

spectively. Then complete the rectangles A C, P F, Q I which, being

equal and parallel to A' C, C F, F' I', will evidently, when C P, F' Q,
1' R are produced to C, F, I, complete the rectangular parallelopipeds

A C, P F', Q V. Moreover, supposing F' I' the last rectangle wholly

within the curve Z V produce K' F, H' F and make V L', I' N' equal

K' I', H' F, and complete the rectangle I' M'. Also complete the

parallelopiped R M'.

Again, produce E P, G P, H Q, K Q ; L R, N R to the points d, b

;

g, e ; k, h, and complete the rectangles Pa, Q p, R q thereby dividing

the parallelopipeds A C\ P F', Q I', each into two others, viz. A P,

aC; PQ, pF; Q R, q F.

Now the difference between the sum of the inscribed parallelopipeds

a C^ p F', q F, and that of the circumscribed ones A C, P F', Q I', R M',

is evidently the sum of the parallelopipeds A P, P Q, Q R, R M'; that

is, since theii- bases are equal and the altitudes F R', R I, Q F, PC
are together equal to A A', this difference is equal to the parallelopiped

A C. In the same manner if a series of inscribed and circumscribed

D2
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rectangular parallelopipeds, having the bases B' E', E' H', H' U, be

constructed, the difference between their aggregates will equal the paral-

lelepiped whose base is B' E' and altitude S B', and so on with every

series that can be constructed on bases succeeding each other diagonally.

Hence then the difference between the sums of all the parallelopipeds

that can be inscribed in the curve surface A Z V and circumscribed about

it, is the sum of the parallelopipeds whose bases are each equal to A' C
and altitudes are A A', S B', T T', U U', W D', X X', Y Y'. Let

now the number of the parts A' B', B' T^ T' U', U' V, and of the parts

A D', D' X', X' Y', Y' Z be increased, and their magnitude diminished

in infinitum, and it is evident the aforesaid sum of the parallelopipeds,

which are comprised between the planes A A' Z, S B' 1 and between the

planes A A' V, W D' t, will also be diminished without limit ; that is, the

difference between the inscribed and circumscribed whole solid is ulti-

mately less than any that can be assigned, and these solids are ultimately

equal, and a fortiori is the intermediate curve-surfaced solid equal to either

of them (see Lemma I and Art. 6.) Q. e. d.

Hitherto only such portions of solids as are bounded by three planes

peipendicular to one another, and passing through the same point, have

been considered. But since a com'plete curve-surfaced solid will consist of

four such portions, it is evident that what has been demonstrated of any

one portion must hold with regard to the whole. Moreover, if the solid

should not be curve-surfaced throughout, but have one, two, or three plane

faces, there will be no difficulty in modifying the above to suit any parti-

cular case.

2dly, If in two curve-surfaced solids there be inscribed two series ofparaU

lelopipeds, each of the same number ; and ultimately these parallelopipeds

have to each other a given ratio, the solids themselves have to one another

that san£ ratio.

This follows at once from the above and the composition of ratios.

3dly, All the corresponding edges or sides, rectilinear or airvilinear, of

similar solids are proportionals -, also the corresponding surfaces, plane o)'

curved, are in the duplicate ratio of the sides ; and the volumes or contents

are in the t?iplicate ratio of the sides.

When the solids have plane surfaces only, the above is shown to be

true by Euclid.

When, however, the solids are curve-surfaced, wholly or in part, we

must define them to be similar when any plane- surfaced solid whatever

being inscribed in any one of them, similar ones may also be insaibed in the
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others. Hence it is evident that the corresponding plane surfaces are

similar, and consequently, by Lemma V, the corresponding edges are

proportional, and the corresponding plane surfaces are in the duplicate

ratio of these edges or sides. Moreover, if the same number of similar

parallelopipeds be inscribed in the solids, and that number be indefinitely

increased, it follows from 63. 1 and the composition of ratios, that the

curved surfaces are proportional to the corresponding plane surfaces, and

therefore in the duplicate ratio of the corresponding edges ; and also that

the contents are proportional to the corresponding inscribed parallelopi-

peds, or (by Euclid) in the triplicate ratio of the edges.

These three cases will enable the student of himself to pursue the ana-

logy as far as he may wish. We shall " leave him to his own devices,"

after cautioning him against supposing that a curved-surface, at any point

of it, has a certain fixed degree of curvature or deflection from the tangent-

plane, and therefore that there is a sphere, touching the tangent-plane at

that point, whose diameter shall be the limit of the diameters of all the

spheres that can be made to touch the tangent-plane or curved-surface

—analogously to A I in Lemma XI. Every curvilinear section of a curved-

surface, made by a plane passing through a given point, has at that point

a difierent curvature, the curved-surface being taken in the general sense;

and it is a problem of Maxima and Minima To determine those sections

'which "present the greatest and least degrees of curvature.

The other points of this Scholium require no particular remarks. If

the student be desirous of knowing in what consists the distinction be-

tween the obsolete methods of Exhaustions, Indivisibles, &c. and that of

prime and ultimate ratios, let him go to the original sources—to the

works of Archimedes, Cavalerius, &c.

64. Before we close our comments upon this very important part of the

Principia, we may be excused, perhaps, if we enter into the detail of the

Principle delivered in Art. 6, which has already afforded us so much

illustration of the text, and, as we shall see hereafter, so many valuable

results. We have thence obtained a number of the ordinary rules for

deducing indefinite forms from given definite functions of one variable

;

and it will be confessed, by competent and candid judges, that these ap-

plications of the principle strongly confirm it. Enough has indeed been

already developed of the principle, to prove it clearly divested of all the

metaphysical obscurities and inconsistencies, which render the methods of

Fluxions, Differential Calculus, &c. &c. so objectionable as to their logic,

and which have given rise to so many theories, all tending to establish
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the same rules. It is incredible that the great men, who successively in-

troduced their several theories, should have been satisfied with the

reasonings by which they attempted to establish them. So many con-

flicting opinions, as to the principles of the science, go only to show that

all were founded in error. Although it is generally difficult, and often

impossible, for even the most sharp-sighted of men, to discern truth

through the clouds of error in which she is usually enveloped, yet, when

she does break through, it is with such distinct beauty and simplicity that

she is instantly recognized by all. In the murkiness around her there are

indeed false lights innumerable, and each passing meteor is in turn, by

many observers, mistaken for the real presence ; but these instantly vanish

when exposed to the refulgent brightness of truth herself. Thus we have

seen the various systems of the world, as devised by Ptolemy, Tycho
Brahe, and Descartes, give way, by the unanimous consent of philoso-

phers, to the demonstrative one of Newton. It is true, the principle of

gravitation was received at first with caution, from its non-accordance

with astronomical observations ; but the moment the cause of this discre-

pancy, viz. the erroneous admeasurement of an arc of the meridian, was

removed, it was hailed universally as truth, and will doubtless be coeval

with time itself. The Theories relative to quantities indefinitely variable,

present an argument from which may be drawn conclusions directly op-

posite to the above. Newton himself, dissatisfied with his Fluxions, pro-

duces PRIME AND ULTIMATE RATIOS, and again, dissatisfied with these, he

introduces the idea of Moments in the second volume of the Principia.

He is every where constrained to apologize for his obscurities, first in his

Fluxions for the use of time and velocities, and then again in the Scholium,

at the end of Sect. I of the Principia, (and in this instance we have shown

how little it avails him) for reasoning upon nothings. After Newton comes

Leibnitz, his great though dishonest rival, (we may so designate him, such

being evidently the sentiments of Newton himself), who, bent upon oblite-

rating all traces of his spoil, melts it down into another form, but yet falls

into greater errors, as to the true nature of the thing, than the discoverer

himself. From his Infinitesimals, considered as absolute nothings of the dif-

ferent orders, nothing can be logically deduced, unless by Him (we speak

with reverence) who made all things from nothing. SxxchJiats we mortals

cannot issue with the same effect, nor do we therefore admit in science, finite

and tangible consequences deduced from the arithmetic of absolute no-

things, be they ever so many. Then we have a number of theories pro-

mulgated by D'Alembert, Euler, Simpson, Marquise L'Hopital, &c. &c.
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all more or less modifications of the others—all struggling to establish

and illustrate what the great inventor, with all his almost supernatural

genius, failed to accomplish. All these diversities in the views of philo-

sophers make, as it has been already observed, a strong argument that

truth had not then unveiled herself to any of them. Newton strove most

of any to have a full view, but he caught only a glimpse, as we may per-

ceive by his remaining dissatisfied with it. Hence then it appears, to us

at least, that the true metaphysics of the doctrine of quantities indefinitely

variable, remain to this day undiscovered. But it may be asked, after

this sweeping conclusion, how comes it that the results and rules thence

obtained all agree in form, and in their application to physics produce

consequences exactly in conformity with experience and observation?

The answer is easy. These forms and results are accurately true, al-

though illogically deduced, from a mere compensation of errors. This has

been clearly shown in the general expression for the subtangent (Art. 29),

and all the methods, not even Lagrange's Calcul des Fonctions excepted,

are liable to the paralogism. Innumerable other instances might be

adduced, but this one we deem amply sufficient to warrant the above

assertion.

After these preliminary observations upon the state of darkness and

error, which prevails to this day over the scientific horizon, it may per-

haps be expected of us to shine forth to dispel the fog. But we arrogate

to ourselves no such extraordinary powers. All we pretend to is self-

satisfaction as to the removal of the difficulties of the science. Having

engaged to write a Commentary upon the Principia, jve naturally sought

to be satisfied as to the correctness of the method of Prime and Ultimate

Ratios. The more we endeavoured to remove objections, the more they

continually presented themselves ; so that after spending many months in

the fruitless attempt, we had nearly abandoned the work altogether;

when suddenly, in examining the method of Indeterminate Coefficients in

Dr. Wood's Algebra, it occurred that the aggregates of the coefficients of

the like powers of the indefinite variable, must be separately equal to zero,

not because the variable might be assumed equal to zero, (which it never

is, although it is capable of indefinite diminution,) but because of the

diffijrent powers being essentially different from, and forming no part of

one another.

From this a train of reflections followed, relative to the treatment of

homogeneous definite quantities in other branches of Algebra. It was

soon perceptible that any equation put = 0, consisting of an aggregate of
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different quantities incapable of amalgamation by the opposition of plus

and mtJiuSj must give each of these quantities equal to zero. Reverting to

indefinites, it then appeared that their whole theory might be developed

on the same principles, and making trial as in Art 6, and the subsequent

parts of the preceding commentary, we have satisfied oui'selves most fully

of having thus hit upon a method of clearing up all the difficulties of

what we shall henceforth, contrary to the intention expressed in Art. 7,

entitle

THE CALCULUS

OF

INDEFINITE DIFFERENCES.

65. A constant quantity is such, that from its very nature it cannot be

made less or greater.

Constants, as such quantities may briefly be called, are denoted generally

by the first letters of the alphabet,

a, b, c, d, &c.

A definite quantity is a GIVEN value ofa quantity essentially variable.

Definite quantities are denoted by the last letters of the alphabet, as

z, y, X, w, &c.

An INDEFINITE quantity is a quantity essentially variable through all

degrees of diminution or of augmentation short of absolute NOTHINGNESS w
INFINITUDE.

Thus the ordinate of a curve, considered generally, is an indefinite,

being capable of every degree of diminution. But if any particular value,

as that which to a given abscissa, for instance, be fixed upon, this value is

definite. All abstract numbers, as 1, 2, 3, &c. and quantities absolutely

fixed, are constants.

66. The difference between two definite values ofthe same quantity (y) is

a definite quantity, and may be represented by

Ay (a)

adopting the notation of the Calculus of Finite (or dejinite) Differences.

In the same manner the difference between two definite values ofa y is

a definite quantity, and is denoted by

A (a y)
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or more simply by

and so on to

67

A'^y (b)

A" y
67. The difference between a Definite value and the Indefinite value of

any quantity y is Indefinite, and we call it the Indefinite Difference of y, and

denote it, agreeably to the received algorithm, by

dy (c)

In the same manner

d (d y)

or

d«y
tlie Indefinite Difference of the Indefinite Difference of y, or the second in-

definite difference of y.

Proceeding thus we arrive at

d"y (d)

which means the n* indefinite difference of y.

68. Definite and Indefinite Differences admit of being also represented

by lines, as follows

:

t"

Let P P' =: y be any fixed or definite ordinate of the curve A U, and

taking P' Q' = Q' R' = R' S' = &c let ordinates be erected meeting

the curve in Q, R, S, T, &c. Join P Q, Q R, R S, &c. and produce

them to meet the ordinates produced in r, s, t, &c. Also draw r s', s t',
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&c. parallel to R S, S T, &c. and draw s t", &c. parallel to s t', &c. ; and

finally draw P m, Q n, R o, &c. perpendicular to the ordinates.

Now supposing not only P P' but also Q Q', R R', &c. fixed or defi-

nite; then

Qm = QQ'— PF = APF = Ay
Rr =nr — nR = Qm — Rn = AQm

= a(aPP') = a'^PF = A^y
ss' =Ss — Ss'=Ss — Rr =ARr

= ^'y
t t" = t t' t' t" = t t' — S S' = A S S'

= A (A^y) = A*y
and so on to any extent.

But if the equal parts P' Q', Q' R', &c. be arbitrary or indefinite, then

Q m, R r, s s', 1 1", &c. become so, and they represent the several Inde-

Jinite Differences of y, viz.

dy, d^y, d^y, d * y, &c.

69. The reader will henceforth know the distinction between Definite

and Indefinite Differences. We now proceed to establish, of Indefinite

Differences, the

FUNDAMENTAL PRINCIPLE.

It is evidently a truth perfectly axiomatic, that No aggregate ofindefi-

nite quantities can be a definite quantity, or aggregate of definite quanti-

ties, unless these aggregates are equal to zero.

It may be said that (a— x) + (a + x) = 2 a, in which (x) is indefinite,

and (a) constant or definite, is an instance to the contrary ; but then the

reply is, a — x and a + x are not indefinites in the sense of Art. 65.

70. Hence if in any equation

A + B X + C x« + D x' + &c. =
A, B, C, &c. be definite qtumtities and x an indefinite quantity ; then we
have

A = 0, B = 0, C = 0, &c.

For B x + C X * + D x' + &c. cannot equal — A unless A = 0.

But by transposing A to the other side of the equation, it does = — A.

Therefore A = and consequently

Bx + Cx^ + Dx' + &c. =
or

X (B + C X + D X ^ + &c.) =
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But X being indefinite cannot be equal to ; .•.

B + Cx + Dx^ + &c. =
Hence, as before, it may be shown that B = 0, and therefore

X (C + D X + &c.) =
Hence C = 0, and so on throughout.

71. Again, if in the equation

A+Bx+ B'y+Cx'=+C'xy+ C'y+DxHD'x^y4.D"xy^+D'''y3+&c.
A, B, B', C, C, C", D, &c. be definite quantities^ and x, y INDEFINITES i

then

A = 0-^

B X + B' y = Vwhen y is aJunction qfx.
Cx^ + C'xy + C"y2 = o)

&c. =
For, let y = z x, then substituting

A + X (B + B' z) + X* (C + C z + C z^)

+ x^" (D + D' z + D" z^ + D'"z') + &c. =
Hence by 70,

A = 0, B + B' z = 0, C + C z + C" z ^ = 0, &c.

and substituting — for z and reducing we get

A = 0, B X + B' y = 0, &c.

In the same manner, if we have an equation involving three or more

indefinites, it may be shown that the aggregates of the homogeneous terms

must each equal zero.

This general principle, which is that of Indeterminate Coefficients

legitimately established and generalized, (the ordinary proofs divide

B X + C X - + &c. = by X, which gives B + C x + D x " + &c. = —

and not ; x is then put = 0, and thence truly results B = —, which

instead of being 0, may be any quantity whatever, as we know from alge-

bra ; whereas in 70, by considering the nature of x, and the absurdity of

making it = we avoid the paralogism) conducts us by a near route to

the Indefinite Differences offunctions of one or MORE variables.

72. Tojind the Indefinite Difference ofanyjunction o/'x.

Let u = f x denote the function.

Then d u and d x being the indefinite diiFerences of the function and

of X itself, we have

u + du = f(x + dx)
Assume

f (X + d x) = A + B d x + C d x ' + &c.
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A, B, &C. being independent of d x or definite quantities involving x and

constants ; tlien

u + d u = A + B d X + C d X - + &c.

and by 71, we have
u = A, du = B.dx

Hence dien this general rule,

The INDEFINITE DIFFERENCE ofanyfunction of s.^ f x, is the second

term in the developement of^{x. + d x) according to the increasing powers

ofdx.

Ex. Let u = X ". Then it may easily be shown independently of the

Binomial Theorem that

(x + dx)'* = x''+n.x«-idx + Pdx2
.-. d (x»).= n.x "-' d X

The student may deduce the results also of Art 9, ] 0, &c. from this general

rule.

73. Tofind the indefinite difference of the product of two variables.

Let u = X y. Then

u + du=(x + dx).(y + dy) = xy+x dy + y dx + dx dy
.*. du = x dy+y dx + dx dy

and by 71, or directly from the homogeneity of the quantities, we have

du = xdy + ydx (a)

Hence
d (x y z) = « d (y z) + y z d x

=:xzdy + xydz + yzdx . . . (b)

and so on for any number of variables.

X
Again, required d . — .

Let — = u. Then
y

X = y u, and dx = udy + ydu
, X - d X u J

.'. d — =du= dy
y y y

__y dx— X dy
y'

(c)

Hence, and from rules already delivered, may be found the Indefinite

Differences of any functions whatever of two or more variables. We
refer the student to Peacock's Examples of the Differential Calculus for

practice.

The result (a) may be deduced geometrically from the fig. in Art. 21.

The sum of the indefinite rectangles A b, b A' makes the Indefinite

Difference.
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We might, in this place, investigate the second, third, &c. Indefinite

Differences, and give rules for the maxima and minima of functions of two

or more variables, and extend the Theorems of Maclaurin and Taylor to

such cases. Much might also be said upon various other applications,

but the complete discussion of the science we reserve for an express

Treatise on the subject. We shall hasten to deduce such results as we
shall obviously want in the course of our subsequent remarks ; beginning

with the research of a general expression for the radius of curvature of a

given curve, or for the radius of that circle whose deflection from the

tangent is the same as that of the curve at the point of contact.

74. Required the radius of curvaturefor any point ofa given curve.

Let A P Q R be the given

curve, referred to the axis A O
by the ordinate and abscissa

P M, A M or y and x. P M
being fixed let Q N, O R be

any other ordinates taken at

equal indefinite intervals M N,

N O. Join P Q and produce

it to meet O R in r ; and let

P t be the tangent at P drawn

by Art. 29, meeting Q N, O R
in q and t respectively. Again

draw a circle (as in construc-

tion of Lemma XI, or other-

wise) passing through P and Q and touching the tangent P t, and there-

fore touching the curve ; and let B D be its diameter parallel to A O.

Now
Qn = dy, Pn = dx, Pq=PQ (Lemma VII) =
V (d x^ + d y'^) or d s, if s = arc A P.

Moreover let

P M' = y'

;

then it readily appears (see Art. 27) that d s = , R being the ra-

dius of the circle.

Again

Pq« = Qq X (Qq + 2QN0
= Qq(Qq + 2dy + 2yO
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or

2 Rdx>

But since

and

(ds)«=Qq(Qq + 2dy + ^^°^)

R t : Q q : : P r^ : P Q2 : : 4 : 1 (Lemma XI)

Q q : t r : : 1 : 2

., R t = 2 t r, or R r = t r = 2 Q q
t r d^ V

••. Q q = V^ =V ^^y ^''' ^^-^

Consequently

, , d « y d 2 y , 2 R d XV

(d*y)'
, , ,, ^ R dx d^y

and equating Homogeneous Indefinites

d s

. R -_ ds' __ (dx« + dy^)^
"" dx d'y ~" dx d^y

dy\2i}^m
~ S^j

dx*
the general expression for the radius of curvature.

Ex. 1. In the parabola y * = a x.

. dy _ a
" d X 2y

and since when the curve is concave to the axis d * y is negative,

d*y a dy_ a*__
~ dx* ~ ~~ 2y~* * dx ~ ""*

irp
""

a*x^ 4y'

(d)

2a
= (4y* + a*)tx5-L

Hence at the vertex R = —-, and at the extremity of the latus rectum.

3
2^

R = — r a = a V 2.
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Ex. 2. If p be the parameter or the double ordinate passing through

the focus and 2 a the axis-major of any conic section, its equation is

y*^ = p X + -^x*
•^ ^ — 2 a

Hence

2ydy = pdx+. — xdx

and

2dy« + 2yd2y = + -^ d x *

3,

"dx 2y
and

d^y _
dx*

~

.-. R =

p*(l ^ir^
3p ,

{4y

4y'

which reduces to

|pe + ?^(2a + p)x + ^(p+2 a)x^}
^=

2p^
Ex. 3. In the cycloid it is easy to show that

d y _ / 2r —

y

dx ^ y

r being the radius of the generating circle, and x, y referred to the base

or path of the circle.

d* y _ r
•'•

dx"2 ~ "~
y*

.-. R = 2 V 2 r y = 2 the normal.

Hence it is an easy problem iojind the equation to the locus of the centres

of curvaturefor the several points of a given curve.

If y and x be the coordinates of the given curve, and Y and X those of

the required locus, all referred to the same origin and axis, then the stu-

dent will easily prove that



64 A COMMENTaR\ ON [Sect. I.

and

1 + izl
Y = y + -d!7"'

dx^
which will give the equation required, by substituting by means of the

equation to the given curve.

In tlie cycloid for instance

X = X + V (2ry — y^)

Y = -y
whence it easily appears that the locus required is the same cycloid, only

differing in position from the given one.

75. Required to express the radius of curvature in terms of the polar co-

ordinates of a curve, viz. in terms of the radius vector f and traced-

angle 6,

X = e COS.

and

y = g sm.

.*. taking the indefinite differences, and substituting in equation (d) of Art.

74, we get

G^ + ^Y
dO' ^dtf*^^

which by means of the equation to the curve will give the radius of curva-

ture required.

Ex. 1. In the logarithmic spiral

i = a;
dp, e

•••

J-;
= 1 a X a (Art. 17.)

s. ^ "\

1. 6)

••• — T7i = — (la)'^Xa'' = — (1 a) ^ gd6'

. p - (g'+ (la)'e^)t g3^i +(la)n'
2(la)V—(ia)V+g^ - p (1 + (1 a)')

= ?n + (la)2}^
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Ex. 2. In the spiral ofArchimedes

g = ad

and

2a^ + f*

•

3
2 J- o2^?

Ex. 3. Jh the hyperbolic spiral

? = -

., R = s±L+i
a

Ex. 4. Jm Me Lituus

_ j_ (4a^ + g^)^

Ba''
* 4 a* — e*

Ex. 5. In the Epicycloid

g = (r + r') 2 ._ 2 r (r + r') cos. <>

r and r' being the radius of the wheel and globe respectively.

Here

_ (r + r^) (3 r ' — 2 r r^ — r^ ' + 2 g)^~
2 (3r^ — 2rr' — r'*) + 3 g

Having already given those results of the Calculus of Indefinite Differ-

ences which are most useful, we proceed to the reverse of the calculus,

which consists in the investigation of the Indefinites themselves from their

indefinite differences. In the direct method we seek the Indefinite Differ-

ence of a given function. In the inverse method we have given the Inde-

finite Difference to find the function whose Indefinite Difference it is. This

inverse method we call

THE INTEGRAL CALCULUS

INDEFINITE DIFFERENCES.

76. The integral of d x is evidently x + C, since the indefinite differ-

ence of x + C is d X.

77. Required the integral o/^a d x ?

By Art. 9, we have

d (a x) = a d x.

Vol. I. E
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Hence reversely the integral of a d x is a x. This is only one of the in-

numerable integrals which there are of a d x. We have not only d (a x)

= a d X but also

d(ax + C) = adx
in which C is any constant whatever.

.-. ax + C =/adx = a/dx . . . (a) (see 76)

generally,y being the characteristic of an integral.

78. Required the integral of
a X P d X.

By Art. 12

d(ax°-fC)= nax°-»dx
..ax" 4- C =/n a x^-'d x

= nx/ax''-'dx (77)

/~ 1 1 ax \jax«-»dx= 1 .

n n

C
But since C is any constant whatever— may be written C.

.•./ax«-'dx = i^ + C
n

Hence it is plain that

Or Tofind the integral of the prodiict of a constant the p*** pffwer of the

variable and the Indefinite Difference of that variable, let the index of the

paaoer be increased by 1, suppress the Indefinite Difference, multiply by the

constant, divide by the increased index, and add an arbitrary constant.

79. Hence
/(a xPdx + bx«»dx + &c) =
a X P+i

, b X 1+1
, a , ^,

p-HTf + <nrf + &- + c-

80. Hence also

/a X-" d X = 7 rr r + C•^ (n — 1) x"*-^
81. Required the integral of

ax'°-idx(b + ex"')P.
Let'

u = b + e x"^

.*. d u = m e X ° ~ * d X

.*. a x" ~* d X = . d um e

.'.fa. x">-*dx(b + e x"')P —f— u p d u
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a

m e . (p + 1)

a

m e (p + 1)

_ .... , -d X
82. Required the integral of— .

By 80 it would seem that

and if when

. uP+» + C (78)

. (b X ex«)P+' + C.

rdx'^ /dx 1 1/_=0,C=:C,,v-/— =-5--- = -.

But by Art. 17 a. we know that

d. 1 X =
X

Therefore

/^=:1X + C.
•' X ,

Here it may be convenient to make the arbitrary constant of the form 1 C
Therefore

r^ - Ix + IC = ICx
'^ x

Hence the integral ofafraction ivhose numerator is the Indefinite Differ-

ence of the denominatorf is the hyperbolic logarithm of the denominator PLUS
an arbitrary constant.

83. Hence

x™-*dx a r mx^ — 'dx/»a x™-'dx __ __a_ / m x""' d :

-'bx"4-e~bm/ „. e^ / x™ + -J-

and so on for more complicated forms.

84. Required the integral o/'a* d x.

By Art. 17

d.a'^ = la.a'^dx

.•./a''dx = ri./da*^ la*'

E 2
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85. If y, X, t, s denote the sine, cosine, tangent, and secant of an angle

d; then we have, Art. 26, 27.

dy _ — <ix _ ^*_ ds
dtf =

VJi — y') ~ ^ (1 — X*) - 1 + t'' s V 2 s — s«

•/v(fiy-) = ^ + ^ = "°-"y+^

/j-q:^ = ^+ C = tan.-'t+C

r—=£i_ = ^ + C = sec-'s + C
•^ s V 2 s— s^

sin.~'y, cos. ~' x, &c. being symbols for the arc whose sine is y, cosine is

X, &c. respectively.

86. Hence, more generally,

f du _ _i_ f ^T''"

^ a '

1

'

/ K
= —pr X angle whose sine is u ^ — to rad. 1 + C.

/^:ii_= 1 .COS.-U J^ + C . . (b)
•/ V (a—bu^) -/

b

V a .

^

A ^1 / V — d u

/
d u __ 1 / a

'a + bu'^ ~ VTh' J i^iu2
« a

= —L=tan. -»u^—+ C . . (c)

or

Also

Again

Vab
and

f da _ j_ / 7r^°



Book I] NEWTON'S PRINCIPIA. 69

Moreover, if u be the versed sine of an angb 6, then the sine

= V (2u— u*) and'

d u = d (1 — cos. 6) = d^ . sin. tf (Art 27.)

= d^. V(2u— u')

du
.-. dO =

v'(2u— u*)

Hence

du
(2u— u')

= vers.
—

' u + C

and generally

/v(2u— u') - ^ + C

2b ,

du f T

^^vers.->-.u + C . . . (e)

87. Required the integrals of

dx dx d X
a + bx' a— bx' a— bx**

/* dx __ 2 r d. (a + bx)
•'a + bx b'-' a + bx

= -i. 1. (a + bx) + C , .... (f)

and

/
' d X 1_

/

»d(a— bx)
a— bx~ b'' a— bx

= — i..l.(a— bx) + C ... (g)

see Art. 17 a.

Hence,

/• , f 1 , 1 \ _ r 2adx
^ la + bx"*"a— bxj ~^a»— b«x^

= 1. ]. (a + bx)-l. 1. (a-bx) + C

= l.l.i+bf + c.
b a— bx
E3
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Hence we easily get by analogy

/. d_3c 1
J

^^ a + V b. X
J a — bx^^Vab Va — bx^ » ,,.

(n)
1

J
V a

2 Vab' ' V a — Vb. X

88. Required the integral of
dx

ax'^ + bx + c*

In the first place

Hence, putting

^ b

we have

d X = d u
and

d X d u

b'^— 4ac>
ax* + bx + c afu* ^ \

which presents the following cases.

Case 1. Let a he negative and c be positive ; then

d X d II

— ax^ + bx + c — a
( -^ + u ^j

. r dx V^
tan-'u /

^^
t c*

'•'-ax= + bx+c~'— V^'\/(b''+4ac)
^* " V b*+4ac

(see Art 86) = — / ——? -. tan.-»rx+— ") / rv^4—+C •••(»)^ ^ V a(bH4ac). V ^2a/'\- b-+4ac^ ^'

Case 2. Z-e^ c be negative and a positive ; then

dx __ r d u

/ a (u
ax' + bx — c / /, b* + 4ac>/ b * + 4 a c\

(" 2l )

\f du
b '^ + 4 a c

2a
/b'4-4ac b_

=- /
1 ^^/~2a +^-^2a^r! ,u

>V 2a(b*+4ac)- • /b^+4lj_ __b
V 2a ^ 2a

see Art 87.
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Case 3. Let b * i^ > 4 a c and a, c he both positive ; then

r dx /' d u

•'ax^ + bx + c" / ~7~; b * — 4 a c>
/ a (u

/ „ 0=' — 4a c\
(" "

2ir-)

-/
du

b' — 4 a c

2a

b^—4ac . .
b

b''—4ac
-X

1 , V 2 a "^^"^2a

b^—4ac_ b^'

-S 2"a ^ 2 a

/ 1 , ^ 2 a • 2 a
•V 2a(b2—4ac) * b'^—4ac b

'*"^-
'

^'^

Case 4. ii?/ b '^ 6e < 4 a c and a, c ie 6o/^ positive ,•

/• dx _1a du
•^ ax'^+bx+c ~~a / 4ac—b^

,

/ ~2a *"

= V a(4aLb-)
-^""-"^ (^^^a)V 4^1^ + ^'

'

^"^^

/

Case 5. i)^b* 6e > 4 a c and a, c 6o/A negative

;

Then

d X 1 A d u

:—c —a /

/

—ax^+bx—c —a / b^— 4ac

2 a ^

Case Q.Ifh^be<i 4 a c an^Z a and c &o^A negative;

Then

d X 1 / d u

-ax'^+bx—

c

""2a

1 /" du
a / 4ac—b*

. .V
4ac—b*

X+ ZT7
- / 1 1 ^ ^^ 2a

. ^~ V 2a(4ac—bn •
, 4ac—b^ ^+^....(o;

« / XN 2 a 2 a

89. Required the integral of any rational Junction 'whatever of one

variable, multiplied by. the indefinite difference of that variable.

Every rational function of x is comprised under the general form

Ax" + Bx'°7' + Cx "-' + &c. K X + L
ax" + bx°-» + cx'»-«+ &c. kx +1

E4
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in which A, B, C, &c. a, b, c, &c. and m, n are any constants whatever.

If

n = 0,

then we have (Art. 77)

/(A X «. + B K " -. + &c.) — = (^^-^ + 5ji^

+ 5—f- &c. 1 \- constant.m— 1 /a
Again, ifm be > n the above can always be reduced by actual division

to the form

A'x-— + B'x'"-"-» + &c. + ^'Ti^t^'lT.'t^'''ax°+bx"-'-f-&c.
and if the whole be multiplied by d x its integral will consist of two parts,

one of which is found to be (by 77)
A / B' . X "" ~ "

:^=-—
: . X -"-"+' + ^-^ + &C.m — n+1 m— n

and the other

A''x°-' + B''x"-2+ &c.

a x« + b x"~
dx.

'+ &c.

Hence then it is necessary to consider only functions of the general

form
x"-^ + Ax°-'=+ Bx°-^+&c. _ U
x"+ax"-i + bx''-'+&c. "V

in order to integrate an indefinite difference, whose definite part is any

rational function whatever.

Case 1. Lei the denominator V consist ofn unequal real factors^ x — a,

X — /3, &c. according to the theory of algebraic equations. Assume

V X — a X — 8 X — y

and reducing to a common denominator we shall have

U = P.x— /S.x — 7...to(n — 1) terms

+ Q.X— a.x — y

+ R.X — a.x — ^

= (P + Q + R + &C.)x°-»
— JP.(S— a) + Q.(S— /3) + &c.|x»-»

+ fP.(S—a.S3i)4-Q-(S— ^.S^^)+&c.|x''-^
1. J I i.» 1

— &c.

where S, S &c. xlej^ote the sum of a, /S, y &c the sum of the products of
1 I.J

every two of them and so on.
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But by the theory of equations

S= —

a

S= b
1.2

&c. = &c.

.-. U = (P + Q + R + &c.)x«-»

+ {a (P + Q + R + &c.) + Pa+Q^ + Ry +-&c.} X x"-*

+ Jb (P + Q + R + &c.) + a(Pa + Q|8+ &c.) +
(Pa«+ Qi82+ Ry2 + &c.)} x"-^ + &c.

Hence equating like quantities (6)

P + Q + R + &c. = 1

a + Pa + Q/3+R7 + &c. = A
b + a(A — a) + Pa2+QiS2+Ry2 + &c. = B

&c. = &c.

givuig n independent equations to determine P, Q, R, &c.

Ex.l. LetH= -' + 6=' + 3

V~ x^ + 6x2+ llx + 6

Here

P+ Q + R = 1-v

6 + P + 2Q + 3R = 6 Vwhence

11 + P + 4Q + 9R = 3J

P = — 1, Q = 5 and R = 3

Hence
3dx/• U d X _ r— ax r o ax p

J V ~-/x+l'*"-'x + 2 -'x + S

= C — L (X + 1) + 5 ]. (X + 2)— 3 1. (X + 3).

P, Q, R, &c. may be more easily found as follows

:

Since

x"-* + Ax'»-''&c. = P (x — /S). (x — y). &c.

+ Q (X _ «). (X— y). &c.

+ R (x — a), (x — ^). &c.

+ &c.

let X = a, jS, y, &c. successively ; we shall then have

a « - 1 + A a «» -2 + &c. = P . (a — /3) . (a — y) &C.-V

i8''-» + Ajg^-'^ + ac. = Q.(/3 — a). (^— y)&c. v. . .(A)

y»-»4- Ayn-^' + Stc. = R.(y — a) . (y — i8)&cJ

&c. = &c.

In the above example we have

a — — 1, iS = — 2, y = — 3 and n = 3

A = 6 and B = 3.
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p = 1 — 6 + 3

1. 2. ~
— 1

Q =
4-— 6. 2 + 3 = 5— 1. 1

R ^^ 9 — 6. 3 + 3 _ 3— 2 X — 1

as before.

Hence then the factors of V being supposed all unequal, either of the

above metliods will give the coefficients P, Q, R, &c. and therefore

enable us to analyze the general expression ^ into the partial fractions

as expressed by

V X —ax — p
and we then have

f^~^ = p.l(x_a) + Ql. (x-^) + 8cc. + C.

F 2 /'*' + bx^_ y«a dxa-|-b/» dx a + b /• d x
* J a^x— x^ ~ J ~x~ "*" ^2 J a —

x

2""-' a -f- x

= alx-^-±^l(a-x)_^-+-^l.(a + x) + C

= a 1 x —(a + b) 1 V a* — x« + C
by the nature of logarithms.

= |.l(x_4)— il.(x — 2) + C.

Ex. 4./ ,
^/^ = /-^AiL + /Ql2L = P 1 (X + «)

-'x* + 4ax — b= ^x + a^^x + ^ ^ ^ '

+ Q 1 . (X + i8) + C
where

a = 2a+ V(4a2 + b^), j8 = 2a--'v/(4a' + b')

and

P = " _ 2a+ V(4a- + b')

a — /3~ 2V(4a* + b*)

Q = —^ _ ^^ (4-a' + b') — 2a

Case 2. Z>/ a// Me factors qf\be real and equal, or mppose a = ^

= 7 = &c.

Then
U __ X -

' + A X " - ' + &c.

V (x — «)"
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and since

a — /3 = 0, a — 7 = &c.

the forms marked (A) will not give us P, Q, R, &c. In this case we

must assiune

V ~ (X — a)°^ (X — «)n-i^ (X_a) "-"-^ *^ '

to n— 1 terras, and reducing to a common denominator, we get

U = P + Q . (X — a) + R (x — a) ^ + &c.

now let X = a, and we have

„n-l^ Aa''-2+ &c. =P.
Also

^ = Q + 2 R . (x — a) + 3 S . (X — a) 2 + &c.
dx
d'U
dx^

d^U

= 2 R + 3 . 2 . S . (x — a) + 4 . 3 . T (x — a) ' + &c.

-^ = 2 . 3 . S + 4 . 3 . 2 T (x — a) + &c.
d x^

&c. = &c.

and if in each of these x be put = a, we have by Maclaurin's theorem

the values of Q, R, S, &c.

U X'— 3x+ 2
h,x. 1. Let ^ = —7

Tv3— •V (x — 4)
^

Then

U = x«— 3x + 2

-J— = 2 X— 3
dx

llI?-2
dx^ ~

.-. P = 6

Q = 8 — 3 = 5

R = ^. 2 = 1

.*. /• U d X _ V* 6 d X /» 5dx ^-dx
/ ~V~ ~ J (x — 4) '

"^ J (X — 4) ^ + V ^E^=l

= C-S^^j,-^^ + l(K-4)

= C + i|E|? + l(K-4).

Ex.2. Let K =
'''+^'

V ~
(x— 3) 6

•
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Here

U = x^ + x^

dU
dx " 5x* + 3x''

d*U
dx«

" 20x3 + 6x

d^U
dx^

" 60 x'^+6

d*U
dx*

~ 120 X

d = U
-1— k"

— 120
ax"

.-. P = 3 ^ + 3^ = 2*7 X 10 = 270

Q r= 27 X 16 = 432

' R = 20 X 2'y + 6 X 3 _ ^^^

9 X 60 + 6 __
^ - 2X3 - ^^

,

rr 360 _
^ = 2:1:4. = ^^

w = -l^ = i.
2.3.4.5

Hence

- »»»•(7^- »»• or^=-¥ • (^'- >«•K-^ + '•c- ^)

which admits of farther reduction.

Ex. 3. Let . —^ = Tf •

(x — 1)* V
Here

U = x*+x

dx ^
and

dx« " "^^



Book I.] NEWTON'S PRINCIPIA. 77

Hence
P = 2

Q = 3

R = f = 1

. ril±± d X - 2 A-i^— + 3 r
^^ + r ^^

= c

(X_l)* (X_l)3 ^-(X-I)
X^

2(x— 1)*

B appears from this example, and indeed is otherwise evident, that the

number of partial fractions into vohich it is necessary to split the function

exceeds the dimension qfyi in U, by unity.

This is the first time, unless we mistake, that Maclaurin's Theorem

has been used to analyze rational fractions into partial rational fractions.

It produces them with less labour than any other method that has fallen

under our notice.

Case 3. JLet the factors of the denominator V be all imaginary and un-

equal.

We know then if in V, ' which is real, there is an imaginary factor of

the form x + h-^kV — 1, then there is also another of the form

x + h— k V — 1. Hence V must be of an even number of dimensions,

and must consist of quadratic real factors of the form arising from

(X + h + k V^=T) (X + h — k V~^^^)

or of the form
(x + h)^ + k^

Hence, assuming

U _ P + Qx F + Q^x
V ~ (X + a) 2 + /3*

"^ (X + a')' + ^''

and reducing to a common denominator, we have

U = (P + Qx) f{x + aO^ + ^''l {(x + a'O' + ^"'] X &c.

+ (F+ Q'x)f(x + a)2 + /3=^] J(x +a'0^ + /3"^J X &c.

+ (F'+Q"x) J(x+a)2 + /3^J J(x+ «')'+ ^"1 X&c.

+ &c.

Now for X substitute successively I

et + /3 -v/l^ri, a' + j3' V^^, a" + ^" V"^^, &C
then U will become for each partly real and partly imaginary, and we

have as many equations containing respectively P, Q ; P', Q' ; V", Q'\ &c.

as there are pairs of these coefficients ; whence by equating homogeneous

quantities, viz. real and imaginary ones, we shall obtain P, Q ; P'j Q'. &c.
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Ex. 1. Required the integral of

x^ d X
x* + 3x* + 2*

Here the quadratic factors ofV are x * + 1, x ' + 2

.-. a = 0, a' = 0, jS = 1, and /S' = V~2 .

Consequently

x' = (P + Qx)(x2 + 2)

+ (F + Q'x)(x« + 1)

Letx = V — \. Then

— -• — 1 = (P + Q V— \) . (— 1 + 2)

= p + Q v"^:ri

__• • ^=^' Q = — 1

Again, let x = V 2. V — 1, and we have

— 2^ V — 1 = (P' + Q' -•2. V_l)(_2+ 1)

= —F— Q' V'2 . V"=rT
.-. F = 0, and Q' = 2

Hence

r x^ d x _ /.—xdx /»2 x d x
»'x*+3x24.2 ~^ x2+ 1 -^xM^S

= C— ^l(x« + l) + l.(x* + 2)

Ex. 2. Required the integral of
' d X

To find the quadratic factors of

1 + X *

"

we assume

X 2 « + 1 = 0,

and then we have

x«'' = — 1 =cos.(2p+ 1)^+ V — lsin.(2p+ 1)*

T being 180** of the circle whose diameter is 1, and p any integer what-

ever.

Hence by Demoivre's Theorem

2 p+ 1 . , 7 . 2 p +

1

X = cos.—^ ff+ V — 1 . sm. V. — ^r

2 n 2 n

But since imaginary roots of an equation enter it by pairs of the form

A i ^ — 1 . B, we have also

2p+ 1 -—- . 2p+ 1
X = cos. -^-^— -s — V— 1 . sni. -'—— T

2 n 2 n
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and

/ 2 p + 1 , . 2 p + 1 \
.-. (x— COS. —%^5— ^— ^ — ] , sin. \^^ T ) X

V 2 n 2 n /

/ 2p+ 1 , , . 2p+ 1 X
(x — COS. -^— ff + V — 1 sm. \1 «•) =
V- 2 n '

2 n /

X'— 2XCOS. ^P"^
^
cr+ 1

2 n

which is the general quadratic factor of x * ** + 1. Hence putting

p = 0, 1, 2 n— 1 successivelj',

x-» +1 = (x^— 2xcos. JL + 1 ) . fx='--2xcos. |^+ 1 ) X
<s n / ^ <& n J

(x*— 2xcos. ~+ 1 ) X (x^— 2xcos.
°~

+ l) .

Hence to get the values of P and Q coiTesponding to the general factor,

assume
1 P+Qx ,N

Then

But

1 + x'" , ^ 2p+l
,
,^ M

X*— 2xcos. ^ it-{- 1
2n.

1=(P + Qx).M+ N(x«— 2xcos.i§±-^^+l).

1+X*"M =
X*— 2xCOS.-5-^ir+l

2 n

and becomes of the form — when for x we put cos.
"

«+ V — 1

sin. —^- ff ; its value however may thus be found

2 p + 1 , . 2 p + 1
Let cos. —^-— ff + V — 1 sm. —^ ?r = r

2 n 2 n

then
2p+l , r . 2 p+I 1

cos.—^ It — V — 1 . sm. —^ AT = —

-

2 n 2 n r

and
1 + x*''M =

(x-r. (x-i.)

Again let x — r = y ; then

M - ^ + y"'+^"y'°~'r+&c 2nyr'^°-' + r'

(-1)



80 A COMMENTARY ON [Sect. I.

But

r«" z= COS. 2p + l.»+ V— Isin. 2p-f l.w = — I

yi'n-i I 2n y*"~*.r+ . . . . 2n r^"-'
.*. M = ^ j •

X
r

Hence when for x we put r, y = 0, and

,_ 2n r^"-^
= -^J-

r

and from the above equation we have

r

2^T=lsin.ig±-^^==?nP.cos.?JBjiLLilllZlJ.^+2nP V~="l X
2 n 2 n

. 2p + 1.2n—

1

_, r\ / • en i\
sin. ^ ^ cr— 2 n Q (since r ^ ° = — 1)

2 n ^

.*. equating homogeneous quantities we get

. 2p+l _ . 2p+1.2n—

1

sm. -—-^— gzrnP.sm. ^
2 n 2 n

and

But

^ 2p+1.2n— 1 ^P . COS. ^ ^ cr = Q.
2 n

2p+1.2n— l.ff tr —

r

2p+l^^
t,

= 2p+ l.T %- It

2 n ^ 2 n

Hence the above equations become

• 2p+ 1 ^ . 2p + 1
.*. sm. —£_ «r = n P sin. -~

2n 2 n

T, 2p+ 1 ^— P COS. —^r^— «• = Q
2 n

.pi .rk 1 2p+ ]
•*. i^ = -, andQ= . cos. —^ -b".

n ^ n 2 n

Hence the general partial integral of

dx .
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, / ( 1 — X COS. —^ w) d X
1 / \ 2 n /

2p+ 1 . ,X » — 2 X COS. -^r^— w + 1
2 n

COS. —^^^
It /2xdx— 2 COS. —^r cr . d x

2 n / 2 n
/ax d X— a COS. —^r ff . d X

?i^ +
X* — 2 X COS. ^P*^

^
-T + 1

2n
2n

2p+ 1
sm.= -^-— « / Jd X~^i 2 „ 2 p + 1 , -

X 2 — 2 X COS. V. 9r + 1
2 n

2p+ 1
COS. ^ T o , 1

C ^ l(x^-2xcos.^^+i.+ 1)
2 n V 2 n ^ /

,.2p+l / 2p+l.
sm. —^r ^ / X — COS. —^— ^\

+ IJ^ Xtan.-'^
2u_\

n 'V . 2p+ 1 y
\ sm. ^^ «•/

2 n

see Art, 88. Case 4.

d X
Hence then the integral of y-r-—^ , which is the aggregate of the results

obtained from the above general form by substituting for p = 0, 1, 2 . . .

n — 1, may readily be ascertained.

As a jparticular instance letf y i

—
i
*^ required.

" Here

n = 3

and the general term is

2p+ 1
cos. —*^ T o , 1

^ . 1 . (x ^ - 2 X COS. ?^^ ^ + 1)

.2p+l 2p+l
sm. ^ -— * X — COS. ^ -—

+ -^ . tan.

-^ w A. ^;u». ^
O t. 1 O

. 2p+ 1

Let p= 0, 1, 2, collect the terms, and reduce them ; and it will appear that

f
dx ..irVj 1

x^+xV3 + l 3x(l- x^))

By proceeding according to the above method it will be found, that the

general partial fractions to be integrated in the integrals of

Vol. I. F
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.^___. and ^-H-:::^!

COS. 2 p ^ ^ _ J

1. 2 ^ .dx
" x^-2xcos.i£^+l

n

(r + l).2p* 2 r p ff

— X g-Z— d X .

n

and when these partial integrals are obtained, the entire ones will be

n n —
— or
2 2

n n -^_ 1

found by putting p = 0, 1 or—-— according as p is even or

odd.

Ex. 3. Required the integral of

x'dx
x««»—2ax"+l

•where a is < 1.

First let us find the quadratic factors of x * °— 2 a x " + 1. For that

purpose put <

x2n— 2ax'^= —1
Then

x° = a+ Va''—

I

= a+ V — 1 . V 1— a'

since a is < 1.

Now put a = cos. i\ then

X ° = COS. 6 + V — 1 sin. 3

= COS. (2 p AT + 3) + V^^l sin. (2 p t + a)

2p^+3 , ^
i

„• 2p^ + g

.*. X = COS.— • n^ V — 1 sin.
:;:

n

and the general quadratic factor of

X 2 D 2ax''+ 1

^s 2 p ^ + « ,

x * — 2 X COS. —i-—=^— + 1
n

where p may be any number from 0, 1, &c. to n — 1.

Hence to find the general partial integral of the given indefinite differ-

ence, we assume

X' P + Qx N
^ Mx«»— Sax-'+l"

, ^ 2pcr + a
X*— 2cos. —^: + 1

n
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and proceeding as in the last example, we get

Q = sin.
C-l+l) (2p^+a) ^ _1_

n n sin. 8

and

-P = sin.
'"-'•>• (^P- + '>X-l^-

n n sin. 3

whence the remainder of the process is easy.

Case 4. Let thejactors of the dejiominator be all imaginary and equal in

pairs.

In this Case, we have the form

u _ u

and assuming as in Case 2.

H - P + Qx F + Q^ X ^ . ^
V - (x + a|« + /3^)" +(rHr^'' + /3^)"-' + ^''-

K 4- L X , K^ + L^ X

and reducing to a common denominator,

U=P+Qx + (F + Q'x)(r+i;]«+/32) + &c.

and substituting for x one of its imaginary values, and equating homoge-

neous terms, in the i-esult we get P and Q. Deriving from hence the

values of —,— , —,—- , &c. and in each of these values substitutiufj for x
d X d X* *=•

one of the quantities which makes x + al ^ + jS '^ = 0, and equating ho-

mogeneous terms we shall successively obtain

P', Q'; P", Q", &c.

This method, however, not being very commodious in practice, for the

present case, we shall recommend either the actual developement of the

alaove expression according to the powers of x, and the comparison of the

coefficients of the like powers (by art. 6), or the following method.

Having determined P and Q as above, make

_ U — (P + Q x)
- r+^' + ^'

^ U--(F + Q-x)

_ u//_ (F^ + Q^^x)-
(x + a)« + ^«

&c. = &c.

Then since U', U", U'", &c. have the same form as U, or have an

F2
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integer form, if we put for x that value which makes (x + a) * + j8'^ =r

0, and afterwards in the several results, equate homogeneous quantities

we shall obtain the several coefficients.

P', Q'; P", Q",&c.

Case 5. If the denominator V consist of one set of Factoi'S simple and

unequal ofthefm-m

X — ax — a', &c.

;

of several sets ofequal simple Factors, as

(x — e) P, (x — eO S &c.

and ofequal and unequal sets of quadraticfcLctors of theforms

X 2 + a X + b, x« + a' X + b', &c.

(x* + 1 X + r) /*, (x« + 1' X + r') ', &c.

then the general assumption for obtaining the partial fractions must be

U M M' ,

V X —ax — a!

E F YJ F
+ (X — e)P + (X—e)P-' + *^'^-

(X — e')''
"•"

(x — e')«J-i + ^*''

P + Qx F + Q^x . .

"^ X* + a X + b
•

x^ + a X + b'
"* ^

R + Sx R^ + S-x . ,. G + Hx G^+H^x
^(xHlx+ r)^'*"(x^+k+ r)A*-i"*'^*^-(xHl'x+r')'"^(x^+rx+r')'-''*"

and the several coefficients may be found by applying the foregoing rules

for each corresponding set. They may also be had at once by reducing

to a common denominator both sides of the equation, and arranging the

numerators according to the powers of x, and then equating homogeneous

quantities.

We have thus shown that every rational fraction, whose denominator

can be decomposed into simple or quadratic factors, may be itself analyzed

into as many partial fractions as there are factors, and hence it is clear

that the integral of the general function

Ax^ + Bx^-' + Scc. Kx + L
^^^

a X " + b X •'-^ + &c. k X + I

may, under these restrictions, always be obtained. It is always reducible,

in short, to one or other or a combination of the forms

Having disposed of rational forms we next consider irrational ones.

Already (see Art. 86, &c.)

/
+dx /» d X r d X

V(a— bx^)' ^xV(bx«— a)' ^ V (ax— bx«)
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have been found in terms of circular arcs. We now proceed to treat of

Irrationals generally ; and the most natural and obvious way of so doing

is to investigate such forms as admit of being rationalized.

90. Required the integral of
^ < i 1 i i. JdxXF^x, x% x**, xP, xS&c. s

isohere F denotes any rationalfunction of the quantities betweeti the brackets.

Let
X = U ""^ P 1

, &c.

Then

X'" — U°P^''.-..
J.

X** rs U" P^'
. . . .

J.

&c. = &c.

and
dx = mnpq.... xu"""p« *Xdu

and substituting for these quantities in the above expression, it becomes

rational, and consequently integrable by the preceding article.

„ x^ + 2ax^ + x^ ,
Ex. —— 7^ d X

b + cx*
Here

X = u*

i

x'=u«»

x^ = u"*

x* = u*

x^ = u'^

and
dx = 6u*9du.

Hence the expression is transformed to

u^ + 2au*+ 1
60u'='du Z-, 15^^

b 4- c u '*

whose integral may be found by Art 89, Case 3, Ex. 2.

91. Required the integral of

dx X F Jx, (a + b x) °, (a + bx)^, SccJ

where F, as before, means any rational function.

Put a + bx = u""P— then substitute, and we get

"""P^----
. u--P•••-^duXF(^?^^^^^^=^^u-P•••,u-P •,&c.)

which is rational.
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Examples to this general result are

x*dx ,xMx(a + bx)^
3 and ^^ -g,

cx= + (a+bx)^ x+c(a + bx)7

which are easily resolved.

92. Required the integral of

f /a + b x\ ::; /a + b x\ E . \dx F SX, (
—

) "'(jr^- )<1, &C. >
I \f + g x/ Vf + g x/ J

Assume

a -I- bx
L — u n qs

f+gx-"
and then by substituting, the expression becomes rational and integrabie.

93. Required the integral of

d X F Jx, V (a + b X + c X *)]

Case 1. When c is positive, let

a + bx + cx^ = c(x + u)''

Then

a— cu* ,, 2c (cu*— bu + a)du
• X = and d X = ^-^^r .—-^

2cu — b (2cu— b)*

/ / . 1 . o^ cu^—bu+a ,V (a + bx+ ex') = -X ^. Vc
^ 2 cu— b

and substituting, the expression becomes rational.

Case 2. When c is negative, if r, t' be the roots of the equation

a + bx — ex* =
Then assume

V c (x— r) (r'— x) = (x — r) c u

and we have

__cru*"fr', _(r— r')2cudu
""" cu*4- 1

''*''- (cu*+ 1)^

V(a + bx-cx')= ^"""T^^^ cy*+ 1

and by substitution, the expression becomes rational.

94. Required the integral of

dx F 5x, (a + b x) K (a' + b'x) ^ •

Make
a + bx = (a' 4.b'x)u«;

Then
_a— a^u^ _ (a'b— b'a)2u dn

^-b'u«— b'
(b'u'^— b)*

./f LK X
u^(ab'— a'b) ,/,,,, V V(ab^— a^b)

V(a + bx)= ^(Vu'-b) '
^("+^^^= vVu^-b) -.
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Hence, substituting, the above expression becomes of the form

duFJu, V(b'u«— b)l

F' denoting a rational function different from that represented by F.

But this form may be rationalized by 93 ; whence the expression becomes

integrable.

95. Required the integral of

^m-i dx(a + b x" )q.

This form may be rationalized when either — , or 1- — is aa integer.

p ijq a
Case 1. Leta+bx"=u'; then(a+bx")q = u p, x" =—r— , x"::

/u*!— a\^ ^ ,j qui-^du /u^— a\Z2z^

(-b-)°''' ''^= nb (—b-) ° •

Hence the expression becomes

q «j.n ij f^'* — aN*"-"
-V- uP + 1-^ du V \ ) ^
nb b '^

which is rational and integrable when — is an integer.

Case 2. Let a + bx" = x"u'i; then substituting as before, we get the

transformed expression

q a"'*'? uP + q-idu
n (u" — b)-^ + T + '

which is rational and integrable when — + — is an integer.

Examples are

x'dx x±^"dx

(a^ + x*)^' (a* + x«)^*

x-*°'dx(a2 + x2)—T-,
(a'+x^)*

96. Required the integral of

x'"-idx(a + bx")i X F(x '').

This expression becomes rational in the same cases, and by the same sub-

stitutions, as that of 95. To this form belongs

x"'+°-' dx(a + bx''^?

and the more general one

P p

^ X " - • d X X (a + b x) 1

F4
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where
P = A + Bx° + Cx*° + &c.

and
Q = A' + B'x» + C'x'*'' + &c.

97. Required the integral of

x"-^dx X fJx", x°, (a + bx°)~^?

Make a + bx°=u'J; then

dx = y-—
.(-b-)'^

du

m
and in the cases where — is an integer, the whole expression becomes ra-

n

tional and integrable.

98. Required the integral of
Xdx

X' + X" + V (a + b X + c x*)

ichere X, X', X" denote any rationalfunctions of's..

Multiply and divide by

X' + X"— V(a + bx + x«)

and the result is, after reduction,

XXMx XX^Mx V(a + bx + cx«)

X'«— X"^(a + bx + cx*) X'^— X''*(a +bx + cx^j

consisting of a rational and an irrational part. The irrational part, in

many cases, may also be rationalized, and thus the whole made integrable.

99. Required the integral of

x"'dxF{x°, \^(a + bx'^ + cx'^")}

Let x ° = u ; then the expression may be transformed into

1 '°+^
,— u n -'duF{u, V (a + bu + cu*)]

which may be rationalized by Art. 93, when—'^^— is an integer.

100. Required the integral of

x'^dxFJxS ^(a + b^x*''), bx»+V(a + b^x^")}.

Let

bx"+ ^(a + b«x«°) = u;

then

n(2b)=±^ " ^ " -*

and the whole expression evidently becomes rational when is an

integer.

Many other general expressions may be rationalized, and much might
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be said further upon the subject ; but the foregoing cases will exhibit the

general method of such reductions. If the reader be not satisfied let him
consult a paper in the Philosophical Transactions for 1816, by E. Ffrench

Bromhead, Esq. which is decidedly the best production upon the Integrals

of Irrational Functions, which has ever appeared.

Perfect as is the theory of Rational Functions, yet the like has not been

attained with regard to Irrational Functions. The above and similar arti-

fices will lead to the integration of a vast number of forms, and to that of

many which really occur in the resolution of philosophical and other

problems ; but a method universally applicable has not yet been discover-

ed, and probably never will be.

Hitherto the integrals of algebraic forms have been investigated. We
now proceed to Transcendental Functions.

101. Required the integral of
a^'dx.

By Art 17,

d.a'' = l.a X a^dx

.•./a«dx = j|/da«

= u-=''^
ht;

Hence

/"a ™ * d X = —T— a "•

•^ mla
'' + C

102. Required the integral of

Xa^dx
ixihereX is an algeb

By the form (see

we have

raic function qfyi.

73)

d (u v) = ij d V -f- vdu

fvi d V = u V—fy d u.

Hence

/XaMx = X.,—

-

1 S -f la

(a)

(b)

/»dX a'dx _dX a^ >» a' d'X
^ dx * la ~dx*(la)'' *'(la)* dx

/»d'X aMx _ d«X j^ __ r a^ d^
•^ dx^" (la)"~ dx2 *(la)3 ^'(la)^ dx^

&c. = &c.

the law of continuation being manifest.
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Hence, by substitution,

/Xa-dx = Xj——^.^p^, + -j^.pp-&c.

which* will terminate when X is of the form

A + Bx+Cx2 + &c.

^ ^ , , a^x» 3a^x* , 3.2a^x 3.2a''
, ^Ex./x'a''dx = -j^-^-^j^+ -jYaj-^ lUr +^'

OTHERWISE

/a^Xdx = ayXdx—/la.a^x/Xdx
= a''X'— la/a^X'dx

putting

X'=/Xdx.
Hence

/a^X'dx = a^X"— la/a^X^'dx

&c. = &c.

and substituting, we get

/a^ Xdx= a^ X' — la.a'' X" + (la)^a'' X"'— &c.

X', X'', X% &c. being equal to/X d x, /X' d x, /X'' d x, &c. re-

spectively.

which does not terminate.

By this last example we see how an Indefinite Difference may be in-

tegrated in an infinite series. If in that example x be supposed less

than 1, the terms of the integral become less and less or the series is con-

vergent Hence then by taking a few of the first terms we get an ap-

proximate value of the integral, which in the absence of an exact one, will

frequently suffice in practice.

The general formula for obtaining the integral in an infinite or finite

series, corresponding to that of Taylor in the Calculus of Indefinite

Differences, is the following one, ascribed to John Bernoulli, and usually

termed

JOHN BERNOULLI'S THEOREM.

/XdxrrXx—/xdX
rd^X , _ dX x^_ /»xMx d^X
^ dx -^"x-

dx • 2^2* dx^
/*d'X x^dx_d^X x^ /»x^dx d^X
J diX^' 2 ~dx^'2.3 -^ 2.3 * dx^

&c. = &c.
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Hence

the theorem in question.

Ex.l./x»dx = x- + i— ?|x-+'+^^^-^|^^x™ + »— &c. + C

II /, Ml m . m— 1 , o \ , r^= x» + 'x (l_- +—^-3— + &c.)+C

But since

(1 — !)» + '= 1 — I^T+I + ""
+J

•'"— &c. =
2

.-./x™ dx= r + C•^ m+1 ^
as in Art. 78.

102. Required the integral of

Xdx(lx)»
'where X is any Algebraic Function ©/"x, 1 x the Hyperbolic logarithm of x,

andn a positive integer.

By the formula

f\x d V = u V —y* V d u
we have

/Xdx(lx)°= (lx)"/Xdx— n/(lx)'»-^—/Xdx

= (lx)«>X'-n/(lx)—»^X'

•^'dx(lx)'-' = (lx)°-»X--(n-l)/(lx)"-^^

&c. = &c
.X' , rX"

where X', X'', X"', &c. are put for/Xdx,/— dx,/— d x, &c. re-

spectively.

Hence

/Xdx(lx)°= X'(lx)°—nX"(lx)'>-J+n.(n—l)X"'(lx)^-2—&C.+ C.

Ex.l./x«'dx(lx)"=^{(lx)'>-^^(lx)"-»&c.}

1 93. Required the integral of

X

where U is anyfunction qfl's..
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Let u = 1 X.

Then
J d X
d u =r .

X '

and substituting, the expression becomes algebraic, and therefore integra-

ble in many cases.

104. Required the integral of
Xdx(lx)«

lahere n is negative.

Integrating by Parts, as it is termed, or by the formula

fvi d V = u V —f\ d u
we get, since

/Xdx -^ dx„ . „
r— =/X X. (1 X)-",

(1 X) " "^ X ^ '
'

/.X_dx X X 1 /. dx d(Xx);

•/(lx)"~ (n— 1) (lx)"-''^n— IV (lx)°-'* dx
and pursuing the method, and writing

^, ^dJXx)
d X

^„ ^ d (X-x)

d X
&c. = &c.

we have

/»Xdx_ Xx X^x
^^ f X^")'dx

^(Ix)"- (n-l)(lxr-> „_i.n—2.(lx)--^
*''' ^ (n-1).. .2. l(k)

or

Xx p X("' + ^) dx
(n— l)(lx)"-' *^- ^(n— l).(n— 2)....(n— m)(lx)"-'"

according as n is or is not an integer, m being in the latter case the

greatest integer in n.

P,
/.x_^dx __ x°' + ^ f 1 m 4- 1 ,0,1

^"^'J (Ix)" ir^=rrt(lx)"-'
"*

(n — 2) (lx)«-=^'*"^''-j

(m + 1)"-^ /'X^dx
(n— 1) (n — 2) . ... 1 •/ Ix

when m is an integer.

105. Required the integrals of
d ^ d ^ d ^

d 6 . cos. 6. d. 6 . sin. ^, d ^ . tan. ^, d ^ . sec. 6, ;,
, —.—

-.

,

.
' ' ' cos. 6 sm. 6 tan. 6

By Art. 26, &c.

d sin. ^ = d ^ . cos. 6, and d cos. ^ = — d ^ sin. 6

.'.fd 6 COS. 6 = sin. ^ + C . . • (a)

and
/d 6 sin. = C — cos. 6 (b)
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Again let tan. ^ = t ; then

A A
dt

and

1 + t^

t d t/dtftan.^==/.jiAl_==il(l +t«) + C

= C — 1 . COS. 6 (c)

since

Again

1 + t== = sec.'^^ =

d 6 sec. =

COS. "= d

d 6 d 6 COS. 6

COS. 6 1 — sin. 2 6

d (sin. 6)

1 — sin.

1— ¥
d (sin. 6) d sin. 6

'
1 — sin. ^ + * *

1 + sin. 6

.'./d 6 sec. 6 =^l.(l+sin.^)—^1(1— sin.^)+ C

= l.tan. (450+1) + C. . . (d)

d^
which is the same as / -.

*f cos. d

Again

/-: = fd 6 cosec. 6
sin. 6 '^

=/d^sec.(|-^)=_/d.(|_^)sec.(|_^)

=-l.tan.(45" + ^-i-) + C

= l.(tan.|) + C (e)

Again

= lcos. (|-^) + C(byc)

= 1 . sin. ^ + C (f)

106. Required the integral of

sin. ™ 6 cos. ** ^ . d ^.

m a7id n being positive or negative integers.
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Let sin. ^ = u ; then d 6 cos. ^ = d u and the above expression becomes
n —

1

u*"du(l — u'^) ~ir

which IS mtegrable when either —^— or—^
1 ^— = -—^

—

is an integer (see 95.) If n be odd, the radical disappears ; if n be even

and m even also, then—^~- = an integer j if n be even and m odd, then

—^— is an integer. Whence

u^d u (1 — u«)""2

is integrable by 95.

OTHERWISE,

Integrating by Parts, we have

Sin ni* 1 4 Tn ^-"^ 1

/do sin." 6 cos."* 6=— '.
, cos."+ ^ 6+ —

—

t/cos." + 2 $. sin.^-^ 6xd6'' n + 1 m + I''

sin.™-*0 „a.i/,."i— Iz-j • «. 9.= cos. " + M H ;— /dx sin. ""-^d COS. "0m + n m + n*'

and continuing the process m is diminished by 2 each time.

In the same way we find

/- 1 X • ms n A sin."* +M COS. "-' 6 n — 1 ,,fd6 sm.

"

6 COS. " = -i / d x sin. "» 6 cos.
" -^

^

•^ m + n ' m + n*^

and so on.

107. Required the integrals of

d u = d sin. (a + b) cos. (a' 6 + b')

d V = d sin. (a + b) sin. (a' 6 + b')

and

d w = d cos. (a + b) cos. (a' + b')

By the known' forms of Trigonometry we have

du = do {sin. (a + a'.O+b + b') + sin. (a— a'.O+b— h')\

d v= do Jcos. (a+a'.O+ b + bO— cos. (a — a'. 0+b— b')}

d w = do {cos. (a + a'. 0+b + b') + cos. (a^T' . 0+b—b')}

Hence by 105 we have

^ , f cos.{a + a'.0+ b + b')
,

cos.(a— a\ + b—bO \
" = ^~H ^r+ij

"^
'^^^^^'

i"

— C -I- i
f sin. (a + a^ + b + bQ _ sin, (a — a^O + b— bQ \~
\ a + a'

~ a— a' j

^_ Q I / s^"- (a + a\ + b + bQ sin. (^^I^'^. + b— bQ 1

*\ a + a'
"*"

a — a' /
These integrals are very useful.
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108. Required the integrals of
^ " d ^ sin. tf, and tf " d ^ cos. d.

Integrating by Parts we get

/^"Xd^sin. ^=C— ^"cos. ^+n ^"-^ sin. ^4-n . (n— 1) ^"-^cos.^— &c.

and

/^ " X d ^ COS. ^= C+ ^ ° sin. ^ + n ^ °- * cos. 6— n.(n— l)^"-^ sin. 6 + &c.

109. Required the integrals of

X d X sin. — 1 X

X d X tan, - ' x

X d X sec.
~

' X

&c.

Integrating by Parts we have

/Xdxsin.-ix=sin.-ix/Xdx— ^4^^^^^

/Xdxtan.-^x = tan.-^x/Xdx— /'^f'^^.f'^

yXdxsec.-^x = sec. -^ x/Xdx— f—-fr-o 7\

&c. = &c.

see Art 86.

1 10. Required the integral of

(f + g cos. 6) d d

(a + b cos. 6Y
'

Integrating by Parts and reducing, we have

" ~ (n— 1) (a^^-b^) (a + b cos. ""^ (n — 1) (a^— b^)
^

^(n— l)(af— bg)+ (n— 2)(ag— bf)cos.^ ^ ,

J (a + bcos.d)»-i

which repeated, will finally produce, when n is an integer, the integral

required.

V /
- d^ _ 2

, _^
(a-b)tan.|-

^ ^
»/a + bcos.^~ V(a2— b^) "* ^(3=^— b^) *"

or

1 , b+acos. ^+ sin. 6 V {h^— a^) p
V (b«— a^) • a + b cos. 6

" +^*

Notwithstanding the numerous forms which are integrable by the pre-

ceding methods, there are innumerable others which have hitherto resisted

all the ingenuity that has been employed to resolve them. If any such

appear in the resolution of problems, they must be expanded into con-
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verging series, by some such method as that already delivered in Art. 101 ;

or with greater certainty of attaining the requisite degree of convei'gency,

by the following

METHOD OF APPROXIMATION.

111. Required to integrate between x = b, x = a, any given Indefinite

Difference, in a convergent series.

Let f (x) denote the exact integral ofy X d x; then by Taylor's

Theorem

f.(x + h)~fx = Xh +^ ]^ + &c.

and making

h = b —

a

f(x + b-a)~fx = X.(b-a) + ^^^.i^^^ + &c.

Again, make

X = a

then

A, A', &c.

become constants

and we obtain

f(b)-f(a) = A(b-a) + ^. (b-a)« + ^3 (b-a)»

which, when b— a is small compared with unity, is sufficiently conver-

gent for all practical purposes.

If b— a be not smaU, assume

b— a = p.^

p being the number of equal parts ^, into which the interval b— a is sup-

posed to be divided, in order to make jS small compared with unity. Then

taking the integral between the several limits

a, a + /3

a, a + 2 j8

&c.

a, a + p /3



Book L] NEWTON'S PRINCIPIA. 9T

we get

f. (a + ^) -f (a) = A/3 + ^. /S» + ^3 . i8» + &c.

f(a+2iff)— f (a+^)=B^+f .
/3* + ~^^ + &c.

&c. = &c.

f(a+p^) — f (a+J=n./3) = P/3 + "2 /S' + 2;^iS' + &c.

A, A', &c. B, B', &c P, P^ &c.

being the values of

when for x we put

a, a + /3, a + 2 /3, &c.

Hence

f(b)-f(a) = (A + B + ....P)^

+ (A' + B'+....F)^

+ (A- + B" + ....FOi:^
+ &c.

the integral required, the convergency of the series being of any degree

that may be demanded.

If /3 be taken very small, then

f (b) — f (a) = (A + B + P) /3 nearly.

Ex. Required the approximate value of

/X-'-idx X (l_x")f
m m p

between the limits of x = and x = 1, when neither —i wor ~ + ~

is an integer.

Here

X = x»-i (i — x")-?-

and

dX p ,
.^ np i_i

-j^=:(m + n-^— ])x«-2(i_x'')i _-^x»-2(l— x")"

b-_a= 1—0= 1.

Assume 1 = 10 X jS, and we have for limits

' 10 ' ' 10 '
*'*

Vol. I. G
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Hence m being > 1,

A =

C=(fo)""{>-(.^)"}^

°=(^r{'-(fon'
&c. = &c.

r=(for'{'-(fo)"}^-
Hence, between the limits x = 1 and x =

yXdx = !—-X {(IC — 1)1"+ (10« — S")!"

10 »" + "T

+ (10" —S*")-^ + &c. + (10«— 9")f jnearly.

We shall meet with more particular instances in the course of our

comments upon the text.

Hitherto the use of the Integral Calculus of Indefinite Differences has

not been very apparent. We have contented ourselves so far with

making as rapid a sketch as possible of the leading principles on which

the Inverse Method depends ; but we now come to its

APPLICATIONS.

1 12. Required to Jind the area of any curve, comprised between two

given values of its ordinate.

Let E c C (fig. to Lemma II of the text) be a given or definite area

comprised between and C c, or and y. Then C c being fixed or De-

finite, let B b be considered Indefinite, or let L b = d y. Hence the

Indefinite Difference of the area E c C is the Indefinite area

B C c b.

Hence if E C = x, and S denote the area E c C ; then

dS = BCcb=CL + Lcb
= ydx+ Lcb.

But L c b is heterogeneous (see Art. 60) compared with C L or y d x.

.*. d S i= V d X
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Hence

S=/ydx,
the area required.

Ex. 1. Required the area ofthe common parabola.

Here

y * = a X.

_ 2ydy

and

•. d X = --y—

J

a

and between the limits of y = r and y = r' becomes

Ifm and m' be the corresponding values of x, we have

2
S = -5- (r m — r' m')

Let r' = 0, then

= -~- of the circiunscribing rectangle.

2
S = — r ra (see Art. 21.)

3

Ex. 2. Take the general Parabola whose equation is

y " = a X °.

Here it will be found in like manner that

s=:HLiy + c
m-f-n

. a pm + n

between the limits of n = y = 0, and x = a, y = /3.

Hence all Parabolas may be squaredy as it is termed ; or a square may

befound "whose area shall be equal to that ofany Parabola.

Ex. 3. Required the area of an HYPERBOLA comjprised by its asympic^Cf

and one infinite branch.

If X, y be parallel to the asymptotes, and originate in the center

X y = ab
is the equation to the curve.

Hence

y*
G2



100 A COMMENTARY ON [Sect. I.

and

S=/-iMy = C_ably.

Let at the vertex y = /S, and x = ; then the area is and

C = a b . 1 a
Hence

S = ab.l.'^.
y

1 13. If the curve be referred to ajixed center by the radius-Dector § and

traced-angle 6; then

ds = ll^^
2

For d S= the Indefinite Area contained by
f, and f+df=(f+df) -—^

= „ + ^—I (Art. 26) and equathig homogeneous quantities we

have

Ex. 1. In the Spiral of Archimedes

^ = a^

Ex. 2. In the Trisectrix

g = 2 COS. tf + 1

.-. dS = i/(2cos. <J± lydd
which may easily be integrated.

Hence then the area of every curve could be found, if all integrations

were possible. By such as are possible, and the general method of ap-

proximation (Art. Ill) the quadrature of a curve may be effected either

exactly or to any required degree of accuracy. In Section VII and many

other parts of the Principia our author integrates Functions by means of

curves ; that is, he reduces them to areas, and takes it for granted that

such areas can be investigated.

114. Tofind the length ofany curve comprised within given values of the

ordinate ; or To RECTIFY any curve.

Let s be the length required. Then d s = its Indefinite Chord, by

Art. 25 and Lemma VII.

.-. ds = -• (dx^ + dy«)

imd

s =:/V(dx' + dyO (a)
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Ex. 1. In the general parabola

y " = ax".

Hence

m^ 2m_2
dx^ = g-y n . dy2

n* a n

and

ds = dy. V(l +J^/-T-^)
n ' a n

which is integrable by Art. 95 when either

1 1

ihat is, when either

n n

In 1 m
or

2 m — n 2 m — n

is an integer ; that is when either m or n is even.

The common parabola is Rectifiable, because then m = 2. In this case

ds=dy V(I+^,y^) (r)

Hence assuming according to Case 2 of Art. 95,

we get the Rational Form
I'^du

ds =

Hence by Art. 89, Case 2,

a

4 . o\ 4 ,4

But u = V ^ . Hence by substituting and making the ne-
y

cessary reductions

G3

4

. — + V u
ll. ^ + C.

>f a*
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s = y^(y'+i) y + ^(y' + ir)+ al. + c.

Let y = ; then s = and we get C =
and .*. between the Limits of y = and y = jS

s = + al.

In the Second Cubical Parabola

y ^ = a X*
and

"-•jyVo + H)
which gives at once (Art. 91)

Ex. 2. In the circle (Art. 26)

ds = dy

which admits of Integration in a series only. Expanding (1 — y *)~»

by the Binomial Theorem, we have

Hence,

and

^^y + fa + Ar^-y' + ""' +

^

and between the limits of y = and y = - or for an arc of 30° we have

1

2. 3. 2^ "*
2.4.5.2Tb

+ &c.

-1m _J_ 4. _L- a. -J- J- ^-il o-R-~ 2 "^
3. 2* "•"

5. 2« "^
7. 2'i "^

9. 2'«
'^^^"

r.5

I .0208333333

= i .0023437500

I .0003487720

L.0000593390^
&c.

> = .5235851943 nearly.
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Hence ISC of the circle whose i-adius is 1 or the whole circumference-

sr of the circle whose diameter is 1 is

T = . 5235851943 ... X 6 nearly

= 3.1415111658

which is true to the fourth decimal place : or the defect is less than .^ 10000
By taking more terms any required approximation to the value of v may
be obtained.

Ex. 3. In the Ellipse

where x is the abscissa referred to the center, a the semi-axis major and

a e the eccentricity (see Solutions to Cambridge Problems, Vol. II. p. 144.)

115. If the curve be referred to polar coordinates, g and 6; then

s =/^/(gM<J^+dg^) (b)

For

y = g sin. 6

X = m + g COS. 6

and if d X % d y ^ be thence found and substituted in the expression

(114. a) the result will be as above.

Ex. 1. In the Spiral ofArchimedes

g = ad

•••^^ = ^^(1-^ +

«& a a

see the value for s in the common parabola, Art. 114.

Ex. 2. In the logarithmic Spiral

f = e

or

6 = l.g

and we find

s = V~2fd g = g V 2 + C.

116. Required the Volume or solid Content of any solid formed by the

revolution ofa curve round its axis.

Let V be the volume between the values and y of the ordinate of this

generating curve. Then d V = a cylinder whose base is t y ^ and alti-

tude d X + a quantity Indefinite or heterogeneous compared with either

d V or the cylinder.

G4
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But the cylinder = a- yM x. Hence equating homogeneous terms, we

have

d V = cry«dx

and

V = ff/y^dx (c)

Ex. 1. In the sphere (rad. = r)

y ^ = r*^ — X*

.-. V = ^/r ^ d X — ^/x ° d X

and between the limits x = and r

which gives the Hemisphere.

Hence for the whole sphere

4

Ex. 2. In the Paraboloid.

y2 = ax
.'. V = ^fsL X d X

•jt a

and between the limits x = and a

V _ g .a .

Ex. 3. In the Ellipsoid.

.-. V = ^^'./(a^dx — x^dx)

(a.x_-) + C;
a^ \ 3

and between the limits x = and a

V=-_ a3 = _.ab«.

Hence for the whole Ellipsoid

V = ic^ab^
o

The formula (c) may be transformed to

Vrr^yS — c/Sdy (d)
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where S =ry"y d x or the area of the generating curve, which is a singular

expression,yS d y being also an area.

In philosophical inquiries solids of revolution are the only ones almost

that we meet with. Thus the Sun, Planets and Secondaries are Ellip-

soids of diiFerent eccentricities, or approximately such. Hence then in

preparation for such inquiry it would not be of gi-eat use to investigate

the Volumes of Bodies in general.

If X, y, z, denote the rectangular coordinates, or the perpendiculars let

fall from any point of a curved surface upon three planes passing through

a point given in position at right angles to one another, then it may easily

be shown by the principles upon which we have all along proceeded,

that

d V = d yyz d x"

or

= d z/y d X L (e)

or

= d x/z d y^

according as we take the base of d V in the planes to which z, j', or x is

respectively perpendicular

For let the Volume V be cut off by a plane passing through the point

in the surface and parallel to any of the coordinate planes ; then the area

of the plane section thus made will be

/z d x"

or

yy d X ^see Art. 112.

or
I

/zdyj
Then another section, parallel toyz d x, oryy d x, oryz d y and at

the Indefinite distance d y, or d z, or d x from the former being made,

the Indefinite Difference of the Volume will be the portion comprised by

these two sections ; and the only thing then to be proved is that this por-

tion is = d yyz d X or d zyy d x, or d xy z d y. But this is easily to

be proved by Lemma VII.

This, which is an easier and more comprehensible method of deducing

d V than the one usually given by means of Taylor's Theorem, we have

merely sketched ; it being incompatible with our limits to enter into de-

tail. To conclude we may remark that in Integrating bothy z d x, and

y d yy z d X must be taken within the prescribed limits, first considering

y Definite and then x.
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117. Tofind the curved surface ofa Solid of Revolution.

Let the curved surface taken as far as the value y of the ordmate re-

ferred to the axis of revolution be (t, and s the length of the generating

curve to that point; then d o = the surface of a cylinder the radius of

whose base is y and circumference 2 -s- y, and altitude d s, by Lemma VII.

and like considerations. Hence

d(j = 2'Tyds
and

or

6 = 2 vfy d s (a)

= 2^ys — 2^/sdy (b)

which latter form may be used when s is known in terms of y ; this will

not often be the case however.

Ex. In the common Paraboloid.

and

y'' = ax

. = ^/ydy ^/(y'= + a^)

= H (r + a')U c.

Let y = and /3, then a between these limits is expressed by

If the surface of any solid whatever were required, by considerations

similar to those by which (116. e) is established, we shall have

d ff = V (dy^ + dz2)/>/ (dx^ + dz^) . . . . (c)

and substituting for d z in V d x^ + d z'' its value deduced from z = f.

(x, y) on the supposition that y is Definite ; and in V (d y '^ + d z *) its

value supposing X Definite. Integrate first V (d x^ + d z^) between the

prescribed limits supposing y Definite and then Integrate V (d y ^ + d z ^)

/V(dx'-l-dz^) between its limits making x Definite. This last result

will be the surface required.

We must now close our Introduction as it relates to the Integiation of

Functions of one Independent variable.

It remains for us to give a brief notice of the artifices by which Func-

tions of two Independent Variables may be Integrated.

118. Required the Integral of

X d x + Y d y = 0,

•where X is ant/function ofx, and Y afunction ofy the same or different.
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When each of the terms can be Integrated separately by the preceding

methods for functions of one variable, the above form may be Integrated,

and we have

/Xdx+/Ydy = C.

This is so plain as to need no illustration from examples. We shall,

nowever, give some to show how Integrals apparently Transcendental

may in particular cases, be rendered algebraic.

Ex. 1. ^ + AZ_ = 0.
X y
.-. 1 X + 1 y = C = 1 . C

.•.l(xy) = l.C
and

.-. X y = C or = C.

Ex. 2. ^ (l_x^) "^ V (l — y^)
= ^•

Here

sin.
-

' X + sin. ~ ^ y — C = sin.
-

' C
.*. C = sin. {sin.

~
' x = sin. ~ ' y]

= sin. (sin.
~

^ x) . cos. (sin.
~

' y) + cos. (sin.
~

' x) sin. (sin. ~^ y)

= X. V (1— y^) + y V (1 — x^)

which is algebraic.

Generally if the Integral be of the fofni

f-^x) + f.-My) = C
Then assume

C = f.-'(C)

and take the inverse function of f ~' (C) and we have

C = f{f-'(x)4-f-'(y)l

which when expanded will be algebraic.

119. Required the Integral of

" Ydx + Xdy = 0.

Dividing by X Y we get

X -t- Y
which is Integrable by art. 118.

120. Required the Integral of

Pdx + Qdy = 0;

uohere P and Q are each mchfunctions qf-s. and y that the sum of ike expo-

nents of Si and y in every term ofthe equation is the same.
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Let X = u y. Then ifm be the constant siim of the exponents, P and

Q will be of the forms

U X y«— U'y™
U and U' being functions of u.

Hence, since dxr=udy + ydu, we have

U.(udy + ydu) + U'dy =
and

(Uu + U0dy + Uydu = O

• • y + U U + U' - " ^""^

which is Integrable by art. 118.

Ex. 1. (a x + b y) d y + (f X + g y) d X = 0.

Here

P = fx+gy, Q = ax + by
U= fu+ g, U' = au + b

. ^_y ,
(fu + g)du _

••
y "*-fu^4- (g + a)u + b-"

which being rational is Integrable by art. (88, 89)

Ex. 2. X d y — y d X = d X V (x* + y*)

Here
Q = x, P = ~y— V (x'^+y*)

U' = u, U = — 1 — V (1 + u»)

.
dy 1 + V(l +u^)

' ••T+ uV(l+u^) ^"-^
or

y ^ u ^ u V (1 + u«)

which is Integrable by art. (82, 85.)

These Forms are called Homogeneous.

121. To Integrate

(ax + by + c)dy + (mx+ny+p)dx = 0.

By assuming

ax + by + c = u-

and

m X
we get

, mdu— adv , , bdv — ndu
d V = i , and a x = r r—

-

^ mb — na' mb — na
and therefore

(mu — nv)du + (bv — au)du =
which being Homogeneous is Integrable by Art. 120.

+ by + c = u-j

+ n y + p = Vj



Book I.] NEWTON'S PRINCIPIA. 109

We now come to that class of Integrals which is of the greatest use in

Natural Philosophy—to

LINEAR EQUATIONS.

122. Required to Integrate

dy + yXdx = X'dx,
where X, X' are functions of X.

Let

y = u V.

Then

udv + vdu + Xuvdx = X'dx
Hence assuming

dv-i-vXdx = . (a)

we have also

Hence

V d u = X' d X (b)

— + Xdx =
V

.-. Iv +/Xdx = C
or

V — g C—/Xdx

= e^ X e--'"^"*^

= C X e--f^^\

Substituting for v in (b) we therefore get

1 /Xdx
du=-^.e X'dx

which may be Integrated in many cases by Art 118.

Ex. dy + ydx = ax^dx.
Here

X = 1, X' = a x»

yx d X = X
and

/X'dxe-^xdx _ a/x^e^dx
= a e '^ (x' — 3 X* + 6 X — 6)

see Art. (102)

Hence

y= Ce-'' + a(x' — 3x« + 6x--6)
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122. Required to Integrate the Linear Equation of the second order

dx* d X •'

tshere X, X' areJunctions qfx.

d V
Lety = e^"""^*; then 3-^ = ue-^"

•^ d X
dx

dll=e/-«(|-"+u')
dx* Vd X /

and .*. by substitution,

^+u*+Xu+X' =
d X

which is an equation of the first order and in certain cases may be Integ-

rable by some one of the preceding methods. When for instance X and

X' are constants and a, b roots of the equation

u«+ Xu+ X' =
then it will be found that

y=Ce''''+C'e»'*.

123. Required the Integral of

d x'^ d X •'

•cohere X" is a newfunction of-&..

Let y = t z ; then Differencing, and substituting, we may assume the

result

dx*^
"^ '" dx

^'% X^+ X'z = (a)

and

••<'(d-:)+(K)(^+i-E)o-v' •••(")

Hence (by 122) deriving z from (a) and substituting in (b) we have a

Linear Equation of the first order in terms of T j— ^; whence f-v— j may

be found ; and we shall thus finally obtain

dx« "*" dx* X "^'^•y ~ x«— r
Here

XL. ^ "Vf ' "v//

x' X*' - x^— 1*



Book I.] NEWTON'S PRINCIPIA. Ill

Equat. (a) becomes

d^ z . d z 1 z

whence

d X 2
"^ d X ' X x''

du+(u= + ^-l)dx =

wherein z = e-^"^^; which becomes homogeneous when for u we put y~\
Next the -variables are separated by putting (see 120)

X = V s

and we have

and

Hence

and

Again

and

and

d V s^ + s — 1 ,

V s (s^ 1)

- 1 ilAJ-
s Vs —

r

^'+^ ,/udx = l.^
X (x^— 1)

X2 1

z = e/"'''^ = -.
X

g/Xdx __ glx _ X

/X" e^X'i'' z d X =/a d x = a x + C

_ x''— 1 /»(ax + C) xdx^
y ~ X -^ (x«— 1)2

'

which being Rational may be farther integrated, and it is found that

finally

^ _ ax+C xJ-1 (c\ ^i^) .

Here we shall terminate our long digression. We have exposed both

the Direct and Inverse Calculus sufficiently to make it easy for the

reader to comprehend the uses we may hereafter make of them, which

was the main object we had in view. Without the Integral Calculus, in

some shape or other, it is impossible to prosecute researches in the higher

branches of philosophy with any chance of success ; and we accordingly

see Newton, partial as he seems to have been of Geometrical Synthesis,

frequently have recourse to its assistance. His Commentators, especially
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the Jesuits Le Seur and Jacquier, and Madame Chastellet (or rather

Clairaut), have availed themselves on all occasions of its powers. The
reader may anticipate, from the trouble we have given ourselves in establish-

ing its rules and formulas, that we also shall not be very scrupulous in that

respect. Our design is, however, not perhaps exactly as he may suspect.

As far as the Geometrical Methods will suffice for the comments we may
have to offer, so far shall we use them. But if by the use of the Algo-

rithmic Formulas any additional truths can be elicited, or any illustrations

given to the text, we shall adopt them without hesitation.

SECTION II. PROP. I.

124. This Proposition is a generalization ofthe Law discovered by Kepler

from the observations of Tycho Brahe upon the motions of the planets

and the satellites.

" When the body has arrived at B," says Newton, ^Het a centripetal

force act at once with a strong impulse, Sfc"~\ But were the force acting

incessantly the body will arrive in the next instant at the same point C.

For supposing the centripetal force

incessant, the path of the body will

evidently be a curve such as A B C.

Again, if the body move in the chord

A B, and A B, B C be chords de-

scribed in equal times, the deflection

from A B, produced by an impulsive

force acting only at B and communi-

catingavelocitywhich wouldhavebeen

generated by the incessant force in the time through A B, is C c. But

if the force had been incessant instead of impulsive, the body would have

been moving in the tangent B T at B, and in this case the deflection at the

end of the time through B C would have been half the space describ-

ed with the whole velocity generated through B C (Wood's Mech.)

But

CT = ^ Cc
.*. the body would still be at C.
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AN ANALYTICAL PROOF.

Let F denote the central force tending constantly to S (see Newton »

figure), which take as the origin of the rectangular coordinates (x, y)

which determine the place the body is in at the end of the time t. Also

let f be the distance of the body at that time from S, and d the angular

distance of g fi'om the axis of x. Then F being resolved parallel to the

axis of x, y, its components are

F.-andF.^

and (see Art. 46) we .*. have

Hence

d'x _ __ T^ X d^j _ _ p 2
dt^ ~

P ' dt^ ~
P

y d'x _ T^ X y _ xd*y
dt^ ~

e ~ dt*

y d* X — X d* y .

d t

But

yd'^x — xd"y = dydx + yd'^x — dxdy — xd^y
= d.(ydx — xdy)

.*. integrating

ydx — xdv ^ ^^ -. = constant = c.
d t

Again,

X =
f cos. ^, y = g sin tf, x ^ + y ' =r ^

*

.'. d X = — f d ^ sin. ^ + d g cos. d

d y = f d ^ COS. ^ + d f sin. 6;

whence by substitution we get

ydx — xdy = f*d^
p2d^
dt

= C

But (see Art. 1 13)

^—^— = d . (Area of the curve) = d . A

.'. d t = ' := — . d A.
c c

Vol. I. H
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Now since the time and area commence together in the integration

there is no constant to be added.

.-. t = — X A a A.
c

Q. e. d.

125. CoR. 1. Pkop. II. By the comment upon Lemma X, it appears

that generally

ds
" = dl

and here, since the times of describing A B, B C, &c. are the same by

hypothesis, d t is given. Consequently

'

V a d s

that is the velocities at the points A, B, C, &c. are as the elemental spaces

described A B, B C, C D, &c. respectively. But since the area of a a
generally = semi-base X perpendicular, we have, in symbols,

d . A = p X d s

d.A
.'. V a d s « ;

P
and since the a A B S, B C S, C D S, &c. are all equal, d A is constant,

and we finally get

1 c
V a — or = -

P P
the constant being determinable, as will be shown presently, from the

nature of the curve described and the absolute attracting force of S.

1 26. Cor. 2. The parallelogram C A being constructed, C V is equal and

parallel to A B. But A B = B c by construction and they are in the

same line. Therefore C V is equal and parallel to B c. Hence B V is

parallel to C c. But S B is also parallel to C c by construction, and

B V, B S have one point in common, viz. B. They therefore coincide.

That is B V, when produced passes through S.

127. CoR. 3. The body when at B is acted on by two forces ; one in

the direction B c, the momentum which is measured by the product of its

mass and velocity, and the other the attracting single impulse in the di-

rection B S. These acting for an instant produce by composition the

momentum in the direction B C measurable by the actual velocity X mass.

Now these component and compound momentums being each propor-

tional to the product of the mass and the initial velocity of the body in

the directions B c, B V, and B C respectively, will be also proportional

to their initial velocities simply, and therefore by (125) to B V, B c, B C.
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Hence B V measures the force which attracts the body towards S when

the body is at B—and so on for every other position of the body.

128. CoR. 1. Prop. II. In the annexed

figure B c = A B, C c is parallel to

S B, and C c is parallel to S' B. Now
A S C B = S c B = S A B, and if the

body by an impulse of S have deflected

from its rectilinear course so as to be

in C, by the proposition the direction

in which the centripetal force acts is that

of C c or S B. But if, the body having

arrived at C, the a S B C be > S A B
(the times of description are equal by

hypothesis) and .*. > S B C, the vertex

C falls without the a S B C, and the

direction of the force along c C or B S',

has clearly declined from the course

B S in consequentia.

The other case is readily understood

fi-om this other diagram.

129. To prove that a body cannot de-

scribeareasproportional to the timesround

two centers.

If possible let

aS'AB = aS'BC
and

S A B = S B C.

Then

aS'BC(= S' AB)= S'Bc
and C c is parallel to S' B. But it is

also parallel to S B by construction.

Therefore S B and S' B coincide, which

is contrary to hypothesis.

130. Prop. III. The demonstration of this proposition, although strictly

rigorous, is rather puzzling to those who read it for the first time. At least

so I have found it in instruction. It will perhaps be clearer when stated

symbolically thus

:

Let the central body be called T and the revolving one L. Also lef

the whole force on L be F, its centripetal force be f, and the force ac-

H2
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celerating T be f . Then supposing a force equal to f to be applied to

L and T in a direction opposite to that of f, by Cor. 6. of the Laws,

the force f will cause the body L to revolve as before, and we have

remaining

f = F — f

'

or

F = f + f

.

Q. e. d.

ILLUSTRATION.

Suppose on the deck of a vessel in motion, you whirl a body round in a

vertical or other plane by means of a string, it is evident the centrifugal

force or tension of the string or the power of the hand which counteracts

that centrifugal force—i. e. the centripetal force will not be altered by the

force which impels the vesseL Now the motion of the vessel gives an

equal one to the hand and body and in the same direction ; therefore the

force on the body = force on the hand + centripetal power of the hand.

131. Prop. IV. Since the motion of the body in a circle is uniform by

supposition, the arcs described are proportional to the times. Hence

, ., 1 arc X radius
t a arc described <x

it

(X area of the sector.

Consequently by Prop. II. the force tends to the center of the circle.

Again the motion being equable and the body always at the same dis-

tance from the center of attraction, the centripetal force (F) will clearly

be every where the same in the same circle (see Cor. 3. Prop. I.) But

the absolute value of the force is thus obtained.

Let the arc A B (fig. in the Glasgow edit.) be described in the tune T.

Then by the centripetal force F, (which supposing A B indefinitely small,

may be considered constant,) the sagitta D B (S) will be described in

that time, and (Wood's Mechanics) comparing this force with gravity as

the imit of force put = 1, we have

S = fFT^'

g being = 32 ig- feet.

But by similar triangles A B D, A B G
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(arcAB)'
r a ^ .

If T = arc second

(arcAB)^
gR •

132. Cor. 1. Since the motion is uniform, the velocity is

arc
V =

V V
•••^ = iR°^R-

133. CoR. 2. The Periodic Time is

circumference 2 * R
P =

velocity

^ __ 4g«R' _ 4ff'R R^
"• " gRP* ~ gP^ * P^'

134. CoR. 3, 4, 5, 6, 7. Generally let

P = k X R%
k being a constant.

Then

and

v =

1

2flr R 2 9
a

k R"-' R

4^* R 4w'

g k« R2n - gk* R«n-i ^ R^"--*

Conversely. If F a „ gp_^ ; P will a R ».

For (133)

Pa^^a V R'°a R".

135. CoR. 8. A B, a b are similar

arcs, and A B, a h contemporaneous-

ly described and indefinitely small.

Now ultimately

a n : a m : : a h *
: a b *

and

a m : A M : ; a b : A B
(Lemma V)

.-.an: A M : : a h' : a b . A B
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or

f : F

or

ah» A B« ah'' AB«
ab • AB • a s AS
y2 V*
a s

' A S

''''as-

(Lemma V)

And if the whole similar curves A D, a d be divided into an equal

number of indefinitely small equal areas A B S, B C S, &c. ; a b s, b c s,

&c. these will be similar, and, by composition of ratios, (P and p being

the whole times)

P:p

Hence

time through A B
AB . ab . A S

V • V • • V
.-. P cc A S

V •

„ V« AS
F oc a -ST— .AS P«

time through a b

a s

136. CoR. 9. Let A C be uniformly described,

and with the force considered constant, suppose

the body would fall to L in the same time in

which it would revolve to C. Then A B being

indefinitely small, the force down R B may be

considered constant, and we have (131)

A C^: AB' nr 2 •

AB
T* :

AL
AL

AL

AC
rjig

RB
: RB(131)
AB«
AD

Hence

AB« = AL X AD.
Peop. VI. Sagitta ex F when time is given.

Lemma XI, « t ^ when F is given

.'. when neither force nor time is given

sag. a F X t *

;

Also sag. a (arc) * by

Fa
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OTHERWISE.

By Lemma X, Cor. 4,

j^ space ipso motus initio

t"

To generalize this expression, let -^ be the space described in I" at

the surface of the Earth by Gravity. Also let the unit of force be Gravi-

ty. Then

F • 1 . . !^ . —S--
t« • 2X1''*

T-< 2 sag. 2 s , .

.-. F = —-f = — X - . (a)
gt' g t^

by hypothesis.

137. Cor. 1. F a g# a QJ^
t (area S F Q) *

"^
S P* X QT»*

To generalize this, let a be the area described in 1". Then the area

A u ^ • .// s^ ^ SP X QT
described in t" = a X t = .

. . _ SP X QT
•

21 '

and substituting in (a) we get

x,_ 8a* QR ,,.

^ ~ "^ SP« X QT* ^°'

Again, if the Trajectories turn into themselves, tiiere must be

a : I" : : A (whole Area) : T (Period. Tune)

A
.*. a = «^.

Hence by (b) we have

F - 1^' V QR
(c\

gT* SP* X QT* ^ '

which, in practice, is the most convenient expression.

138.COB.2. F = |-A!x
g y^Qp, .(d)

139.Cor.3. F = gA! X gy/^ p^ (e)
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Hence is got a di£Perential expression for the force. Since

P V = ?-P-iJ
dp

„ 8 A* 1
.-. F = —r^ X

g T« -^ 2p'pdg
dp

= *;5;:x -fp (f)gT* p'dg ^'

Another is the'. following in terms of the reciprocal of the Radius Vector

g and the traced-angle 6.

Because

P'd6
P - V(dg^+gM^*)'
1 _ dg^ + g^d 0^

**P*~ g*d^2

~ g*d^* "^ g*'

Let
1— = u.

f

Then

J d u
d g = r

also

1 du* ,

p* ~ d()«
"* "

2dp 2dud2u „ ^
3^ = j-Tz— + 2 u d u

p3 d^-

dp _ d«u
•p»dg- d^''

"" + "

and substituting in f we have

^ = |t«x('3^-'*+»') te)

140. Cor. 4.

v
«PV

This is generalized thus. Since

V — ^^^^ _ -P Q
~ Time ~

t

and

F2
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A
T
A

aXt(=-FfXt) = area described

Hence

_ P Qx S Y~
2

, PQ 2

A

1
.•. V = —— = — X .

t T ^ SY

1 T*
X V^SY« ~ 4 A'

and by Cor. 3.

F = |x^ . (h)

From this formula we get

Y' =-|x F X P V

P V

But by Mechanics, if s denote the space moved thi'ough by a body

urged by a constant force F
V^ = 2gF X s

P V ...

•••^ = -4- ^'^

that is, the space through which a body mustfall 'when acted on by the force

continued constant to acquire the velocity it has at any point oj the Trajec-

tory^ is \ of the chord ofcurvature at that point.

Also

V«=2gFx|^ = gFx^ • • • • W
The next four propositions are merely examples to the preceding formulae.

141. Prop. VII.

R P^ (= Q R X R L) : Q T* : : A V^ : P V*

QR X R L X PV'_ ^T.,•••

AV^ - ^ ^

S P*^
and multiplying both sides by g-p .and putting P V for R L, we have

S P2 X p V3 __ SP^ X QT^
AV« ~ QR

Also by (IST c.)

V A V^ 1
**

SP'' X PV3°^ SP* X P V^'

V - ^J^ V AV _ 3 2^r^ 1

gT«^SP^xPV^~ gT^ ""sp^xpy
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OTHERWISE.

From similar triangles we get

AV: PV:: SP: SY
SP X PV

.-. SY = AV
SP^ y P V^

SY« X P V = ^
A V^ ^ ^^

F«7T.fvv^—,s-^, a

S p 2 X PV^
AV«

1

as before.

SY'xPV SP*xPV»

OTHERWISE.

P =—2T-^
is the equation to the circle ; whence

dp _j_
df

~ r

••'^-gT^''p^df-gT^''rp'

_ 4gr 8r^

-gT^ ^ ^ ^ (r^— a=^ + ?'')'

_ ^2'!tT^ f

- gT« ^ (r«_a« + f^)^*

OTHERWISE.

The polar equation to the circle is

__ 2 a cos. ^

^ — 1 + COS. * 6

/ 1 \ _ 1 COS. tf

•*•" V" yj ~ 2 a COS. "^ 2 a

d u 1 / sin. 6 .\

__ 1 sin. ^
tf

""
2 a COS. * ^

" d tf

* "~ 2 a v cos. tf COS. ' ^/

1 sin. ^6 ,_ . » .»= 5— X z-A X (3— sm.

«

6),
2 a COS. ' ^ ^

'
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Hence

d^u _ sin. ^ 6 • 2m . J" ,
cos. ^

d7^+ " - 2acos.=^^ . (^— sm 6) + 3 a"cos.
^*' "sT

X (3 sin 2 ^— sin. * 6 + cos. ^ d + cos. *
6)

2 a cos. ^ &

1

2 a COS. ^ ^

1

X (2sin.2 ^—sin.* ^+ 1 + 1—2 ^in. ^ ^+sin.*tf)

a COS. ^ 5
*

which by (139) gives

T, 4A2 u
F = -^„ X

g T '^ a COS. ^ ^

+ CO!

a^ CO

(1 + cos.^d)

_ 4 A' (1 +cos.^^)

"ffT^^ 4a^cos.*d

X
ga^T^ cos.'O

142. CoR. 1. F a spT^p-ys-
But in this case

S P = P V.

1 32^r* 1
.-. F « o-rTS , or = —-Ff^ X ^SP5> gX2 - sps

CoE. 2. F: F:: RP^ X PT^: SP*^ X PV^

SP3 X pv^SP X R P^ PT^
:: SP X RP^ : SG^

by similar triangles.

This is true when the periodic times are the same. When they are

different we have

T
F: F:: SP X RP^-^fr X SG^
S R A

R

where the notation explains itself.

143. Prop. VIII.

CP^: PM'':: PR^: QT^
and

PR^ = QRx(RN + QN) = QRx2PM
.-. CP^: PM^:: QR X 2PM:QT2
QTj _ 2PM^

•'• Q R ~ C P 2
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and

QT' X SP '
__ 2PM^ X SP'

QR ~ CP«
J, CP* 1

2PM=' X SP« PM»
Also by 137,

4a' CP'
' ~ g "^ SP^'x PM^'

But

_ S P X velocity _ SP X Va-
g

_
g

V* CP^
.-. F = — X

g PM^*

OTHERWISE.

By Prop. VII,

Fa '

SP* X PV
But S P is infinite and P V = 2 P M.

1
.'. F a

PM'"

OTHERWISE.

The equation to the circle from any point without it is

c' — r' — g«

P = 2T—

^

where c is the distance of the point from ^e center, and r the radius.

. if = —1
•• dg r

Moreover in this case

g=c+PM=c+y
c'' — r* — c* — 2cy — y*

••• P = 27 —
_ _iy

r

" p' d g r c' y'

- c«y»'
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Hence (139)

„ _ 4a^r- 1 _ V^r' 1_

eg y' g y

SCHOLiyM.

144. Generally we have

P R^ : QT^ : : PC* : P M'

But

and

P R'
, Q T'

. . PCS. p M

'

P R*-——-— P V

P C : P M : : 2 R (R = rad. of curvature) : P V

But

and

QT^ = PV X
PM*
PC*

~ 2R X PM
QR PC

2R X PM^
pQS

R = AC*
BC^ ^ PC^

QT*
QR

nr

2 AC*
BC*

1

X PM'

PM^*
From the expression (g. 139) we get

4a* d*u

e d^*

But

Also

axt=^^ = a
dx

X V
_
4.a* _ V*g*

• dO^ " d X*
*

1
u = - .

.•.du=
J
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Hence

F = V
i rgdx^

g dx«
V« d'y^ X —
g d x^

This is moreover to be obtained at once from (see 48)

(1).

d«yF=-x
,g dt

For

dt = If
V

T? V« d»y
.-. F = — X — ^,

.

g d x^-

145. Prop. IX. Another demonstration is the following

;

Let Z.PSQ = ^pSq. Then from the nature of the spiral the

angles at P, Q, j), q being all equal, the triangles S P Q, S p q are simi-

lar. Also we have the triangles R P Q, r p q similar, as likewise Q P T,

qpt.

Hence

QR
and by Lemma IX.

q'r:

. Ill
qr

q r : ; p r'

S P : S p

pr* : : q't'*' : qt*
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Hence

and

q' t'_2 _ q_tf

q' r' " q r
'

iil!
.
QZ: .

. s D • s pq'r'QR-^P'^^
O T^

.-. ^ a S PQR

QT" X S P
QR

1

ocSP*

.-. F a
SP'

OTHERWISE.

The equation to the logarithmic spiral is

b

d^ _ b
*

' d g
~ a

and by (f. 139) we have

^ 4>a^ tip 4a2 b
F = X -^-T- = X—

X

p^dg g a h^ g^

4 a ^ a^ 1_

Using the polar equation, viz.

b
X lojT. i- V (a^ — b^) °*a

the force may also be found by the formula (g).

146. Prop. X.

P V X vG : Qv^ : : P C« : CD*
Qv*: QT* : : P C* : P F

.-. Pv X vG : QT* : : P C*: CD* X PF*

...vG:^l-':: PC- ^^'"^ ^^'

:}

Pv • • - ^ • PC2
But

P V = Q R, and C D X P F = (by Conies) B C X C A
also

ult. v G = 2 P C.

. 3 p p . Q T\ BC X CA'••^^^'
"OR • • ^^

• PC^
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* QT^xCP^ 2BC^XCA^ •

Also by expression (c. 137) we get

^ 8A* PC

But

gT* 2B C^ X C A«

•A = «rxBCxCA
.-. F = i^, X P C.

The additional figure represents an Hyberbola. The same reasonino-

shows that the force, being in the center and repulsive, also in this curve,

a CP.

ALITER.

Take

T u = T V

and

u V : vG : : D C« : PC»
Then since

Q V* : Pv X V G : : D C^ : P C*
.-. u V : V G : : Q V 2

: P V X V G
.-. Q V* = P V X u V

.•.Qv» + uPxPv= Pvx (uV + uP)
= P V X V P.

But

Qv^ = QT^ + T»^ = QT' + Tu2
= PQ^— PT^ + Tu''

= P Q'^— (PT^ — Tu2)
= PQ2_PuxPv

(chord PQ)* = Pv X VP.
Now suppose a circle touching P R in P and passing through Q to

cut P G in some point V. Then if Q V be joined we have

z.PQv = /.QPR = ^QV'P
and in the AQ P v, Q V P the z. Q P V is common. They are there-

fore similar, and we have

P V : P Q : : P Q : P V
.-. PQ2 = PvxV'P = Pvx VP
.-. V P = V P

or the circle in question passes through V

;

.*. P V is the chord of curvature passing through C.
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Again, since

' D C^
u V = V G X p-pi = C X V G

or

p V — P u = C (P G — P v)

and

P V, P G
being homogeneous

2DC^ 2CD^

.-. (Cor. 3, Prop. VI.)

PC
"2 PF2 X CD^'

But since by Conies the parallelogram described about an Ellipse is

equal to the rectangle under its principal axes, it is constant. .*. P F x
C D is.

and •

F ot p C.

OTHERWISE.

By (f. 139) we have

T. 4. A^ dp
F = —7^„ X ^

g T^ P'df

But in the ellipse referred to its center

#g. ^ -a^ + b^-^'

1 _ a^ + b'— g-

•'•
p*
~

a-b*

and differentiating, and dividing by — 2, there results

dp _. i

p^ d f
a-b"

which gives

„ _ 4 A^ I _ 4 ?r-

- ^T^ ^ ^TmT^
- '^'^ ^ ^'

In like manner may the force be found from the polar equation to the

ellipse, viz.

b^
'

1 — e ^ COS. ^ &

by means of substituting in equat. (g. 139.)

Vol. I. I
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147. Cor. 1. For a geometrical proof of this converse, see the Jesuits'

notes, or Thorpe's Commentary. An analytical one is the following.

Let the body at the distance R from the center be projected with the

velocity V in a direction whose distance from the center of attraction is P.

Also let

F = fi s

fi being the force at the distance 1. Then (by f

)

r? 'I'A^ dp

which gives by integration, and reduction

p^ 4 A^ ^ ^ ^ P^ 4 A« ^ ^

R and P being corresponding values of § and p.

But in the ellipse referred to its center we have

1 _ ag + bg g^

p«~ a^b^ a^b^
which shows that the orbit is also an ellipse with the force tending to its

center, and equating homogeneous quantities, we get

and

a« + b^ _ ^gT' r>, . JL"
a*b« ~ 4 A« ^ *" P«

-f^g^''

But

b«~ 4A

A r= ff a b

T = -Sl= (1)V fi g
which gives the value of the periodic time, and also shows it to be con-

stant. (See Cor. 2 to this Proposition.)

Having discovered that the orbit is an ellipse with the force tending to

tne center, from the data, we can find the actual orbit by determining its

semiaxes a and b.

By 140, we have

and

,. 2 A 1

» — T P

+ b^ _ __?L J. 1

1_ _ 1

a»'o« - ''g ^ v^ P«
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and

2 a b =
V/U-g

and

g'

V2 2 V P^/ V* 2 V P\
^ /^ g V ^ c'

which, by addition and subtraction, give a and b.

OTHERWISE.

By formula (g. 139,) we have

-p. 4. A^ „ /d^ u
, \ fL

d^u, gfiT ^ A_n
•*•

d^2 + " ^X2~ ^ u^-"

and multiplying by 2 d u, integrating and putting ^ . „ = M, we have

(2)d^2-t-"-+ ^.t^ = u

To deteimine C, we have

du^ 1 d^2
d ^2 - g4- d ^2

and in all curves it is easily found that

d6 p^ ^^ ^ '

du^ ?2_p2 2

" dd^ ~ g2p2 - p2
1

Hence, when f = R, and p = P,

^+MR2+ C = . (3)P
which gives the constant C.

Again from (2) we get

u d u

V(— M— Cu'^— u-^)

which being integrated (see Hersch's Tables, p. 160.—Englished edit,

published by Baynes & Son, Paternoster Row) and the constants properly

determined will finally give g in terms of 6 ; whence from the equation to

the ellipse will be recognised the orbit and its dimensions.

12



132 A COMMENTARY ON [Sect. II.

_ A\ cab b
ot —

) a a—
a / a a

148. Cor. 2. This Cor. has already been demonstrated—see (1).

Newton's Proof may thus be rendered a little easier.

By Cor. 3 and 8 of Prop. IV, in similar ellipses

T is constant.

Again for Ellipses having the same axis-major\ we have

T(.

But since the forces are the same at the principal vertexes, the sagittae

are equal, and ultimately the arcs, which measure the velocities, are equal

to the ordinates, and these are as the axes-minores. Hence, a (which

v X S Yx .= —^—)ccb.

.*. T X -T- a 1 or is constant,
b

Again, generally if A and B be any two ellipses whatever, and C a third

one similar to A, and having the same axis-major as B ; then, by what

has just been shown,

T in B = T in C
and

T in C = T in A
.-. T in B = T in A.

149. ScHOL. See the Jesuits' Notes. Also take this proof of, " If one

curve be related to another on the same axis by having its ordinates in a

given ratio, and inclined at a given angle, the forces by which bodies are

made to describe these curves in the same time about the same center in

the axis are, in corresponding points, as the distances from the center."

8 R

The construction being intelligible from the figure, we have

P N : Q N : : p O : q O
.-. PN: pO : : QN q O

: : N T : O T ultimately.
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.'. Tangents meet in T,

the triangles C P T, C Q T are in the ratio of P N : Q h or of parallelo-

grams P N O p, Q N O q ultimately, i. e. in the given ratio, and

CpP:CPT::pP:PT ultimately.

: : NO: NT
: : qQ:QT
: :CQq: CQT

.*. C p P : C q Q in a given ratio.

.*. bodies describing equal areas in equal times, are in corresponding

points at the same times.

.*. P p, Q q are described in tlie same time, and m p and k q are as the

forces.

Draw C R, C S parallel to P T, Q T; then

nO: lOpO : qO : : PN QN: : n(

.-. nO : p O : : 1 O : qO
and

n p n O : : 1 q : IQ)
but y

nO nR : : IQ : isj
(since n O O R : : T O : OC:: lO

.-. n p : n R: : 1 q : 1 S

.-. n p p R: : 1 q : qS
and

n p: p R : : m p : pC)
qCf1 q: q S : : k q

.*. mp : pC : : k q • qC
or

Fatp: Fatq: : p C

SECTION

qC.

f III.

O S)

Q. e. d.

150. Prop. XI. This proposition we shall simplify by arranging the pro-

portions one under another as follows

:

LxQR( = Px): LxPv

But
LxPv
GvxPv

Qv^
Qx''

:GvxPv.:
: Q V

'

.Qx*^ :

:QT^ :

PE
A C :

L
PC^
1

PE'^

CA^

PC
PC

G V

CD
1

PF^
PF^
C B^

I 3
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.-.Lx QR: QT«: : ACxLxPC^xCD^ : PCxGvxCD^xCB^
and

QR _ ACx PC _ AC xPC _ AC
QT« ~ G V X C B * ~ 2 P C X C B^ ~ 2 C B ^

V QR / AC \ ^ 1
•'

QT^ X SP«V- 2 CB^x SPV SP^*
Q. e. d.

Hence, by expression (c) Art. 137, we have

^ 8A2 AC
F = —,^„ X

gT'' 2CB2 X S P2

(a>

8 g^a 'b'^ a

^T2 ^ 2b2 X f2

4cr2a« 1

where the elements a and T are determinable by observation.

OTHERWISE.

A general expression for the force (g. 139) is

^ 4 A^ ,/d2 u , \

But the equation to the Ellipse gives

_ 1 _ 1 + e COS. ^

" "
F
~ a(l-e2r

where a is the semi-axis major and a e the eccentricity,

d u e sin. 6

•*' dT ~ ~'a(l — e^)

and

d * u e cos. 6

dd'
"" a(l— e')

d^u . = 1

a(l — e^)

[iU

. F = 4A»
gT^"" a(l-e^)-

But

A» rr ff^a^b^ = »^a^(a' — a'e')

.-. F =r
4^*a^^ ,

ic same as before.
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OTHERWISE.

Another expression is (k. 140)

4 A* dp
F = X

gT'-' p

Another equation to the Ellipse is also

1 _ 2 a—
2

P^ b^

** p'd f b2 gS

2a

"^ ~gT^^ b2g2

4cr2a2b2
gT'

4^^ a^ 1

151. Prop. XII. The same order of the proportions, which are also let-

tered in the same manner, as in the case of the ellipse is preserved here.

Moreover the equations to the Hyperbola are

_ a(e^— 1)
S
=

1 + e COS. 6

and

P = 1;

—

which will give the same values of F as before excepting that it becomes

negative and thereby indicates the force to be repulsive.

152. Prop. XIII. By Conies

4SP.Pv = Qv2 = Qx2 ultimately.

But

Pv = Px = QR.
.-. 4SP.Q R : Qx^ : : 1 1

and

Qx^ : QT^ :: SP« . SN
: SP SA

.-. 4SP:QR : QT=^ :SP S A
QR 1 1

~ L" QT^ ~ 4SA
L being the latus rectum.

.•.F«- QI^._ 1
- a

or

QT^ X SP^ SP

F =— X ^PW'P <"• '^'^
g

II
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Sa^ 1 2P2V2 1
X TTTT-P or-gL'^SP* gL '"SP2

a being the area described by the radius-vector in a second, or P the per-

pendicular upon the tangent and V the corresponding velocity.

OTHERWISE.

In the parabola we have

1 2 2.2
S

and

u = - = y (1 4- COS. 6) = y -\-
-J

COS.

p«-L^7
wliich give

d^u
d^^ +"= L

and

dp _ 2 2
p^df- L^ s'

and these giye, when substituted in

or

- P
'
^^

'
dp

~ g *P'dg

the same result, viz.

^ 2P^V^ 1 ...

^^-n^""? • •
•••••(")

Newton observes that the two latter propositions may easily be deduced

from Prop. XL
In that we have found (Art. 150)

F = 4 A*
gT«

a

__ P«V ' a
X 1 o , o

Now when the section becomes an Hyperbola the force must be repul-

sive the trajectory being convex towards the force, and the expression re-

mains the same.
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Again by the property of the ellipse

which gives

a^ _ ^ ]_

.b^ ~ L ~"4 a

and if c be the eccentricity

b^ = a^ — c2 = (a + c) X (a — c)

.
a _ 2 J_*

' (a + c) X (a — c)
~ L 4a'

Now when the ellipse becomes a parabola a and c are infinite, a — c is

Jmite^ and a + c is of the same order of infinites as a. Consequently r-j

\sjinite, and equating like quantities, we have

± -1
b«~ L'

which being substituted above gives

F = J— X —

the same as before.

Again, let the Ellipse merge into a circle ; then b =r a and

P^ V^ a

V« 1
X —

„

g g

(c)

g X a

153. Prop. XIII. Cob. 1. For thefocus, point of contact, and position of

the tangent being given, a conic section can be described having at that point

a given curvature.'}

For a geometrical construction see Jesuits' note, No. 268.

The elements of the Conic Section may also be thus found.

The expression for R in Art. 75 may easily be transformed to

« 6

R =

for

P =
d s ~

. / „ d p2

^U'^'m
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Now the general equation to conic sections being

b* 1

f = r X
a 1 + e cos. 6

the denominator of the value of R is easily found to be

which gives

Hence

R = - X
b* g3

— -*^ X R

is known.

Again, by the equation to conic sections

P * = 2—

we have

which, by aid of the above, gives

„- ±e'
" -

2.e2 — p R'
And

-2^'-pR'
Whence the construction is easy.

154. The Curvature isgivenJrom the Centripetal Force and Velocity being

given."]

If the circle of curvature be described passing through P, Q, V, and O
(P V being the chord of curvature passing through the center of force,

and P O the diameter of curvature) ; then from the similar triangles

P Q R, P V Q, we get

P Q2
Q R = TV"'

Also from the triangles P Q T and P S Y (S Y being the perpendicu-

lar upon the tangent) we have

SPxQT^^- SY
and from P S Y, P V O,

2Rx SYPV = SP
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whence by substitution, &c.

Q R SP
QT^xSP^ ~2R X SY«

_ 2P^V^ QR _ V^xSP
** ~ g QT^xSP^-RxSY

which gives

R _ SP V2

Hence, S P, S Y and g being given quantities, R is also given if V and

F are.

155. Two orbits which touch one another and have the same centripetal

Jbice and velocity cannot he describedJ]

This is clear from the " Principle of sufficient Reason." For it is a

truth axiomatic that any number of causes acting simultaneously under

given circiunstances, viz. the absolute force, law of force, velocity, direc-

tion, and distance, can produce but one effect. In the present case that

one effect is the motion of the body in some one of the Conic Sections.

OTHERWISE.

Let the given law of force be denoted generally by f g, where f g means

any function; then (139)

„ P^V^ dp
F = X ^

and since P and V are given

„, P«V* dp'

g p'^dg'

But if A be the value of F at the given distance (r) from the center to

the point of contact ; then

F : A::fg :fr

and

and

F: A::fg':fr

...F = ^xfg
I r

F=^xf?'
f r ''
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Hence

P^ V« dp _ A^
^.

g • p ^ d f
~ f r ^

and

P'^ V^ dp^ _ A ^ ,

g * p'M /
~"

f r ^

and integrating, we have

P' V-fr
2gA

and

p2V2fr

^ (f^-^O =/d?ff

'•x(p-2— .72)=/^?'f§'
2 g A •

'^ VP 2 p'

Nowyd g f ^ and yd g' f g' are evidently the same functions of g and g',

which therefore assume

* pgandpg';

and adding the constant by referring to the point of contact of the two

orbits, and putting

pfV^fr
2gA = M,

we get

^^ (f2~]^8) = ^^ — <p'^'

. J_ _ ^ , J fj'\••p2- M-*- P« M^
(^,)

p/2 - M "^ P2 M''

in which equations the constants being the same, and those with which

f and ^ are also involved, the curves which are thence descriptible are

identical. Q, e. d.

These explanations are sufficient to clear up the converse proposition

contained in this corollary.

156. It may be demonstrated generally and at once as follows

:

By the question

. 1
.
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then

and

f 1

. =/^^ =

and substituting in (d) we have

p2 - r M ^ P2 ^ Mg'
But the general equation to Conic Sections is

J_ _ 2a- 1

p2 - b2g + b2*

Whence the orbit is a Conic Section whose axes are determinable from

2a _ J_ _ 2g A r^

b^- M ~ P2 V2
and

_ J_ 1_ J_^ b2 ~ r M "^ P^

- J_ 2 g A r
^— P 2 p 2 Y? '

and the section is an Ellipse, Parabola or Hyperbola according as

V ^ is >, or = or < 2 g A r.

Before this subject is quitted it may not be amiss by these forms also to

demonstrate the converse of Prop. X, or Cor. 1, Prop. X.

Here

^i = i

f r = r

<Pi = fi^^ =_ r
2

<pv ~ 2'

Whence

1 - '"
4-~ 2M ^

1 e
P^ 2 M*

But in the Conic Sections referred to the center, we liave

1 = A + i
a" — b^

which shows the orbit to be an Ellipse or Hyperbola and its axes may be

found as before.
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In tlie case of the Ellipse take the following geometrical solution and

construction

C, the center of force and distance C P are given. The body is projected

at P with the given velocity V. Hence P V is given, (for V ^ = -g^ F . P V.)

Also the position of the tangent is given, .*. position ofD C is given, and

2 C D ^

P V = — -. Hence C D is given in magnitude. Draw P F per-

pendicular to C D. Produce and take P f = CD. Join C f and bisect

in g. Join P g, and take g C, g f, g p, g q, all equal. Draw C p, C q.

These are the positions of the major and minor axis. Also ^ major axis

= P q, ^ minor axis = P p.

For from g describe a circle through C, f, p, q, and since C F f is a

right z_, it will pass through F.

.-. Pp.Pq=PF.Pf=PF.CD
Also

PC +FP = Pg2 +gC2 + Pg2 +gf2, (since base ofA bisected in g)

or

PC8+CD2 = Pg2+gq2 + Pg2 + gp2
= Pq2— 2Pg.gq + Pp2 + 2Pg.gp
= Pq3 + Pp2

.'. Pp.Pq=PF.CD \ But a and b are determined by the same

pp2 + Pq2 = PC* + CD^J equations. .*. Pq = a, P p = b.

Also since p and F are right angles, the circle on x y will pass through p

and F, and Z.Ppx = Cpq= CFq = xFp, because ^xFC = pFq.
.-. Z. Pp x = z-in alternate segment. .*. P p is tangent.

Pp« = PF.Px .-. PF.Px = b«.

But if in the Ellipse C x be the major axis, P F . P x =bK
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.*. C X is the major axis, and .*. C q is the minor axis.

••. the Ellipse is constructed.

Prop. XIII, Cor. 2. See Jesuits' note. The case of the body's

descent in a straight line to the center is here omitted by Newton, be-

cause it is possible in most laws of force, and is moreover reserved for a

full discussion in Section VII.

The value of the force is however easily obtained from 140.

157. Prop. XIV. L = ^^ a ^'
Q R F

a QT« X S P=by hypoth.

OTHERWISE.

By Art. 150,

gT^^b^^-^'LgT^^g^
for the circle, ellipse, and hyperbola, and by 1 52.

Lg g*

for the parabola.

Now if ^ be the value of F at distance 1, we have ^

Whence in the former case

8 A^ 2P2 X V^p-^ = /., or = —^j-_ (a)

and in the latter

2P^ X V'
f = /^ (b)gL ^ '

But

S P^ X Q T^
: 1 2

: A ^
: T

^

4

. ^ _ SP== X QT- _ P^X V^-
•*• X 2

-
4 ~ ^

.-.SP^x QT2 = ^L '.

(c)

158. Prop. XIV. Cor. I. By the form (a) we have

A(= *ab) = J^ X V L X 1.

« T V L.



144. A COMMENTARY ON [Sect. III.

159. Prop. XV. From the preceding Art.

8 ff a b

But in the ellipse

"^ ~ 'V/tiff ^ VL •

L = H^

...T=-^Xa^ (e)

160. Prop. XVI. For explanations of the text see Jesuits' notes.

By Art. 157 we get

OTHERWISE.

VL

for the circle, ellipse, hyperbola, and parabola.

But in the circle, L = 2 P.

,'.V = V~^X-~ = VYf^X ^^ •••(g)
r being its radius.

In the ellipse and hyperbola

a

IT , b 1 ,, .

•*• V = V g ^ X ^ X p: (h)

161. Prop. XVI, Cor. I. By 157,

L = — X P^X V''.

162. Cor. 2. V = ^^ X :^,

D being the max. or min, distance.

163. Cor. 3. By Art. 160, and the preceding one,

V:V'::^i^xX^-:V7^ VD
: : V L : V 2 D.

164. Cor. 4. By Art. 160,
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But

2 b^L = , P = b, and r = a

^ b 111
.-. V : \r : : r

—

7— - —7— ; : 1 : 1.
b V a V a

165. Cor. 6. By the equations to the parabola, ellipse, and hyper-

bola, viz.

P^ = 4 "^ ^' P = 2-^^,' ^^ P = 2T+I
the Cor. is manifest

166. Cor. 7. By Art. 160 we have

2/2 1 L 1

2 P^ r

which by aid of the above equations to the curves proves the Cor.

OTHERWISE.

By Art. 140 generally for all curves

P V
^ 2

But generally

p V = ^P^ g

dp
and in the circle

P V = 2 g (rad. = g)

2/2 P d p
? d s

An analogy which will give the comparison between v and v' for any

curve whose equation is given.

167. CoR. 9. By Cor. 8,

. L

and

.'. ex equo

Vol. I.

'P

v : v" : : ^/
f : ^/ -

v:v-:: A-i' : p.V 2 ^
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1G8. Prop. XVII. The " absolute quantity of the ford* must be

known, viz. the vatue of /it, or else the actual value of V in the assumed

orbit will not be determinable ; i. e.

L: L': : P'^ V^: P'^ V'«

will not give L'.

It must be observed that it has already been shown (Cor. 1, Prop.

XIII) that the orbit is a conic section.

See Jesuits' notes, and also Art. 153 of this Commentary.

169. Prop. XVII, Cor. 3. The two motions being compounded, the

position of the tangent to the new orbit will thence be given and therefore

tlie perpendicular upon it from the center. Also the new velocity.

Whence, as in Prop. XVII, the new orbit may be constructed.

OTHERWISE^

Let the velocity be augmented by tlie impulse m times.

Now, if jtt be the force at the distance 1, and P and V the perpendicu-

lar and velocity at distance (R) of projection, by 156 the general equation

to the new orbit is such that its semi-axes are

R R
a = -^ -„, or =

and

2_m^' "^ - m2_2

m 2 P ni 2 P
b^ rr s, or

2 — m2' "^ m2 —

2

according as the orbit is an ellipse or hyperbola. Moreover it also

thence appears that when m ^ = 2, the orbit is a parabola, and that the

equations corresponding to these cases are

2 — m^ '

or

or

m^P X S

m'' — 2

= PX
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DEDUCTIONS AND ADDITIONS

TO

SECTIONS II AND III.

170. In the parabola the force acting in lines parallel to the axis, required F,

4SP.QR:QT^::Qv»:QT2::YE2:YA*::SE:SA::SP:SA
Q R 1

• • QT* " 4 S A , and S' P is constant, .•. F is constant.

Let u be the velocity lesolved parallel to P M then since the force acts

perpendicular to P M, u at any point must be same as at A. .*. if P Q be

S' P . O T
the velocity in the curve, Q T = u = constant quantity, and a = ^

S'P.u

.-. F = «^ = -««^ = |^'(seel57)gS'P'.Qi- g
which avoids the consideration of S P being infinite ; and

u^=2gF.t

.*. body must fall through — to acquire the velocity at vertex, which agrees

with Mechanics. (At any point V = u / q-t-*)

171. In the cycloid required the force when acting parallel to the axis.
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R P^ : QT« :: Z P» : ZT« :: V F* : E F* : : V B : BE
and since the chord of curvature (C. c) = 4 P M, R P* = 4 P M. R Q,

.-. 4 P M. R Q : Q T* : : V B : (B E =) P M
QR _ VB

•*'QT* ~ 4PM2'

.*. F a pHTfi (since S P constant)

-, 8a^ Q R u^.VB .^ , . „ i * r,~
g.S P'.Q T' ~ 2 g. P M' ' " " = velocity parallel to A B.

(At any point V = u.^/^.)
172. In the cycloid the force is parallel to the base

RP»: QT*:: ZP': ZT«:: V E«: VM*:: VB: VM
and since C . c = 4 E M

R P« = 4E M.RQ,
.-. 4 E M . R Q : Q T« : : V B : V M,

QR _ VB 1
•*• QT* ~ 4 E M. V M "^ E M. V M •

If V M = y, F = VB>
gy V 2ry — v*V 2 J

II = velocity parallel to V B.
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/'f - 8a'Q R^ __ 2 uj. Q R _ u'. VB v

V^-g.SP*QT^- g.QT^ -2g.EM.VMV
(At any point V = ^ • ^' ^')

173. Find F in a parabola tending to the vertex.

149

TAN
TP : FN : : TA : AE

or

V 4 X '^ + y *
: y : ; X :

y^ _= P, (A E),
V 4x'^+ y

1 _4x* + ax_ 4 X + a
'"p*"" ax^ ~ ax^
2 d p __ 4dx.ax' — 2axdx(4x + a)

p» ~" a^ X*

4x^ + 2 ax
ax

.dx = 2 2 X + a
. d X,

, dp _ 2x + a
. . - o — :—

i— , u A .

a X'

Also

= -/x^ + y%
a d X

1
>_xdx + ydy_ x d x + 2

Vx°-fy* V'x^ + ax
dp _ 2 x 4- a 2Vx^+a"x _ 2Vx^4-ax

*'p'dp~ ax' * 2x + a "~ ax^

. p AP

K3
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174. Geometrically. Let P Q O be the circle of curvature,

but

but

P V (C. c through the vertex of the parabola) = —-^-^—
PQ^ _ PO . AJ

APQR

PQ^
QT2

QT« -

.-. F =

AJP*
Az^
A P^

PO.Az^
8a^Q R 8a«. A P

g.A P^QT* " g.PO. A z'

c ps o Y« A T'
PO.Az' = 2 AS.|-~.-3. gp3 = 2 A S.AN"

F = 4a'. A P
g.A S.A N^*

175. If the centripetal be changed into a repelling force, and the body

revolve in the opposite hyperbola, F « Tj-pg

.
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The body is projected in direction P R ; R Q is the deflection from the

Tangent due to repelling force H P, find the force.

L.Px : L.Pv : Px:Pv::PE:PC::AC:PC
L . P V : P V . V G : : L : 2 P C

P.v.vG : Q v'' : PC^: CD»
Q v^ : Q x« :

•

1 : 1

Qx*^ : Q T» :
• PE^ : PF»: : AC* : PF*^: ; CD": BC»

.-. L.Px: QT'' : AC.L.PC'.CD*: 2PC«.CD«.BC*

. . L. ^^ . . 1 . 1

"^ - QR
.-. F

8a^QR Sa^ 1

~ g.HP^QT^ ~ g.L.H P^"^ HP«'

R^^P

L. SP^
176. In any Conic Section the chord of curvature = —^^

for

p V - Q P_' - QT^SP^QR-QR.SY^
L.SP^

177. Radius of curvature =

for

PW =

L.SP
~ S Y'

2r S"Y^'

PV.SP L.SP^
SY ~ SY'

8 a^
178. Hence in any curve F = —o-yt p-tr

__ 8 a*' _ 4a^SP
~ g.SY'.2R.SY ~ gTHY^R

SP'

. see Art. 74.
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179. Hence in Conic Sections

_ 8a' _ 8a' _ 8a' 1_
^ ~ g.SY^PV~g.SY'. L.SP' ~ g.L.S P«°^ SP''

S Y^
L . S P'

.

180. If the chord of curvature be proved = - o v «~ independently of

Q T-
he proof that „ „ = L, this general proof of the variation of force in

tonic sections might supersede Newton's ; otherwise not.

181. ^ body attached to a strings whose length = b, is whirled round so as

to describe a circle whose center is the Jixed extremity of the string 'parallel

to the horizon in 'Y" \ required the ratio of the tension to the weight.

Gravity = 1 , .*. v of the revolving body = V' g F b, if b be the length of

the string

;

.'. F (= centripetal force = tension) = —r- (131)

and

^ _ circumference __ 2 t b V b

V V g F b VgF
. F - ^^^

• " gT'
. 4 AT* b _-

.. F : Gravity : :
—rer^ : 1, or Tension : weight : : 4 w ' b : g T '.

If Tension = 3 weight ; required T.

4cr2b:gT': : 3 : 1,

•' - 3g •

IfT be given, and the tension= 3 weight, required the length of the string.

^, _ £»'b
3g '

4 cr*

182. If a body suspended by a stringfrom

any point describe a circle^ the string describes

a cone ; required the time of one revolution or

of one oscillation.

Let A C = 1, B C = b,

The body is kept at rest by 3 forces, gra-

vity in the direction of A B, tension in the

direction C A, and the centripetal force in q
the direction C B.
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As before, centripetal force =

NEWTON'S PRINCIPIA.

4?r2 b

15S

gTTf

and centripetal force : gravity : b : -v^ 1 * — b ^ (from a)

4 ff* V 1* — b^

4?r'=b

*. T* :=

g

.'. T = 2 ff^ = a constant quantity if V 1 ^ — b *

be given.

.'. the time of oscillation is the same for all conical pendulums having a

common altitude.

183. V 171 the Ellipse at the perihelion : v in the circle e. d. : : n : 1, ^nd
the major axis, excentricity, and compare its T iioith that in the circle, and

Jind the limits qfn.

Let S A = c,

V in the Ellipse : that in the circle e. d. : : V H P : -v^ A C
V H A : V A C in this case

n : 1 by supposition,

.2AC— AS = n«AC,

c
.-. A C =

Excentricity = A C — A S = 5- j

2 — n*'

c
c = c n'

2 — n'

s
c^

T: Tin the circle: : A C^: A S^:: ,

(2 — n«) 2

Also n must be < v' 2,

for if n = V 2, the orbit is a parabola

if n >• V 2, the orbit is an hyperbola.

184. Suppose ^ of the quantity of

matter qf^to be taken aiioay. How
much ivotdd T of D be increased, and

what the excentricity ofher neiso orbit ?

the D '5 present orbit being considered

circular.

At any point A her direction is

perpendicular to S A,

.'. if the force be altered at any

point A, her v in the new orbit will

3

c^ 1 : (2 — n«) 2
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2 a= her V in the circle, since v = ^ y > ^"^ S Y = S A, and a is the

same at A.

LetAS = c,PVatA = L,andF = -^^ a JL

in this case,

2 b'^
.*. 3 : 4 : : 2 c ( = L in the circle) : (= L in the ellipse)

-2,

_ 3b^ _ 3 (a'—a— c ) __ 3(2ac— c') _ _ IsJ
'*""a'~ a

~"
a

~
a

3c«
a =2^'

3c

c 2 /3 C\
And T in the circle : T' in the ellipse : : —^ : \~^ \

V_3 /£x 2 1 3

*'V4*\2.) 'V2*2

: : V 2 : 3.

. , , . . 3 c
And the excentncity= a— c=- c — c= -.

185. What quantity must be destroyed that J 's T may be doubled^ and

what the excentricity ofher new orbit ?

Let F of© :y(new force) : : n : 1

g

.-. F«

.*. V = ^ ^ F . P V, and v is given,

1

P V
2b* „ a*— a— c 2ac— c'

.*. n : 1 : :— :2c:: : c : :
—

: c : : 2 a— c : a'
a a a

.*. n a = 2 a — c,

c
.*. a = ~ .

2 — n

Also T in the circle : T in the ellipse : : 1 : 2

\
5

C 2 C

"'^n'(2_n)i

: : (2 — n) ^ : n ^

.'. 1 : 4 : : (2 — n) ^
: n .*. n = 4 (2 — n) ^ whence n.
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And the excentricity

155

c = _ c — (2c — nc) __c(n— 1)

2 — n ^ " 2 —

n

~ 2 —

n

186. What quantity must he destroyed that Ys orbit may become a

farabola P

L = 4 c,

.-. F : / : : 4 c : 2 c : : 2 : 1,

.*. ^ the force must be destroyed.

187. Fa =r-t' ^ ^^2/ ^^ projected at given D, v = v in the circle,

L. isoith S B = ^5°
f find axis major, excentricity, and T.

Since v = v in the circle, .*. the body is projected from B,

and z. S B Y=r 45°

;

.-. z. S B C, or B S C = 45°,

S B
S C = S B. COS. 45° =

-• 2
But

S B = D = ^^^^ major

.•• axis major and excentricity are found.

And T may be found from Art. 159.

Y
P

188. Prove that the angular v round H : that round S : : S P : H P.

This is called Seth Ward's Hypothesis.

In the ellipse. Let P m, p n, be perpendicular to S p, H P,

.'. p m = Increment of S P = Decrement ofH P = P n

.. triangles P m p, P n p, are equal,

.*. P m = p n, and angular v « -j^—
^ ' ° distance

189. Similarly in the hyperbola.

Angular v of S P : angular vofSY::PV:2SP:: ?^^':2SP

•• ^^'' AC
: : HP : A C.
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190. Compare the times offalling to the center of the logarithmic spiral

fiom different points.

The times are as the areas.

P

d . area = -

, (^ = iL C S P), for d . area = -—-5 .

Also 7^ = ^^ = tan. z. Y P T = tan. «, (« being constant) = a
1 F d f

i

f'^dtf a.f.dg
••• -y- = 2 »

a . p

'

.*. area = —j- oc g S (for when ^ = 0, area = 0, .*. Cor. = 0)

.*. if P, p, be points given,

T from P to center : t from p to center : : S P *
: S p *.

191. Compare v in a logarithmic spiral with that in a cit*cle, e. d.

9 V*

.-. if F be given, Va V FY,

.*. V in spiral : v in the circle : : V P V in spiral : V 2 S P : : 1 : 1

.

192. Compare T in a logarithmic spiral with that in a circle^ e. d.

whole area a f
^ __ a g

*

T in spiral =
area in 1'' 4 . v . S Y 2 v . f . sin. a

JL m circle ~ -.—r-^r- — o •«»• — ^~
area m \" v . b Y v . ^

v

2

rr»fr</ &£* Serf a „ .

.*. T : T : : :?: ^ : : : rr-. : 2 * : : a : 4 * . sm. a.
2 V . f . sm. a V 2 sm. a

: : tan. « : 4 t . sin. a : : 1 : 4 ^ cos. a.
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1-92. In the Ellipse compare the timefrom the mean distance to the Aphe-

lioUf •with the timefrom the mean distance to the Perihelion. Also given the

Excentricity, tofind the diffei'ence of the times, a?2d conversely.

D

A D V is —^— described on A V.

T of passing through Aphelion : t through Perihelion

: : SB V: SB A
:: SDV: SD A

:: CD V +
Let Q = quadrant C D V,

D C. SC :CD V — DC. S C
2

a. a e

2

.-. (T+ t =) P: T — t: :2Q:a. ae
rp _ P a. a 6

• • ^ ^ - ~2Qr
whence T — t, or, if T — t be given, a e may be found.

193. If the perihelion distance of a comet iri a parabola = 64, ©'5 mean

distance = 100, compare its velocity at the extremity of L "with ®'5 velocity

at mean dista?ice.

Since © moves in an ellipse, v at the mean distance = that in the circle

e . d . and v in the parabola at the exti'emity of L
: V in the circle rad. 2 S A : : V 2 : 1

v in the circle rad. 2 S A
: V in the circle rad. A C

'. V in the parabola at L
: V in the ellipse at B

v' A C : V S A

V2.AC: V'SA.2
10 V 2 : 8 V 2

5 : 4

194. TVhat is the difference between L of a parabola and ellipse, having

the same <" distance = 1, and axis major of the ellipse = 300? Compare

the V at the extremity of\, and <" distances.

In the parabola L = 4 A S = 4.
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In the ellipse L' = ^f^' = Jp. (A C^ — A C— S A')AC 300

L' = 4 (4- 1

150J

V in the parabola at A : v in the circle rad. S A
V in the circle rad. S A : v in the ellipse e. d.

"" 150*

V 2 : 1

VAC:
V 150 :

VHP
V299

: V 300 : V 299.

: : VAC: V 2AC— SA
.*. V in the parabola at A : v in the ellipse e. d. ;

Similarly compare v*. at the extremity of Lat. R.

195. Suppose a body to oscillate in a

•whole cycloidal arCf compare the tension

of the string at the lowest point with

the weight of the body.

The tension of the string arises

from two causes, the weight of the

body, and the centrifugal force. At

V we may consider the body revolving

in the circular arc rad. D V, .•. the

centrifugal = centripetal force. Now
the velocity at V = that down C V by the force of grav.

= that with which the body revolves in the circle rad

2 C V.

.*. grav. : centrifugal force : : 1 : 1,

.*. tension : grav. : : 2 : 1

196. Suppose the body to oscillate

through the quadrant A B, compare the

tension at B with the weight.

AtBthestring will be in the direction of

gravity; .'. the whole weight will stretch

the string; .*. the tension will= centrifugal

force + weight. Now the centrifugal

force = centripetal force with which the

body would revolve in the circle e. d.

R
2

C A

\

And v in the circle = V 2 g . F .
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.-. F =
R cCB

in this case,

also v' at B from grav. = V 2 g . C B, gi-av. = 1.

grav. = 1 =
2g C B

F : grav. : : 2gCB' g C B
2: 1,

since V = V

.

.*. tension : grav. : : 3 : 1.

197. A body vibrates in a circular arc

from the center C ; through isohat arc must

it vibrate so that at the lowest point the

tension of the string = 2 X weight?

V from grav. = v d . N V, (if P

be the point required) v' of revo-

lution in the circle = v d . -^r— .

H

N

centrifugal force : grav. : : y : V : : / -—— : V N V

CV
.'. centrifugal force+ grav. (= tension) : grav. : : J—^ + V N V : V N V

: : 2 : 1 by supposition.

^
C V
2

ICY
•'•-% 2

.-. N V =

+ V NV = 2 A/ N V

= V N V,

C V

198. There is a hollow vessel in form

of an invei'ted paraboloid down which

a body descends, the pi'esswe at lowest

point = n . weight, findfrom what point

it must descend.

At any point P, the body is in the

same situation as if suspended from G,

P G being normal, and revolving in the

circle whose rad. G P. Now P G =
V 4 A S . S P", .-. at A, P G =
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V4AS* = 2AS. Also v ^ at A with which the body revolves =
Sg.F.LAS.

.'. centrifugal force =
2g A S

V
and grav. = ~ r- , if h '= height fallen from.

But the whole pressure arises from grav.+ centrifugal force, and=:n . grav.

.*. centrifugal force + grav. : grav. : : n : 1

or

1 _L 1 1 1

AS
1 ^...^g:-j^::n_l:l,

... h = n — 1 . A S.

199. Compare the time (T') in isohich a body de-

scribes 90° of anomaly in a parabola with T in the

circle rad. = S A.

Time through A L : 1 : : area A S L : a in 1''

. ^ _ I A S. SL _ 4 A S'

a 3 a

T in the circle rad. S A : 1 : : whole circle : a' in \"

. ^ ^ ^A S^

S <t

' T' • T • •

3 a *
a'

and

a: a':: \/L: '•2AS:: V4AS: V2AS
4

.-. T' : T : :

3 V 2
ff : : 2 V 2 : 3 w.

V 2: 1

Compare the time of describing 90° in the parabola A L with that in the

parabola A 1, (fig. same.)

t : T in the circle rad. S A : : 4 : 3 V 2 . t

T in the circle S A : T' in the circle rad. <TA::SA^:ffA^
(smceT'oc R')

T' : X! through 1 A : : 3 V 2 . -s- : 4

.-. t through S A : t' through <r A : : S A ^
: <r A ^.

See Sect. VI. Prop. XXX.
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200. Draw the diameter P p such that the time through P V p : time

through p A P : : n : 1, force <x .

Describe the circle on A V.

t =

Let t = time through P V p, and T the periodic time

n _ PVpS _ QVqS __ circle + a Q g S

n + ]
~ ellipse

~~
circle ~~ circle

circle . S R . 2 C Q

, (u =: excentric anomaly)

~ 2 ' 2
circle

*a^
,= —= H a e . sm. u . a

cra^

= — + e. sm. u

.'. n ?r = n + 1 . (~ + e sin. u
j

= n— +
i-
+ n + l.esin.u

sm. u =r
n + 1

• 2e

which determines u, &c.

201. The Moon revolves round the Earth in 30 dai/s, the mean distance

from the Earth = 240,000 miles. Jupiter^s Moon revolves in \ day, the

mean distancefrom Jupiter = 240,000 miles. Compare the absolute forces

ofJupiter and the Earth.
Vol. I. L

.
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A^T « —- , A being the major axis of the ellipse,

.'. IfA be given, fi (x. —;

^ Mass of Jupiter __ T' of the Earth's Moon _ 30j _ 14,400
*'*

Mass of the Earth *" T' * of Jupiter's Moon ~ _j_
~ T~'

42

202. A Comet jat perihelion is 400 times as near to the Sun as the Earth

at its mean distance. Compare their velocities at those points.

Velocity' ofthe Comet __ F.4 A S _ J|_
^ _ F I

Velocity* of the Earth ~ F^ 2 B S ~ F' * 2 . 400 ~ F' ' 200

_ 400 * J_ _- "I^ • 200 - ^^^

V V 2 . 20 30 ,

.*. — = , = -7- nearly.
V I 1

•'

203. Compare the Masses of the Sun and Earth, having the mean distance

of the Earthfrom the Sun = 400, the distance of the Moonfrom the Earth,

and Earth's V^. = 13. the Moon's V^.

T«a —

,

a

Mass of the Sun 400 » P 64,000,000 ,«^««« ,

••• M^i^fih^E^ = np- • T3-* = —1-69— = ^^^'^^^ ^^"^ly-

1 a
204. Ifthe force « -, 5, where x is the distance from the center

1 a
offorce, it mil be centripetal 'whilst —5 > —3 > or x > a ; there ivill be

1 a
a point of contrary flexure in the orbit 'when -j = -^ , or x = a, and

afterwards 'when x < a, the force 'will be repulsive, and the curve change

its direction.
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205. JTie body revolving in an ellipse, at

B theforce becomes n times as great. Find

the new orbit, and under ivhat values ofn it

•will be a parabola, ellipse, or hyperbola.

S being one focus since the force

the other focus must lie0(
distance

*'

in B H produced both ways, since

S B, H B, make equal angles with

the tangent. V* = -|- F.PV = -jF.2ACinthe original ellipse, or

= -^ n F . P V in the new orbit

.-. 2 AC = n. P V = n.
2 SB.h B
SB + h B

.-. (S B + h B) A C = 2 n . S B . h B,

.-. AC= +h B. AC = 2nAC.h B,

.•.hB = ,-AC .

2 n — 1

If 2 n — 1 = 0, or n = ^, the orbit is a parabola ; if n > ^, the orbit

is an ellipse; if n <C i> the orbit is an hyperbola.

Let S C in the original ellipse be given = B C,

.-. S RH = right angle, and S B or A C = B h . cot. B S h

whence the direction of a a', the new major axis ; also

/ QT^.Ri, ^c Sh VBh^— SB^
a a'^ = S B + B h, and S c = —^ = _ .

If the orbit in the parabola a a' be parallel to B h, and L . R = 2 S B,

since S B h = right angle.

206. Suppose a Comet in its or-

bit to impel the Earth from a cir-

cular orbit in a direction making

an acute angle ivith the Earth's

distance from the Sun, the velo-

city after impact being to the velo-

city before : : V~S : V~2. Find

the alteration in the length of the

yea?:

Since V 3 : V 2 < ratio than V 2 : 1, .•. the new orbit will be an

ellipse,

L2
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XI - ?. ^ _Py _ 2SP. HP _ H/P
v2 - 2 ~2SP~AC.2SP ~AC

= 2 A C — S P
AC

.-. 3AC = 4AC — 2SP

.-. 2 S P = A C

.
T in ellipse _ 2^ S P^ _ £

* * T' in circle ~
S P ^ "" ^

207. A body revolves in an ellipse, at any given point the force becomes

diminished by ^^ part. Find the new orbit.

B'

v«a F. P V

in this case P V « -—

,

F

But

P V in ellipse

pv innew orbit

_ 1

ition

— n

1 ~

~ 2SP

n

n

1

n
V * in conic sec n — IPV
V ^ in circle e. d. 2S P

n HP
at P

n— r A C

if -. . H P = A C, thenew orbit is a Circle
n — 1

j

= 2 A C, Parabola j>

< 2 A C, Ellipse I

> 2 A C, HyperbolaJ

If 1- = 2, or n = 2, then when the orbit is a circle or an ellipse, P

must be between a, B ; when the orbit is a parabola, P must be at B ;

when the .orbit is an hyperbola, P must be between B, A.
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208. If the curvature and inclination of the tangent to the radius be the

same at two points in the curve, theforces at those points are inversely as the

radii ^'

p_ 8a^ _ 8a^ _ 8 a' 1

~g.SY^PV"'g.SY.SP.R-g.sin.^SP2.R°^SP'^-
This applies to the extremities of major axis in an ellipse (or circle) in

the center of force in the axis.

209. Required the angular velocity of ^.

By 46, & being the traced-angle,

dd
d t

But by Prop. I. or Art. 124,

dt:T::dA:A

^'^^A(ll3)
2

d ^ 2 A 1

'' = dl = T" ^ g-^

or

_ PX V ,.

210. Required the Centrifugal Force (p) in any orbit.

When the revolving body is at any distance f from the center of force,

the Centrifugal Force, which arises from its inertia or tendency to persevere

in the direction of the tangent (most authors erroneously attribute this force

to the angular motion, see Vince's Flux. p. 283) is clearly the same as it

would be were the body with the same Centripetal Force revolving in a

circle whose radius is
f.

Moreover, since in a circle the body is always

at the same distance from the center, the Centrifugal Force must always

be equal to the Centripetal Force.

But in the circle

QT^ = Q R X 2SP
and .*. by 137 we have

1F_8A^ \ 4 A'^

-gT'^-gT^ 2SP^
or

_ P^V 1
—~ X a

g e

P and V belonging to the orbit.

L 3
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Hence then

9 = —z- X -3 (a)

Hence also and by 209,

And 139,

^ = ^^^^^7^ (c)

211. Required the angular velocity of the perpendicular upon the

tangent.

If two consecutive points in the curve be taken ; tangents, perpendiculars

and the circle of curvature be described as in ArL 74, it will readily ap-

pear that the incremental angle (d ']>) described by p = that described

by the radius of curvature. It will also be seen that

But from similar triangles

P V : 2 R : : p : g.

.-. d ^ : d ^^ : : P V : 2 g

P V being the chord of curvature.

Hence

= « X 1^ (d)

or

2P X V
, ,= r3rpv (^)

or

_ P_>^V ^ dp
Pg

Ex. 1. In the circle P V = 2 g ; whence

PxV

-H (^

,2
:= u.

Ex, 2. In the other Conic Sections, we have

P Sa + g
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which gives by taking the logarithms

2lp = lb^ + 1^ — l(2a + f)

and (17 a.)

2dp^df, dj _ 2adf
P " T ~ 2~r:Ff

"
r(2"a + s)

whence

_ aP X V
""gMSa + g)'

212. Required the Paracentric Velocity in an orbit.

It readily appears from the fig. that

ds:d^::g:V|* — p*.

.*. If u denote the velocity towards the center, we have

„ r_ d f\ _ d_s ^g' —

p

"^V-dt^-dt^ e

X ^^^P (125)

or

_ P X V ^ Vg' — p'

""
P g

= PVx^(pi-l) . . . . (g)

2 A //I In ,,,

Also since

2 - g*d<?' + dg*

p* *" g*d^«

^ = P^^f^. (^)

213. Tojind 'where in an orbit the Paracentric Velocity is a maximum.

From the equation to the curve substitute in the expression (212. g)

for p *, then put d u = 0, and the resulting value of g will give the posi-

tion required.

Thus in the ellipse

and

P =2a-g

u^=P«V«x(?^^-^-^)=max.

2a 1 1

L4
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and

_ b * _ Latus-Rectum

or the point required is the extremity of the Latus-Rectum.

OTHERWISE.

Generally, It neither increases nor decreases when F = p. Hence

when u = max. (see 210)

d p _ d g

p' - g^-

which is also got from putting

d (u'') =
in the expression 212. h.

214. Tojind isohere the angular velocity increasesfastest.

Bv Art 209 and 125,

d« „„ de PV 2P^V2 dg
5^ = 2PVx-|x 4:^ = 4—^ ^ rnS'd t g3 g* d ^ g* g a fl

g^d^

But from similar triangles

p: V (g^ — p^)::QT:PT::gd<):dg

...^" = i|l^'x.,._p')=.ax.

•••S^'=F^-^ =- <")

either of which equations, by aid of that to the curve, will give the point

required.

Ex. In the ellipse

b^g
p' =

2a —

g

2 a — g 1
... -^—1 _ -3 = max. = m

, d m - .

and -J—- = gives
d e

7 4
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which gives

f
= -| a+-^ V (49 a' — 48b«)

for the maxima or minima positions.

If the equation

b* 1
e = — X

a 1 + e COS.

and the first form be used, we have

d e a e 5 . .

and

sin. i = max. = m.

Whence and from d m = 0, we get finally

cos. d
8 e - V V64 e « + I)-

215. Tojind "where the lAnear Velocity increasesfastest.

Here

dv
max.

But (125)

PX V

and

dt=^^Al 1 Pd
PxV"" P X V '" V j«— p«

7g'-p^)

,

V(g'-P^)

dv __ pgy V(g«— p^) dp
dt

~
I P'df

= gF X

P'df
or ^ = max. = m.

and

d m =
will give the point required.
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Thus in the ellipse

Fal
p* 1 b^
-^^ — = max.

dm _ _4 10 a b'g^ — 6 b°g^ _
*** dg ~ g*

"*"
(2a — g)^f^<'

which gives

, ,
. J

8a* + 3b' ,5 , „ ^
g' + 4 a g' 31 g + — a b^ = 0,

whence the maxiiifa and minima positions.

In the case of the parabola, a is indefinitely great and the equation

becomes

4a2p — -I ab^ =
'' 2

5 > b^ 5
.*. f=s X — sz-T-X L.atus-Kectum.

* 8 a 16

Many other problems respecting velocities, &c. might be here added.

But instead of dwelling longer upon such matters, which are rather

curious than useful, and at best only calculated to exercise the student,

I shall refer him to my Solutions of the Cambridge Problems, where- he

will find a great number of them as well as of problems of great and

essential importance.

SECTION IV.

216. Prop. XVIII. If the two points P, p, be given, then circles whose

centers are P, p, and radii AB+SP, AB^lSp, might be described

intersecting in H.
If the positions of two tangents T R, t r be given, then perpendiculars

S T, S t must be let fall and doubled, and from V and v with radii each

= A B, circles must be described intersecting in H.

Having thus in either of the three cases determined the other focus H,

the ellipse may be described mechanically^ by taking a thread = A B in

length, fixing its ends in S and H, and running the pen all round so as to

stretch the string.
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This proposition may thus be demonstrated analytically.

1st. Let the focus S, the tangent T R, and the point P be given in

position ; and the axis-major be given in length, viz. 2 a. Then die per-

pendicular S T (= p), and the radius-vector S P (= g) are known.

But the equation to Conic Sections is

,_ b^g

whence b is found.

Also the distance (2 c) between the foci is got by making p = g, thence

finding § and therefore c = a If g.

This gives the other focus ; and the two foci being known, and the axis-

major, the curve is easily constructed.

217. 2d. Let two tangents T R, t r, and the focus S be given in position.

Then making S the origin of coordinates, the equations to the trajectory

are

h's , b* 1 ,.
P = 7i

—=^» and p = — . -z r: r • • . (a)
*^ 2a4.g' ^ a 1 + e cos. (tf

—

a) ^'

a being the inclination of the axis-major to that of the abscissae.

Now calling the angles which the tangents make with the axis of the ab-

scissae T and T', by 31 we have

tan.T = iy.
d x

But
X =r I cos. 6f y =: § sin. 6

whence

rp __ d g sin. 6 + §d 6 cos. 6

"" d g cos. 6 — g d ^ sin. 6

-^ tan. ^ + 1

= i^ (b)

Ai-tan.^
g d ^

Also from equations (a) we easily get

^4^ = - gsin.(._«) (1)

COS. (6-a)= ^IjHAI (2)
^ aeg

sm. (tf — a) =— X V (2ag — g* — b«) . . (3)
^ 'aeg \ » »

and

- ^^P'
. (4)

s = p» + b
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and putting

R z= V (2af — §2 — b^) . . . . (5)

we have

R * /. \
tan. — tan. a= tan. (^ — a) =

, . ,_ , ,_ , . v6)b*— af~ 1 + tan. a . tan. 6

which gives tan. 6 in terms of a, b, f, and tan. a.

Hence by successive substitutions by means of these several expres-

sions tan. T may be found in terms of a, b, p, tan. a, all ofwhich are given

except b and tan. a. Let, therefore,

tan. T = f (a, p, b, tan. a).

In like manner we also get

tan. T' = f (a, p', b, tan. a)

p' belonging to the tangent whose inclination to the axis is T.

From these two equations b and tan. a may be found, which give

0= Va*— b* and a, or the distance between the foci and the position

of the axis-major; which being known the Trajectory is easily con-

structed.

218. 3d. Let the focus and two points in the curve be ^ven in posi-

tion, &c.

Then the corresponding radii f, /, and traced angles ^, 6', in the

equations

- ±a(I — e^)

^ "~
1 -|- e COS. {6 — a)

^
1 + e COS. (^ — a)

are given ; and by the formula

COS. {6 — a) = COS. 6 . cos. a + sin. 6 sin. a

2 a e and a or the distance between the foci and the position of the axis-

major may hence be found.

This is much less concise than Newton's geometrical method. But it

may still be useful to students to know both of them.

219. Prop. XIX. To make this clearer we will state the three cases

separately.

Case 1. Let a point P and tangent T R be given.

Then the figure in the text being taken, we double the perpendicular

S T, describe the circle F G, and draw F I touching the circle in F and

passing through V. But this last step is thus effected. Join V P, sup-

pose it to cut the circle in M (not shown in the fig.), and take

V F^ = VM X (V P + PM).
The rest is easy.
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Case. 2. Let two tangents be given. Then V and v being determined

the locus ofthem is the directrix. Whence the rest is plain.

Case 3. Let two points (P, p) be given. Describe from P and p the

circles F G, f g intersecting in the focus S. Then draw F f a common
tangent to them, &c.

But this is done by describing from P with a radius = S P — S p, a

circle F' G', by drawing from p the tangent p F' as in the other case (or

by describing a semicircle upon P p, so as to intersect F' G' in F') by

producing P F' to F, and drawing F f parallel to F' p.

See my Solutions of the Cambridge Problems, vol. I. Geometry, where

tangencies are fully treated.
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These three cases may easily be deduced analytically from the general

solution above ; or in the same way may more simply be done at once,

from the equations

, _ L __ L 1

P - 4^'^- 2 ^1+ COS. {6 — a)'

220. Prop. XX. Case 1. Given in species'] means the same as " simi-

lar" in the 5th Lemma.

Since the Trajectory is given in specieSy &c.] From p. 36 it seems that

the ratio of the axes 2 a, 2 b is given in similar ellipses, and thence the

same is easily shown of hyperbolas. Hence, since

^ c^ = a^ + b^

2 c bemg the distance between the foci, if — = m, a given quantity, we

have

a a

which is also given.

With the centers B, C, &c.]

The common tangent L K is drawn as in 219.

Cases 2. 3. See Jesuits' Notes.

OTHERWISE.

221. Case 1. Let the two points B, C an4 the focus S be given.

Then

_ +a(l— e^) ..

^ ~ 1 + e cos. {d — a)r .,K

, _ +a(l-e')
C

*
'

^ 1 + e cos. {&' — a))

a being the inclination of the axis of abscissae to the axis major.

But since the trajectory is given in species

e = — is known,
a

and in equations (1), g, ^ ; sf, ^, are given.

Hence, therefore, by the form

COS. {d — a) = COS. 6 . cos. a + sin. 6 sin. a,

a and a, or the semi-axis-major and its position are found;

also c = a e is known

;

which gives the construction.
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Case 2. By proceeding as in 220, in which expressions (e) will be

known, both a, a e, and a may be found.

Case 3. In this case

p« = -XL- = a^ X (l--e^)g

will give a. Hence c = a e is known and

__ +a(l~-e^)
^ ~ 1 + e cos. {6 — a)

gives a.

Case 4. Since the trajectory to be described must be similar to a given

one whose a' and c' are given,

• = i- —~ a ~
a'

is known (217).

Also g and 6 belonging to the given point are known.

Hence we have

_ +a.(l— e^)

^ 1 + e COS. {6 — a)

And by means of the condition of touching the given line, another

equation involving a, a may be found (see 217) which with the former

will give a and a.

222. Scholium to Prop. XXI.
Given three points in the Trajectory and thefocus to construct it.

ANOTHER solution.

Let the coordinates to the three points be f, ^ ; g', ^ ; f, tf', and a the

angle between the major axis and that of the abscissae. Then

_ +a.(l — e'')

1 + e cos. {& — a)

._ +a(l— e')

^ ~ 1 + e cos. {^ — a)

.,^ ±a(l-e^)
^ 1 + e COS. (^' — a)

i^
(A)

and eliminating + a ( 1 — e *) we get

I
—

I = e . COS. {S— a)— e cos. (^— a) 1 ,t»»

g— g' =e . cos. {^'— a)— e cos. (^—«) /
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from which eliminating e, there results

^' . COS. {(/ — a) — ^ COS. {6 — a)
"~
f COS. {^' — a) — ^ COS. {& — a)

Hence by the formula

COS. (P— Q) = cos. P . COS. Q + sin. P . sin. Q
_ (g—gOr COS. 6"—{^— f) ^' COS. ^^+ g (g^- g^Qcos.^

''^- -
(g _g') f sin.r— (g—g'O g'sin.^'+ g(/-g")sin.^

which gives a.

Hence by means of equations (B) e will be known ; and then by substi-

tution in eq. (A), a is known.

SECTION V.

The preliminary Lemmas of this section are rendered sufficiently intel-

ligible by the Commentary of the Jesuits P.P. Le Seur, &c.

Moreover we shall be brief in our comments upon it (as we have been

upon the former section) for the reason that at Cambridge, the focus of

mathematical learning, the students scarcely even touch upon these sub-

jects, but pass at once from the third to the sixth section.

223. Prop. XXII.

This proposition may be analytically resolved as follows

:

The general equation to a conic section is that of two dimensions (see

Wood's Alg. Part IV.) viz.

y 2 + A X y + B X 2
-H C y + D X + E =

in which if A, B, C, D, E were given the curve could be constructed.

Now since five points are given by the question, let their coordinates be

a, /3; a, /3; a, /3; a, ^; a, /3.

11 2 2 3 3 4 4

These being substituted for x, y, in the above equation will give us five

simple equations, involving the five unknown quantities A, B, C, D, E,

which may therefore be easily determined ; and then the' trajectory is

easily constructed by the ordinary rules (see Wood's Alg. Lacroix's DifF.

Cal. &c.)

224. Prop. XXIII. The analytical determination of the trajectory

from these conditions is also easy.

Let

a, /3; a, /3; a, ,3; a, /3

II 2 2 3 3
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be the coordinates of the given point. Also let the tangent given in posi-

tion be determinable from the equation

y' = m X' 4- n (a)

in which m, n are given.

Then first substituting the above given values of the coordinates in

y2 + Axy + Bx2+ Cy+Dx+E = . ..(b)
we get four simple equations involving the five unknown quantities

A, B, Cj D, E ; and secondly since the inclination of the curve to the axis

of abscissae is the same at the point of contact as that of the tangent,

d y __ ? y'

5x dx'

y = y'

X = x'

, Ay+ 2Bx + D _ _
**' 2y+Ax+C ~ ^

and substituting in this and the general equation for y its value

y' = m X + n

we have

A(mx + n)+2Bx + D
2(mx + n) + Ax+C

and

(mx + n)2 + Ax(mx + n) + Bx2+C(mx + n) + Dx+E = 0,

from the former of which

— n A + mC+ D^~
2(m«+mA+ B)

and fi-om the latter

^ = - 2(m^+LA+B) ^ (nA + mC+D+2mn

+ v'J(nA + mC + D + 2mn)*— (n2 + nC + E)(m=^ + mA + B)J

and equating these and reducing the result we get

4m*n* = (nA + mC + D+2mn)«— (n^nC+ E) (m'^+m A+ B)

and this again reduces to

n2A» + m2C2 + D2 + mnAC + 2nAD
+ 2mCD—nBC—mAE—BE+ Smn^A
+ 3nm2C + 4mnD— n^B— m^E— n^m2 =

which is a fifth equation involving A, B, C, D, E.

From these five equations let the five unknown quantities be determined,

and then construct eq. (b) by the customary methods.

M
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225. Prop. XXIV.

OTHERWISE.

Let

be the coordmates of the three given points, and

y' = m x' + n

y''=m'x" + n'

the equations to the two tangents. Then substituting in the general

equation for Conic Sections these pairs of values of x, y, we get three

si?)ij)le equations involving the unknown coefficients A, B, C, D, E ; and

from the conditions of contact, viz.

dy ^ d/ ^ ^^ dy ^ d/' _
d X d x' ) dx = 37' = "'(

( y = y" i
7 Y — v" y

y = y

X = x' -^ X = X

We also have two other equations (see 224) involving the same five un-

knowns, whence by the usual methods they may be found, and then the

trajectory constructed.

226. Prop. XXV.
Proceeding as in the last two articles, we shall get two simple equations

and three quadratics involving A, B, C, I>, E, from whence to find them

and construct the trajectory.

227. Prop. XXVI.
In this case we shall have one simple equation and four quadratics to

find A, B, C, D, E, with, and wherewith to describe the orbit.

228. Prop. XXVII.

In the last case of the five tangents we shall have five quadratics,

wherewith to determine the coefficients of the general equation, and to

construct.
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SECTION VI.

229. Prop. XXX.

OTHERWISE.

j^ter a body has moved t" from the vertex of the parabola^ let it be re-

quired iojind its position.

If A be the area described in that time by the radius vector, and P, V
the perpendicular or the tangent and velocity at any point, by 124 and

125 we have

c PV^=^ x_t = _xt
and by 157,

pV=: .^1^

L being the latus-rectum.

2 \/2

But

ASP = AOP--SOP=|AOxPO— ^SOxPO
= fxy— i.(x— r)y

where r = A S, &c. (see 21) and

y * = 4rx

.•.y3+ 12r^y = 12rt \^g/xr

by the resolution of which y may be found and therefore the position of P.

OTHERWISE.

230. By 46 and 125,

,ds_pds
~ V ~ c

Also

ds = fd
c V (e^— p*)

M2
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which is an expression of general use in determining the time in terms of
the radius vector, &c

In the parabola

whence
P* = rf,

dt=:i- X
v' r

f df
c V(^— r)

and integrating hy parts

2 V r 2 V r
t =

f V(^~r)-f4-Vdf V(g-r)
c

2V J|^^/(^_r)_|(^_r)^}
c

-3^' V(^— r)x(g+2r)

But

which gives

c= PV= V2g^r (229)

.•.t=--^X(g+2r)(g-r)^ . . . (b)

g' +3r^^ = 4r3+|-g/*t,

whence we have § and the point required.

By the last Article the value of M in Newton's Assumption is easily

obtained, and is

4r- 4 ^ V 2r

231. Cor. 1. This readily appears upon drawing S Q the semi-latus-

rectum and by drawing through its point of bisection a perpendicular to

GH.
232. Cor. 2. This proportion can easily be obtained as in the note of

the Jesuits, by taking the ratio of the increments of G H and of the curve

at the vertex ; or the absolute value of the velocity of H is directly got

thus.

- d-GH _ 3^M __ £ Igji^" dt'~dt~4N2r' ^

Also the velocity in the curve is given by (see 140)

v'* = 2g F X -r- = —2^
4) e
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and at the vertex ^ = r,

••.v =V^
.-. V ; v' : : 3 : 8.

233. Cor. 3. Either A P, or S P being bisected, &c. will determine

the point H and therefore

4 / 2r ^ TTt= -^J X GH.3N g^
234. Lemma XXVIII. That an oval cannot be squared is differently

demonstrated by several authors. See Vince's Fluxions, p. 356; also

Waring.

235. Prop. XXXI. This is rendered somewhat easier by the follow-

ing arrangement of the proportions

:

If G is taken so that

O G : O A : : O A : O S

or

and

or

GK: 2crOG::t:T

rv _ 2^x O A^^ t

Then, &c. &c. For

But

ASP = ASQX-
a

= — X (OQA— OQS)

= ^(OQx AQ—OQx SR)

= ^(AQ-SR).

S R : sin. A Q : : S O : O A
:: OA : OG:: AQ: FG
A Q sin. A QSR = FG

and

AQ— SR = ^-^X(FG— sin.AQ)

M3
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OS
OA X(FG— sin.AQ)

.•.ASP = ^4^X (FG--sin.AQ)

= ^^^^ XGK (b)
A Si,

(see the Jesuits' note q.) which is identical with (a), since

_t^_ AS^
T " JEUipse

_ ASP
"ffa b

'

OTHERWISE.

236. By 230 we have

dt =—Eil^ -

But in the ellipse

p = =

—

^ 2a—

^

• dt- -
^^^^

•

c V(2ae— b«— ^2)

and putting

g— a = u

it becomes

, b . (a + u) d u

cV(a2e2— u*)

2 a e being the excentricity.

Hence

__ b a f du b /» udu
*- ^y '•(a^e^— u^)

"•" c^ V(a2e2— u^)

= kf sin.-'.-" — - Vra^e^— u'^) + C.
c a e c ^

'

Let t = 0, when u = a e ; then

and we get

P _ba ft

^-T ^2

t = ^x'"
c

r^+ sin.-'—W-. ^(a«e^— u«)
V 2^ a e/ c ^
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which is the known form of the equation to the Trochoid, t being the ab-

scissa, &c.

Hence by approximation or by construction u and therefore g may be

found, which will give the place of the body in the trajectory.

It need hardly be observed that (157)

OTHERWISE.

237. dtzz^";

but in the ellipse

b« 1

1 + e cos.

b-* d^
.-. d t = - - X

a '^ c ( 1 + e cos. 6)
^

and (see Hirsch's Tables, or art. 110)

a^ri—e^) r 1 : e + cos. ^ esin.^ "I

t — —J L V J COS ~' ——- —

—

V-

c ^\V(1 — e«) 'l+ecos.^ 1 + ecos. O
which also indicates the Trochoid.

To simplify this expression let

then

and

Hence

and

, e + COS. d
cos. -'-T— . = u

1 + e cos. 6

e + cos. d = cos. u
1 + e cos.

e— cos. u
cos. =

sm. d =

e cos. u— 1

V(l— e^)

1— e COS. u

e sin. 6 e sin. u

1 + ecos.^ V(l— e'')

.*. t = ^ X Ju— e Sin. uf

But (157)

c = PV =b.^^= V(l — e*) V"^"^

M4
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X (u— e sin. u)•t- ^'

Let

Then

a^ 1

ut=.u— esin. u (1)

Again, 6 may be better expressed in terms of u, thus

^„„ 2 ^ 1— COS. 6 1 + e 1 — COS. u 1 + e , u
tan. — ZZ — ~~ V — ' tan *

2 1 +cos.^~ 1— e^
1 +cos.u~ 1 —

e

2

^
/ 1 + e u

''''^'2 = ^T::r-eX^'-2 (2)

Moreover g is expressible in terms of u, for

a (1— e*) ,, , ,„.^=
l + eco3> "('-"°^-"' (^>

In these three equations, n t is called the Mea?i Anomaly ,• u the

Excentric Anomaly, (because it = the angle at the center of the ellipse

subtended by the ordinate of the circle described upon the axis-major

corresponding to that of the ellipse) ; and 6 the True Anomaly.

238. SCHOLIUM.

Newton says that " the approximation is founded on the Theorem that

The area APSaAQ — SF, SF being the perpendicular letfallfrom

S upon O Q."]

First we have

APR=AQRx—
a

SPR=SQRx—
a

But

.•.ASP = ASQx —
a

ASQ = AOQ— SOQ
= MQxAO — iSFxOQ
= i AO X (AQ — SF).

.-. A S P = |- X (A Q — S F)

= — X (a u' — a e sin. u') (1)

u' being the /i. A O Q.
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(Hence is suggested this easy determination of eq. 1. 237.

For 3 b
/ • ^

^ ASp 2^a^' -2(^"-^^'^"-")
t =T X ^pir^ = , ^

iEllipse \^ /tt g « a b

X (u — e sin. u).

)

V g^
Again, supposing u' an approximate value of u, let

u = u' + ^
a

Then, by the Theorem, we have

iA^ = A q — S O X sin. A q

= AQ + Qq+ — SOx sin. (A Q + Q q)

to radius 1.

But A Q being an approximate value ofA q, Q q is small compared

with A O, and we have

sin. (A Q+ Q q) = sin. A Q cos. Q q+ cos. A Q sin. Q q
= sin. A Q + Q q cos. A Q nearly.

J_
.-. Qq = (^AP_AQ+SOsin.AQ) X -j—-^^ nearly

^+cos. AQ

which points out the use of these assumptions

N' = r— - = r-T=s X area of the Ellipse

B' = s o =2^*
and

D' = S O . sin. A Q = B' sin. A Q

^ - SO
Then

Qq=: (N^_AQ + ly) X T/-
^'

A r>^ ^ L' + cos. A Q
in which it is easily seen B', N', D', \J

are identical with B, N, D, L.

Hence

E = Qq = (N_AQ + D)^-=^-^.
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Having augmented or diminished the assumed arc A Q by E, then re-

peat the process, and thus find successively

G, I, &c.

For a developement of the other mode of approximation in this

Scholium, see the Jesuits* note 386. Also see Woodhouse's Plane Astro-

nomy for other methods.

SECTION VII.

239. Prop. XXXII. F oc . Determine the spaces which a
distance

body descending from A in a straight line towards the center of

force describes in a given time.

If the body did not fall in a straight line to the center, it would

describe some conic section round the center of force, as focus

C ellipse '\

(which would be < parabola >• if the velocity at any point were to

(.hyperbola J

the velocity in the circle, the same distance and force, in R'{=}
V 2 : 1.)

(I) Let the Conic Section be an Ellipse A R P B.

Describe a circle on Major Axis A B, draw

C P D through the place of the body perpendi-

cular to A B.

The time of describing A P a area A S P a

area A S D, whatever may be the excentricity

of the ellipse.

Let the Axis Minor of the ellipse be diminish-

ed sine llmite and the ellipse becomes a straight

line ultimately, A B being constant, and since

A S . S B = (Minor Axis) ^ = 0, and A S finite

.•.SB = 0, or B ultimately comes to S, and

time d . A C a area A D B. .*. if A D B be taken proportional to time,

C is found by the ordinate D C.

(T . A C a area ADBaADO + ODBaarcAD + CD
.'. take 6 + sin. d proportional to time, and D and C are determined.)
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(Hence

the time down AO
T.OB

+ 1

flr

'-§ +

<!r 11

_2 +
1

7
+ 1

v — 1
11

1

2 7

18 9 ,
,= - = - nearly)

1

N. B. The time in this case is the time

from the beginning of the fall, or the time

from A.

(II) Let the conic section be the hyperbola

B F P. Describe a rectangular hyperbola on

Major Axis A B.

T a area S B F P a area S B E D.

Let the Minor Axis be diminished sine

limite, and the hyperbola becomes a straight

line, and T a area B D E.

N. The time in this case is the time from

the end of motion or time to S.

Let the conic section be the parabolaB F P.

Describe any fixed parabola BED.
T a area S B F P a area S B E D.

Let L . R. of B F P be diminished sine

limite the parabola becomes a straight line,

and T a area B D E.

N. The time in this case is the time from

the end of motion, or time to S.

Objection to Newton's method. If a

straight line be considered as an evanescent

conic section, when the body comes to peri-

helion i. e. to the center it ought to return to aphelion i. e. to the original

point, whereas it will go through the center to the distance below the

center = the original point.

240. We shall find by Prop. XXXIX, that the distance from a center from

which the body must fall, acted on by a '''^ force, to acquire the velocity such

as to make it describe an ellipse = A B (finite distance), for the hyperbola

= — A B, for the parabola = a

.

241. Case 1. vdv = — g|«,dx, f= force distance 1,

x^

^)
/a

a X
if a be the original point

v

V a

V2g(ji.
dx. V ax— x'
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.'. t = ^/ . ^ Va X — X* — I

+ C, when t == 0, X = a, 2J
/a rVax— x*+ /circumference

.*. t = ^ / -,i— . 1 ( vers. - ' X,
IV 2g•1

vers,

rad.

if the circle be described on B A = a,

_ l
~~r~ 4 /CD.OB AD.

Case 2. V * = 2 g /u- . ^ ^ > if — a be an original point,

•)= .BAD.

a X

2»
_ / a /• X d X

~V2g^Vvax + x
for t in this case is the time to the center, not the time from the original

poin^

. A t — ^ d t — —~"
V '

"" V *

Now if with the Major Axis A B = a, we describe the rectangulai-

hyperbola,

B

we have
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d.BED=d.BEDC— d.ABDC=ydx — d.xy _ydx"— xdy
2

X d XVax + x^, /a, \j axdx j^= ^ .dx— x.{-+ X) dx = ^===^ = d t

.

Va gfi

2 V 2

2Vax+x«
.'. t from B = /^ 2gfi

.BED, for they begin or end together at B.

Case 3. v ^ = 2 g /* — , if a be ex

,

.'. t =

,. dx Vxdx,,. . ,„
.•• d t = = — - • , t beuiff time to B,

V V2gfi,
^

1 2 ^-

- . X ^ + C, when t = 0, x = 0, .-. C ^ 0.

V 2g/i3
Describe a parabola on the line of fall, vertex B, L . R. = any fixed

distance a,

" '" .BED.1 2 V2
V2g/i

7. V x.x = .j. V ax.x = 2 V2
V agfA Vag /(i

2 V 2
. curvili-Hence in general, in Newton Prop. XXXII, t =

V a g /A

near area, a being L . R. of the figure described.

T 1 . . T T. 2 (Ax. Min.)* .^ .

In the evanescent conic sections, L . K. = —K—^t-^ » .*. 11 Ax.

Min. be indefinitely small, L. R. will be indefinitely small with respect to the

Ax. Min. The chord of curvature at the finite distance from A to B is ulti-

mately finite, for P V = .1. ; but at A or B, P V = L, = in-

finitesimal of the second order. Hence S B is also ultimately ofthe second

A B
order, for at B, S B = L.—-— .

2 AS
1

Prop. XXXIII. Force a

VatC
V in the circle distance S C ~ V'~SA

(distance) *
*

VAC
in the ellipse and hyperbola.
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/V V H P v' A C
(— = .- ,-. = —=:when the conic sectionbecomes a straight line^
^ V v Maj. Ax. / SA ^

;

2 V 2

Newton's method.

but

L
V* SY« L SP
v^ ~2SP ~ 2 • SY*

SP»
AC.CB AO^ 2AO 2 AO
C P* ~ /Min. Ax.>, « ~ 2/Min. Ax.x » - L

AO
L AO.CP»

"2 ~ AC.C B
V» AO.CP^SP

••'v*
"" AC.CB.SV

CO BO
BO " TO'
CO C B comp. in the ellipse

• • B O "" B T ' div. in the hyperbola,

,
A C C T div. in the ellipse __ CP

" B O ~ B T ' comp. in the hyperbola
"~
BQ'

AC2 CP»
•• AO'- BQ'"

BQ^AC AO.CP'
AO - AC '

\' BQ^AC.SP
V* - AO.B C.S Y*^'

but ultimately

BQ = SY, SP = BC,

1
•

t ^
V ^" ^ straight line _ A C

^ V * in the circle " A O

'

AC
AO*

AC C T
Cor, 1. It appeared in the proof that -j-rr = o-fp*

•'•
X ~ ^
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- . , A C C T
.'. ultimately -^-^ = g-?j,

.

(This will be used to prove next Prop.)

Cor. 2. Let C come to O, then A C = A O and V = v,

.•. the velocity in the circle = the velocity acquired by falling externally

through distance = rad. towards the center of the force a jr-——-,

.

° distance *

242. Find actual Velocity at C.

V ^ at C _ AC
v^ in the circle distance B C ~ B A '

~2~"

. y.- 2 AC 2 AC g/.'BABA* BC^' '

if At = the force at distance 1,

. V2 — 9 ff «,
A C

V a.— X
•. V = V 2 g /*

.

, if B A = a, B C = X.
V a X

-.- . . ,T ^ space described
If a IS given, V a — ^

V space to be described

In descents from different points,

-, V space describedV a — ; .. =
V space to be described x initial height

*

In descents from different points to different centers,

_^ V space described X absolute forceV a
V space to be described X initial height

243. Otherwise. vdv = — ^dx,
X*

.*. v^ = 2 g /i .
, when a is positive, as in the elhpse

a X

= 2 g /ct
.

, when a is negative as in the hyperbola
a X
1= 2 g At . — 5 when a is a , as in parabola

(when X = 0, V is infinite)

V ^ in the circle radius x (in the ellipse and hyperbola)

= S_^.x = ^
.*. y-^ = in the ellipse, =

(f)
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11 = ^^ + ^
in the hyperbola,

_ a + X

V * in the circle radius = — (in the parabola) =
X'

Sff/tt

.-. =^ = — in the parabola.

244. In the hyperbola not evanescent

Velocity at the infinite distance __ S A
velocity at A " S Y -^

finite R°., but when the hyperbola van-

ishes, S Y ultimately = Min. Ax. for

j-rr- = -r—p , and ultimately S C =

A C, and b C = A C, .-. ultimately S Y = A b = C B, .-. ultimately

S Y _ infinitesimal of the first order

ST ~= of the 2d order

__ velocity at A
~ velocity at a distance

245. Prop. XXXIV.

the parabola.

Velocity at C
velocity in the circle, distance S C~2~

= y , for

S P
For the velocity in the parabola at P = velocity in the circle —-— what-

ever be L . R . of the parabola.

246. Prop. XXXV. Force a
(distance)

^

'

The same things being assumed, the area swept out by the indefinite

T T?
radius S D in fig. D E S = area of a circular sector (rad. = —'^—

of fig.) uniformly described about the center S in the same time.

Whilst the falling body describes C c indefinitely small, let K k be the

arc described by the body uniformly revolving in the circle.

L.R_ S A
2 ~ 2 '

Cc _ CT
Dd ~ DT
CD _ DT
S Y ~ TS

Case ] . If D E S be an ellipse or rectangular hyperbola.
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Cc.CD CT AC,. ,

DdTSY = TS = AO "^^^"^^tely.

(Cor. Prop. XXXIII.)

But

velocity at C _ V A C
V in the circle rad. S C ~ V A O
V in the circle rad. S C _ ,SK_ /A O
V in the circle rad. SK "" V S~C ~"

'V S~C

/ velocity at C \ __ C c _ /A C _ A C
.

•'•
Vv in the circle rad. S K/ "" K k ~ V SC ~ CD

.-. Cc. CD = Kk. AC
Kk. A C _ AC

•'• D d . S Y " A O

'

.-. AO. Kk = Dd. S Y,

.*. the area S K k = the area S D d,

.*. the nascent areas traced out by S D and S K are equal

.*. the sums of these areas are equal.

Case 2. If D E S be a parabola S K = ^^IL^.

As above

Cc.CD CT 2

Dd. SY ~ T S ~
1

also

Cc
Kk

_ velocity at C
velocity in the circle

velocity in the circle L

SC
2

~~
velocity in the circle L

.

R" ,. R
2 2

V SK SK
V SC CD

2 2

.-. Cc.CD = 2.Kk.SK

.-. Kk. S K = Dd. S Y.

247. Prop. XXXVI. Force a
(distance) ^

*

71? determine the times of descent of a body Jailing from the given {and

,'. finite) altitude A S

On A S describe a circle and an equal circle round the center S.

From any point of descent C erect the ordinate C D, join S D. Make
the sector O S K = the area A D S (O K = A D + D C) the body

will fall from A to C in the time of describing O K about the center S
V©L. I. N



^
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uniformly, the force oe _— -, Also S K being given, the period

in the circle may be found, (P = / -— . «• . S K ^), and the time through
o

OK = P.-.
O K̂

. .*. the time through O K is known. .*. the time
circumterence °

through A C is known.

248. Find the time in lohich a Planet would Jail from any point in its

orbit to the Sun.

f*1 VOX ^ ^ ^^

Time of fall = time of describing —^— O K H> S O = —^

,

period in the circle O K H _ period in the circle rad. S O _ S O ^

period in the ellipse
""

period in the circle rad. AC ~~
a r; i

3

.'. the time of fall = ^ . P. (-r-p) » P= period ofthe planet. If the orbit

be considered a circle

I

VACv' ^2/ V8
and the time of fall

P r> V 2 „ 4 .= p. -^- = p. -o- nearly.
4 V 2

= — nearly.
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249. The time down A C a (arc

= A D + C D), a C L, if the cy-

cloid be described on A S. Hence,

having given the place of a body at a

given time, we can determine the

place at another given time.

CutoffSm = CL.$?^^4^.
time d. A C

Draw the ordinate m 1 ; 1 c will deter-

mine c the place of the body.

250. Prop. XXXVII. To determine the times of ascent and descent ofa

body projected upwards or downisoardsfrom a given pointy F a .-- ^.

Let the body move off from the point G with a given velocity. Let

—r--—ii— • 1 J = -T-j (V and v known, .*. m known).
V * m the circJe e. d. 1 ^

'

To determine the point A, take

G A mj
1S A

2
GA

G A + G S
GA

m "^

- ™'
•• G S ~ 2— m*'

.*. ifm* = 2, G A is+ and 00 , .'. the parabola

ifm*<2, GAis+ and fin. .•. the circle

^ must be des-

^ -, . scribed on the

ifm*> 2, G A is—and fin. .*. therectangular hyperbola J axis S A.

With the center S and rad. = - - of the conic section, describe the

circle k K H, and erecting the ordinates G I, C D, c d, from any places

of the body, the body wUl describe G C, G c, in times of describing the

areas S K k, S K k', which are respectively = S I D, S I d. -

25L Prop. XXXVIII. Force « distance.

Let a body fall from A to any point C,

by a force tending to S, and ««. as the

distance. Time a arc A D, and V acquir-

ed a C D. Conceive a body to fall in an

evanescent ellipse about S as the center.

.*. the time down A P or A C
A_S
2

a AD for the same descent, i. e. when

A is given.

a ASP a ASD a AD.
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The velocity at any point P
a V F. P V

/' ^ 2 A C . C a , . ^ ,

a / S P . ^p ultimately.

a CD.
Cor. I. T. from A to S =

^^
period in an evanescent ellipse.

= ^ period in the circle A D E.

= T. through A E.

Cor. 2. T. from different altitudes to

S a time of describing different quadrants

about S as the center a 1.

N. In the common cycloid A C S it is

proved in Mechanics that ifSca=SCA
and the circle be described on 2 . Sea,

and if a c = AC, the space fallen through,

then the time through A C a arc a d,

and V acquired a c d, which is analogous

to Newton's Prop.

Newton's Prop, might be proved in the

same way that the properties of the cycloid

are proved.

OTHERWISE.

252. vdv = — g/ix.dx,

.. V* = 2 g /«. (a* — X*), if a = the height fallen from

.-. V = V2gA(.. V a«— x« = V2g(i. C D.

d X _ d X 1

V ~"
dt =

V2i :f^ V a

.-. t = +
arc

a V2gfM' ^rad

I

^COS. = XV
^^ ^ ^ ^^

. = a/

.AD.
a V2g/A

.*. velocity a sine of the arc whose versed sine = space, and the arc

a time, (rad. = original distance.)

253. The velocity is velocityfrom ajinite altitude.

If the velocity had been that from infinity, it would have been infinite
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d X X
and constant. .*. d t = , and t =

, + C, when t = 0,
"

' g /^
V a. V

= Vg(««.a, a= a.

1
x= a, .'. c is finite, .•.t= C =

V g ^

Similarly if the velocity had been > velocity from infinity, it would

have been infinite.

254. Prop. XXXIX. Force a (distance)'^, or anyJunction of distance.

Assuming any ex"*, of the centripetal force, and also that quadratures of

all curves can be determined (i. e. that all fluents can be taken) ; Re-

quired the velocity of a body, when ascending or descending perpendicu-

larly, at different points, and the time in which a body will arrive at any

point.

(The proof of the Prop, is inverse. Newton assumes the area A B FD
to ot V * and A D to « space described, whence he shows that the force

a D F the ordinate. Conversely, he concludes, ifFaDF, ABFD

V* a/vd va/F. d s.

Let D E be a small given increment of space, and I a corresponding

increment of velocity. By hypothesis

ABFD _ Vj _ V
ABGE -v'*- V«+2V.H-P
ABFD V« V« ,. -

••• D-FG-E = 2V.I + P = 2Vri ^t^^^^t^^y-

But

ABFDcxV^.-. DFGEa2V.I
.-. D E . D F ultimately, a 2 . V . I

But in motions where the forces are constant if I be the velocity gene-

rated inT, Fa-?p, (F (X. j—\ and if S be the space described with uni-

form velocity V in T, ^ = -—,-
j (d t = — ) . Also when the force is

I. V
a^'*^, the same holds for nascent spaces.' .*. F « '

, and D E re-

presents S. .*. D F represents F.

N 3
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Let D L at
1

V ABFD V^ « ^ , .-. D L M E ultimately = D L . D E

DE a time through D E ultimately.

.*. Increment of the area A T VM E « increment of the time down A D.

.-. A T V M E a T.

(Since ABFD vanishes at A, .•• A T is an asymptote to the time

curve. And since E M becomes indefinitely small when A B F D is in-

finite, .*. A E is also an asymptote.)

255. CoR. 1. Let a body fall from P, and be acted on by a constant

force given. If the velocity at D = the velocity of a body falling by the

action of a''*^ fowe, then A, the point of fall, will be found by making

ABFD = PQRD.

For

ABFD
DFGE
DFGE

g-j by Prop.

DP _ I

DR ~
i

= -^ ultimately.

D R SE
if i be the increment of the velocity generated through D E by a constant

force.

DRS E __ V'(V + i)' _ 2_i

PQRD~ V
ABFD _ 1

•'• PQRD -
1

•

256. Cor. 2. If a body be projected up or down in a straight line

from the center of force with a given velocity, and the law offeree given;

Find the velocity at any other point E'. Take E' g' for the force at E'.
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velocity at t/ = velocity at D .
-^^ —

—

" - + if pro-

jected down, — if projected up.

(Yor
^ PQJ^P±DFg^E^ __ V A B g^ E\

257. Cor. 3. Find the time through D W.

Take E' m inversely proportional to VPQRD + DFg'E' (or

to the velocity at E').

T.PD _V"PD_ VTB _ V"FD
T.PE" vTE~ V(PD+DE)~ ^-p^ .

_^E_^ '

PD . .

PD + ^^
2

T.PD 2PD 2PD.DL
"T.DE ~ DE ~DLME

also

T.D Eby PC bie force _ D LM E
T.DE'by do. ~ D L m E"

but T . D E by a constant force = T . D E by a'''* force since the velo-

cities at D are equal (d t = —

)

T. PD _ 2PD.DL
•'•T.DE' ~ DLmE' •

d V
258. It is taken for granted in Prop. XXXIX, that F a g-^ (46),

d s . . d V
and that v = -j— , whence it follows that if c . F= -t-— , d v = c . F. d t,

and vdv = cF.ds.
.-. v» = 2c/Fds

Newton representsyF d s by the area A B F D, whose ordinate D T

always = F.

•••»=/

V V2c./Fds
ds

V 2 c/Fd s

N4
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—-r by the area A B T U M E, whose or-V/Fds ^

dinate D L always = r^*

\ V2e.ABFD>'V 2g. A B F

In Cor. 1. If F' be a constant force V * = 2 g F' . P D, by Mechanics

but

V'^=:2c./Fds
And F^ P D or P Q R D is proved =/F d s or A B F D,

.-. c = g

and

V* = 2g./Fds.

y p velocity at E^ _ Vy F d s when s = A E'
• velocity at D ~ V/Fd s when s = A D

_ V A B g^ E^

V A B F D

In Cor. 3. t=time through D E'= /*— •=f ^ =D L m E',^ J y J V2g/Fds
T, ,. ,, , T3T. 2PD 2PD
1 rrtime through P JJ = •-,, ,t-> = _"S VatD V 2g. PQR D

= 2 PD. DL
T^_ 2 P D . D L

**•

t
~ D L m E' *

259. The force a x «.

.*. vdv == — g(«,x"dx5/ct = the force distance 1.

n + 1

if a be the original height.

Let n be positive.

V from a finite distance to the center is finite 1

V from CO to a finite distance is infinite. i

Let n be negative but less than 1.

V from a finite distance to the center is finite 1

V from 00 to a finite distance is infinite. J

Let n = — 1 the above Integral fails, because x disappears, which

cannot be.
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dx
V d V = — g fi

X

a

X
.'. V from a finite distance to the center is infinite 1

V from » to a finite distance is infinite. /
.Ix1 X

But the log. of an infinite quantity is x '^ Jess than the quantity itself— when

X is infinite = — . DifF. and it becomes — = — = — .XX
"dl^

Let n be negative and greater than 1.

V from a finite distance to the center is infinite \
» V from CD to a finite distance is finite. J

260. If the force be constant, the velocity-curve is a straight line parallel

to the line of fall, as Q R in Prop. XXXIX.

DEDUCTIONS.

261. To find under what laws of- force the velocity from oo to a finite

distance will be infinite or finite, and from a finite distance to. the center

will be finite or infinite.

If (1) F a X % V a V'a'~~x''

(2) X V a^— x'

(3) 1 V a — X

w—i — V->T

(5) —2 ^ ax

^^^ x^ -V a^x^

m—A — Jx° 'N a^-'x**-'

In the former cases, or in all cases where F cc some direct power of

distance, the velocity acquired in falling from oo to a finite distance or to

the center will be infinite, and from a finite distance to the center will be

finite.
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In the 4th case, the velocity from oo to a finite, and from a finite dis-

tance to the center will be infinite.

In the following cases, when the force a as some inverse power of

distance, the velocity from oo to a finite distance will be finite, for

a°-^ — X"-' _ / 1

V a^-^x"^-^ ~ Vx"°-i
when a is infinite. And the velocity from a finite distance to the center

will be infinite, for

/a°-^— x""^ _ FT_

S a'^-^x'^-i ~N~0
wh^n x = 0.

262. On the Velocity and Time-Curves.

(1) Let F a D, the area which represents V* becomes a a.

For D F a D C.

(2) Let Fa V D, .. D F* a D C and V-curve is a parabola.

(3) Let F a DS .-. D F a D C^ and V-cui*ve is a parabola the

axis parallel to A B.

(4) Let F a Yj J
••• D F a ^r^ ,

.*. V-curve is an hyperbola referred

to the asymptotes A C, C H.

(6) If F a D, and be repulsive, V« a DC.DF a DC,
.•.V a D C, .*. the ordinate of the tune curve a -^ a ^^ ,

.*. T-curve is an hyperbola between asymptotes.

(6) If a body fall from oo distance, and F a
jjj , V a -^

,

.. the ordinate of the time-curve D, .*. T-curve is a straight line.

(7) If a body fall from oo , and F a ^ , V a -—

,

.'. the ordinate of T-curve x \^ D C, .*. T-curve is a parabola.

(8) If a body fall from cc, and F a ^-3, V a ^,
.-. the ordinate of T-curve a D C*, .*. T-curve is a parabola as in case 3.
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EXTERNAL AND INTERNAL FALLS.

263. Find the externalfall in the ellipse, theforce in thefocus.

Let X P be the space required to acquire the velocity in the curve at P.

V ' down P X _ Pjc

S3
2
Aa

V ^ in* the circle distance S P

V ' in the circle distance S P
V ' in the ellipse at P ~ 2. H P

V * down P X _ A a . P X
**• V * in the ellipse at P ~ Sx. H P

•• Sx ~ Aa
P^x _ HP

•'•

S P ~ S P
.-. P X = H P

.-. Sx= SP + Px = Aa, and the locus of x is the circle on 2 A a,

the center S.

264. Find the internalfall in the ellipse, theforce in thefocus.

V * down P X __

V * in the circle S x
~

V * in the circle S x _
V 2 in the circle S P

~

P^

2

SP . 1
ci— , lorce a tt- =

S X distance*
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V * in the circle S P __ A a

V ^ in the ellipse at P
~

V * down P X _
* * V * in the ellipse at P

~~

• — ='

' S X
"""

P X

•'•SP~Aa+HP
Describe a circle from H with the radius A a. Produce P H to the

circumference in F. Join F S. Draw H x parallel to F S.

265. Generally/.

2HP
Px. A a

Sx.HP
HP
A a

HP

For external falls.

V * down P 2c 2 g . ^rea AB F D Newton's fig.

V * in the circle distance S P ~ g F . S P F= force at distance S P

V ^ in the circle S P 2 S P
V ^ in the curve at P

V - down P X

PV
4. A B FD

*• VMn the curve F. P V
.-. 4 . A B F D = F . P V

Find the area in general -! , . ~ >-° (abscissa = space J

In the general expression make the distance from the center = S P,

and a the origuial height, S x will be found.

266. For internal falls.

V^down Px _ 2 g . A B F D Newton's fig.

2 g F . S P F = force at P

2 SP
V * in the circle S P

V 2 in the circle S P
in the curve at P

V 2 down P X

PV
4 A BFD
F. P V* * V^in the curve at P

.'. if the velocities ar6 equal, 4ABFD = F.PV.
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267. Ex. For internal and external falls.

205

In the ellipse theforce tending to the center.

In this case, D F a D S. Take A B for the force at A. Join B S.

.. D F is the force at D, and the area A B F D = AD (A B + D F)

= AS — SD.AB+ DF. Let im equal the absolute force at the dis-

tance 1. Let SA = a,SD = x, .'. AB = a/4

D F = x/!«

2 v2
AT» x^ TV ^ """ X • a ^ X a

'

B FD =/t. — s-

—

— = iJ^.—

and

or

or

4ABFD = F.PV,

C D^
a ^ — X * = C P . p-p- in the ellipse,

a « — X ^ = C D ».

For the external fall, make x= C P, then a= Cx, and C x *—C P'= CD*,
or Cx* = CP^ + CD^

= AC* + BC*
= AB*

.-. C X = A B.

For the internal fall, make a = C P, then x = C x', and

CP« — Cx'« = CD*,
or

Cx'* = CP* — CD*,
.-. C x' = V CP* — CD*.

268. Similarly, in all cases where the velocity in the curve is quadrable,

without the Integral Calculus we may find internal and external falls.

But generally the process must be by that method.
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Thus in the above Ex.

vdv = — g/ix.dx
.-. v^ = g^ (a^ — x^)

.-. A B F D = „— = /*

2g
, as above, &c.

269. And in general.

Also

v^ = ^-f-rCa""^'— x" + '), if the force a xN
n4- 1

y' = |-F.PV = £^f» ^^-^

n + I

2

xn+i) = g/Ag

• dp

dp

..-^(a« + » — x" + = ga.p.^^
n + 1

^ ^ *^ d p
And to find the external fall, make x = ^, and from the equation find a,

the distance required.

And to find the internal fall make a = r, and from the equation find x,

the distance required.

270. Find the externalfall in the hyperbola^ theforce oc .^from thefocus.

V* down OP: VMn the circle rad. S P : : O P : ^
V« in the circle S P : V in the hyperbola at P : : A C : H P
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.-. V ^ down OP: V "^ in the hyperbola : : A C . O P :

^^'^^

.-.2 A COP = SO. HP
.-. 2AC.SO — 2AC.SP = SO.HP

...SO = — HP—2AC = — 2AC
To find what this denotes, find the actual velocity in the hyperbola.

Let the force = j8, at a distance = r, .*. the force at the distance

~ x' •

Also

V ^ in the circle S P __ jS. r' x ._ |8 x^

2 g
~ ~x^ ' 2" ~ ^x"

V* in the hyperbola _ (2 a + x) /S r
"

**
2g

~
a . 2 X

- til ?ll~ X "*" 2~a

V 2 B r^ V ^

But ^— when the body has been projected from cc = h p— of

projection from oo , .. ^— of projection from go = -^— = — down 2 a,

/3 r ^

F being constant and = 7—5 , or=V * from x to O', when S 0'= 2 A C.
4 a

.*. V in the hyperbola is such as would be acquired by the body ascend-

ing from the distance x to 00 by the action of force considered as repul-

sive, and then being projected from cd back to O', S O being = 2 A C.

In the opposite hyperbola the velocity is found in the same way, the

force repulsive, p externally = „ ' „ „ .

271. Internalfall.

V^ down P O : V* in the circle rad. S O : : P O : ^
V in the circle S O : V ^ in the circle S P : : S P : S O
V2 in the circle S P : V^ in the hyperbola at P : : A C : H P

.-. V* down P O : V^ in the hyperbola : : A C . P O

.-. 2 AC. PO = SO. HP
or

2AC(SP— SO) = SO.HP
<i O - 2 A C. SP

•'•^^"~2AC + HP*

SO. HP
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and

PO=SP— SO= SP.HP
2 A C + HP*

Hence make HE = 2 A C, join S E, and draw H O parallel to S E.

Hence the external and internal falls are found, by making V acquired

down a certain space p with a ^^^ force equal that down :| . P V by a

constant force, P V being known from the curve.

272. Find how Jar the body must fall externally to the cir-

cumference to acquire V in the circle, F « distance to*wards the q ^

center of the circle.

Let OC = p, OB = x, OA=a, C being the point re-

t^uired from which a body falls.

B4-

p..

vdv=— g.F.dx, (for the velocity increases as x decreases)

Let the force at A = 1, .•. the force at B = —

=— e — . d X
^ a

.-. V " =
a

and when v = 0, x = p,

... C = i

+ c

o

.1 (p2__x^)

and when x = a,

at A = -s-
(p « — a *=).

But

at A = 2

the force at A being constant, and

a _ P V
"2 - 4 '

= ga
2 _ o 2 = 2 a-p * — a ^ = a % .'. p ' = JJ a % .'. p = V 2. a.

273. Find howJar the body mustJail internallyfrom the circutnference to

acquire V in the circle, F a distance towards the center of the circle.

Let P be the point to which the body must fall, O A = a, O P= p,

O Q = X, F at A = ], .-. the force at Q = — .
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.'. V d V = — Of . — . d X^ a

.. v2 = ^ .x^ + C,
a

and when v = 0, x = a.

.-. C = -^.a^
a

.. v^ = ^ (a^ — x^)
a ^

'

and when x = p,

V* = — (a* — p") from a'''^ force

and
V ^ = g . a, from the constant force 1 at A.

.'. a ' — P '^ = a % .*. p = 0, .*. the body falls from the circumference

to the center.

274. Similarly, when F a -p .
•^ distance

O C, or p externally = a V e, (e = base of hyp. log.)

and

OP, or p internally = -^— . '

275. When F a
distance*

"

p externally = 2 a

2 a
p internally = -—-

.

276. When F a
^

277. When F a

distance '

*

p externally = x .

p internally = —j-q •

1

distance " + '

'

II

p externally = a ^ ^ZITn
n

p internally = a /j
'V 2 + n

If the force be repulsive, the velocity increases as the distance increases,

.*. vdv = gF.dx
Vol r. O
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278. Find haw far a body must fall externally to any point P in the

parabola, to acquire v in the curve. F a ^v, , to'wards the focus.

P V = 4 S P = c, S Q = p, S B = X, S P = a, force at P = 1,

.-. FatB = -,,

.-. V d V = — g '^2 . d X

.2

• • 2 - "IT + ^'

when V = 0, X = p

.-. c = ti!.

v' = 2ga«(|— i-)=2ga'(-i--L)atP,

but

v* = 2g. 4=3ga,

1 _ 1 _ 1

a p ~ a
'

4=.,.-p = ».

279. Similarly, internally, p = —

.

280. In the ellipse, F a vyj towards a focus

p externally= PH+ P S. (.*. describe a circle with the center S, rad.= 2A C)

. , ,, PH.PS
pmternally=-g^^_^p^ .

(Hence V at P = V in the circle e. d.)

281. In the hyperbola, F a yrz towards focus

pexteni^lly= — 2 A C (Hence V at P = V in the circle e. d.)

P H . P S
p internally= '

« a n !i- P R * (^^^"^^ V at P=V in the circle e.d., p. 190)

282. In the ellipse F cc D from the center

pexternally= V A C* + B C^ (= A B)] (Hence construction)

or (= V CD* + CP^)
(Hence also V at P = Y in the circle radius C P, when C D = C P)

p internally= V C P^ — C D^
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(Hence if C P = C D, p = 0, and V at P = V in the circle e. d., as

was deduced before)

(If C P < C D, p impossible, .•. the body cannot fall from any distance

to C and thus acquire the V in the curve)

283. In the ellipse, F a D from the center.

Externalfall.

The velocity-curve is a straight line, (since D F a C D, also

sijHce F = 0, when C P = 0, this straight line comes to C, as

Cdh,V a VCOb a CO, O being the point fallen from, to acquire

V at P.

.-. V from O to C : V from P to C : : O C : P C

Also since vdv=: — gF.dx, and if the force at the distance 1 = 1,

the force at x = x. .*. v d v = — g x d x, and integrating and correct-

ing, V ' = g (p * — x ^), where p = the distance fallen from.

.•; V a V p ^ — x^, and if a circle be described, with center C, rad. C O
a P N (the right sine of the arc whose versed P O is tlie space fallen

through).

.-. V from O to P : V from O to C : : P N : (C M =) O C
and

V from P to C : V in the circle rad. C P : : 1 : 1

(for if P v = ^ P C, v d = C d P) and

V m the circle C P : V in the ellipse : : C P : C D.

Compounding the 4 ratios,

V down O P : V in the ellipse : : P N : C D
.-. Take P N = C D, and

V down O P s= V in the ellipse,

.-. C O = C N = V C P^ + C D'.

02
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V in the eUipse : V in the circle rad. C P : : C D : C P
V in the circle : V down C P : : 1 : I

V down C P : V down P O : : (C M =) C P : O N
.-. V in the eUipse : V down P O : : C D : O N

.-. Take O N = C D, and V in the curve = V down P O, and C O
= V C P 2 — C D '^.

284. Find the point in the ellipse, thefwee in the cente?-, wheir V = the

velocity in the circle, e. d.

In this case C P = C D, whence-the construction,

circle
Join A B, describe on it, bisect the circumference in D', join

''
"^^

2

B jy, A D'. From C with A D' cut the ellipse in P.

2AD'^(=2PC^) = AB^=AC^ + BC'(=CP« + CD^)
.. 2 CP^= C P*+ CD*

.-. C P- = C D". (C P will pass through E.)

A simpler construction is to bisect A B in E, B M in F, then C P is

the diameter to the ordinate A B, and from the triangles C E B, C F B,

C F is parallel to A B, .. C D' is a conjugate to C P and = C P.

p externally (to which body must

285. In the hyperbola,

force repulsive, a D, from the center

rise from the center)= VCP-CD*

(Hence if the hyperbola be rectangular p internally= 0, or the body must

rise through C P.)

rise from P,)= V C D ^ + C P

*

p internally (to which body must
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286. Li any curve, F a
tYIT+i i^^d p externally.

ap= a
n c

I

where a = S P, c = P V.

287. K the curve be a logarithmic spiral, c = 2 a,

= a

alsoso Fa i,,) ...p=:a(j-L-)H = co .

.-. n = 2 J

288. In any curve, F a
^^ ^^

-

j
,^«</ p internamy.

289. If the curve be a logarithmic spiral, c = 2 a, n = 2,

/ a \ i. a
•••P = nHra)'^ = V-2-

290. If tlie curve be a circle, F in the circumference, c = a, and n = 4,

. .'. p externally = a ( \'^ = »

and p internally = a { \ * = -i— .^ ^ Va + a; ^2
291. In the ellipse, F a yr-^from focus. Externalfall.

V * down O P : V 2 in the circle radius S P : : O P :^ , Sect. VII.

V * in the circle S P : V Mn the ellipse at P : : A C : H P,

03
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.-. V« down O P : V^ in the ellipse : : A C . O P

[Sect. VII,

SO. HP

.-. S O =

.-. 2 AC.OP = SO.HP
2 A COP 2AC.SO — 2AC.SP
HP TTF

... S O = J.^J^-^J^ = 2 A C.

Internal Jail.

2 A C — H P

V ^ down P O : V 8 in the circle radius S O : : P O : -^? ,

V« in the circle S O : V* in the circle S P : : S P : S O
V* in the circle S P : V « in the ellipse at P : : A C : H P

.-. V^ down P O : V* in the ellipse : : P O . A C :

.-. 2 P O . A C = S O . H P
.-. 2SP.AC— 2SO.AC = SO.HP

2 AC.SP

SO.HP

.-. S O =
2 AC + H P

Hence, make H E = 2 A C, join S E, and draw H O parallel to E S.

292. External Jail in the parabola^ T O

F a lYi
ft'oni focus.

V* d . O P : V Mn the circle radius S P

::OP: ^, Sect. VII.

V « in the circle S P : V Mn the parabola

atP:: 1 :2,
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Internal fall.

.-. V^ down O P : V = in the parabola : : O P : S O
.-. O P = S O, .-. S O = a

SPV 2 down O P : V Mn the circle S O : : O P :
"_-

V = V down

V^ in the circle S O : VMn the circle S P
V ' in the circle S P : V^ in the parabola at P

.', V ^ down OP: V " in the parabola

.-. O P = s o,

SP
2 *

P V

S P: SO
1 : 2

O P : S O,

.-. S O =

V down S P = V . down E P = V of a body describ-

ing the parabola by a constant vertical force = force at P.

293. Find the external fall so that the velocity^ ac-

quired = n' . velocity in the curve. Fax".
V dv = — g/«..x". dx, (a4 = force distance I),

.'. V 2 = ~-~T .(a°+'— x" + ')a=: original heiglit,

V* in the curve = g /a . S

—

~ = i .<* • c, if c = —2

—

i
*= d p 2

' dp'

.-. w' .% fi. c =-?44--(a"+'— x°+0, orn'.c = -^. (a" + '— x'^ + O

Make x = S P = ^, and from the equation we get a, which = S x.

For the internal fall, make a = S P = ^, and from the equation we get

x, which = S x'.

294. Fitid the external fall in a lemniscata.

(x^ + y^)= = a^(x^ — y^)

is a rectangular equation whence we must get a polar one

Let z. N S P = ^,

•*• y = ?• sin. ^, X = |. cos. 6, ^^ — (x" + y^)

.-. ^* = a^. (g2(cos.M--sin.*^)) = a"g^cos. 2 tf,

.-. ^
'^ =r a " . COS. 2 6

.-. 2 « = ^ (cos. =
1^),

a^ V a.*— g*

V a*'

04
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-a*-^-

" d6'
__a*-g*

but in general

g. d 6
_ df.p
V^^_p«'

•'-iM ^2_^2jJ^2p8 = dg ^PV

.•.p« f*d^« r- g*d^^ + dg^
r

S*

§^ +
a* —•r

- .•.p«

1 a*

.*. force to S a —
t;

S

V d V = — ^Af . d X,

.-. v« = 1^^ ''*

Vx6 a^y^

Also

PV_ 2pdg a^ _2.g' a' _ 2g^^- dp -"'P'Sg'^" a« *3g*~ 3'

Make x in the formula above = g,

•••g6 a^~ g«'

.«. —^ = 0, .*. a is infinite.
a ^
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295. Ft

CY^=CP«--YP2=CP«— CA^

217

295. Find the force and external Jail in an EPICYCLOID

YB' B
CB^

Let
^'

C Y = p, C P =
f, C B = c, C A = b,

.. c* p* = c^ g
* — b^ c^ + b* p

••P - c*^ — b^

2dp _ c^ — b' /— 2 d g . g \

P'

.*. force « « -=t:

{s'— hV P*

(as in the Involute of the circle which is an Epicycloid, when the radius

of the rota becomes infinite.)

Having got a° of force, we can easily get the external (or internal) folL

296. Fijid in *what cases we can integratefor the Velocity and Time.

Case 1. Let force a x °,

.*. V d V = g («- . X " d X,

.-. v2 = AiJt (an + I _ x'' + I)

n + 1
^ '

,
/»— dx __ /

n+ 1 ^ — dx
~J V ~V 2g/AVV(a"+i— x"*'

Now in general we can integrate x'^dx.(a + bx''^)— , when
4

is whole or

—

— 1- -^ whole.
n n q

.•. in this case, we can integrate, when

Let

1

—-—=- , or—-—r^ — « > is whole,
n + 1' n + 1 2 *

—-j—r: = p any whole number

.•.n+l = I,

.». n = *-
, (p being positive), (a)
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. Let
1— o = P'n + 1 2

• •
11 + 1 ^ ^ 2 2 '

1 2 p r,s

.*. these formulae admit only and 1 for integer positive values ofn, and

no positive fractional values, .'.we can integrate when F cc x, or Fa 1.

297. Case 2. Let force oc —.
,

, d X
.-. V d V = — g /i — ,

X'

n —

1

2 _ -^ g /^ /a"~^ — x"-s

— r
—^^— /

"— I.a"~^ p— d x . X -j—
~~

.y V ~^ 2 g /"- '•' Va""^ x"~'

2 ^ 2 ^ 2
in which case we can integrate, when '

- .—, or —
, whole,

i. e. if - H or r , be whole.
2 ^ n — 1, n— 1

'

Let ^ = p, any whole positive No.,

..."nI,= l,...„=P-^\(»')

^^^2 +ir=r-i=P'

* * n

1

1
= 2p-

2

1

>

.-. n — 1 = 2

2Y- 1'

.•.n = |p-:^;.(.',

.'. these formulae admit any values of n, in which the numerator ex-

ceeds the denominator by 1, or in which the numerator and denominator

are any two successive odd numbers, the numerator being the greater.

, T^ 11 1 Ion
.•. we can integrate, when h ^ —j j —35 —45 —59 &c.

X X §• X J x^
I

or
J>

1 JL i 1 «.

P'xf'xf'^'^'^-J
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298. Case 3. The formulae (a') (/3'), in which p is positive, cannot be-

come negative. But the formulae (a) and (/S) may. From which we can

integrate, when F oc _,_,_,_, &c.
Xj X^ ii-^ X.J

• or when F oc -— -^ &c.
x^ x^ xf x|

299. When the force oc yi"^, Jind a", of times from different altitudes

to the center offorce. Find the same,force a « —-.

Fax", .*. vdv = — g/ix°dx,

••. d t = a —^ which is of — dimensions,
V V a° + ^ x" + ' 2

.*. t will be of — dimensions.

and when x = 0, t will oc —j^^^

.

F « —S » ••• t a _n,i a a a

x" a ^—
. _ — d X 1 ^ — dx
t a /^ .1 a /^

—

—

—

J Va» + '— x»+^ a24^y /, /xx" + '

«a-4^--{'-(Tr'}"'

when t = 0, X = a,

. n f.l a, 1.3 a
. o \

•••-a-4>-(-{'+i-„-i2W-^+M^:-^.+^)
.-. when X = 0, t a -^ a —

^
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, . . 1 ^ n+J
when n is negative t a —r a a 2 .^ a-"-'

2

Cor. If n be positive and greater than 1, the greater the altitude, the

less the time to the center.

300. A body is projected up P A isoith the velocity VJrom the given

po'nt A,force in S « yi\yjind the height to >which the body "jcill rise.

vdv = — g/u,x"dx,

for the velocity decreases as x increases, A

V. v2 = l^.x"+> + C
n 4- 1

when v = V, X = a,

.•.C=: V« + ^^.a" + ^

... lUt., (x» +i— a"+0 = V2_v2
n + 1 ^

Let v = 0,

n + 1 ^

n^- V2.II+1

2g/i-

. xn + i = V^-n+ 1+ 2g^.a"+^
2g^

. _ .V2.n + 1 + 2g^.a "+ yi.,.

g

Cor. Let n = — 2, and V = the velocity down — , force at A con-

slant, = velocity in the circle distance S A.

. X = /_ V2 + ^g^ \~' = ^g^
( ^] 2g^ ^.^

2 g/to / a

2g/t 2

2g^ g^ a — — i
a a''

*

a a

= 2 a.
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SECTION VIII. ,

301. Prop. XLI. Resolving the centripetal force I N, or D E (F)

into the tangential one I T (F') and the perpendicular one T N, we

have (46)

I N : I T : : F : F : :
i^

:
^'

d t d r

.-. d V : d v' : ; d t X I N : d t' X I T.

But since (46)

, ^ d s , , d s'
d t = — , d t' = —rV v'

and by hypothesis

V = v'

.-. d t : d t'

.*. d V : d v'

: d s ; d s' : : I N : I K
: IN^ : IK X IT
: 1 : 1

or

d V = d v',

&c. &c.

OTHERWISE.

302. By 46, we have generally

vdv = gFds
s being the direction of the force F, Hence if s' be the straight line and

s the trajectory, &c. we have

vdv =: gFds
v' d v' = g F' d s'

... v^ — V = 2g/Fd s

v'* — V'» = 2g/Fds'
V and y being the given values of v and v' at given distances by which

the integrals are corrected.

Now since the central body is the same at the same distance the central

force must be the same in both curve and line. Therefore, resolving F
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when at the distance s into the tangential and perpendicular forces, we
have

^~^*^IN~^^IK
_, d s

Z= ¥ X -r—,
a s

.-. F d s' = F d s

and

v"^ — V'^ _ 2g/Fds = v^ —

V

which shows that if the velocities be the same at any two equal distances^

they are equal at all equal distances— i. e. if

V = V
then

V = v'.

303. CoR. 2. By Prop. XXXIX,
v^a A B GE.

But in the curve

y a F oc A"-*
.. ydxoc A"-^dA

Therefore (112)

ABGE=/ydxa— -i^+C

a

n

P" —

A

n

Hence
v2 a P" — A".

OTHERWISE.

304. Generally (46)

vdv = — gFds
and if

F = ya S"-i

then

v^ = ?^(C^s")
n ^

^

But when v = 0, let s = P ; then

= ig_^(C — P'')
n ^

and
C = P".
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n ^

in which s is any quantity whatever and may therefore be the radius vector

of the Trajectory A ; thai is

v2 = i»i'(pn_ A")or = —^^(Dn — J")

in more convenient notation.

N. B. From this formula may be found the spaces through which a

body must fall externally to acquire the velocity in the curve (286, &c.)

305. Prop. XLI. Given the centripetal farce to constnict the Trajec-

torry, and tojind the time of describing any portion of it.

By Prop. XXXIX,

V = V-Fi. V A B F D = ^^ (46) = 1^
But

1 X ^ Tr Time ^ /-« rr -wt Timc
d t = I C K X -. = I C X K N X 0-.

—

Area 2 Arga

= -p ryj- (P being the perpendicular upon the

tangent when the velocity is V. See 125, &c.)

Moreover, if V be the velocity at V, by Prop. XXXIX,
V = V~2y. V A B L V.

Whence

/-T-o-Et-f: PVABLV IKVABFD= -^ X j^
/. putting

^^PVABLV/ ^ Q^ PxVx
A V A V 2 g A>' . ^

'

we have

ABFD : Z* : : IK^ : KN'
.-. ABFD— Z2> Z^ : : IK^— K N^ : KN^

and

V A B F D — Z ^ : Z = -^ : : I N : K NA

•axkn= ^^^Qbfd-z') • • • • (2)

Also since similar triangles are to one another in the duplicate ratio oi

their homologous sides

YXxXC = AxKNx ^^
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_ Q X CX^ X IN .

~ A« V (ABFD — Z^) • • •
^"^^

and putting

y~^'^2V(ABFD — Z«)

and

/_ n _ Q X CX^
y - ^ <^ - 2 A' ^^ (A B F D — Z')'

Then
Area VCI=/ydx = VDba"» .^.

AreaVCX=/y'dx = VDcaJ • • * •
»J

Now (124)

2VCI 2VDba
* ~ P X V ~ P X V

or

2 VDba
V2g.Px VABLV

the time of describing V I.

Also, if iL V C I = ^, we have

XVxCV «xCV*

(5)

VDca=: VCX =

. 2VDca
2

which gives the Trajectory.

306. To express equations (5) ajid (6) m /e7"ws </g and &, {§ = A).

First

ABFD = ^

(6)

and

V2ABLV = -

V2g

•• Z - ,. - 2g^«

2 P2 X V*
.-.ABFD— Z» =

2̂g 2gr
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Hence

and

PxVg
y ~2V(f«v^— P«V*)

P^x V
y =

and

2g V(f2v«— P^V^)

2 >' V(f«v«— P«V*)
...VDba = ?^/ ^^^

vr» _P'V /
- dg

... t = / ^ii

But by Prop. XL.
v«=2/gFdg

the integral being taken from v = 0, or from g =D, D being the same as

P in 304.// p a, p /• yfdp *iy»

^(SgVgFdg— P^V^)'"'' =y V(g2v«— P«V^) • • ^ ^

. _ r Px Vdg _ /» PVdg .

*-ygV(__2gygFdg— P*V2)'°'--/gV(g«v«— P*V=) • ^
^

307. Tojind t aw^ ^ m ^^rws of g and p.

Since (125)

v^=^p:-=-2/gFdg

. t - f Jvi^i

„.
I)

and

d?

/,
But previous to using these forms we must find the equation to the tra-

jectory, thus ( 139)

P^V^ dp „ „,,
X -r-^ = F = f (g)

f denoting the law of force.

Vol. I. P
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or

pays
P- = V^_2g/d^fg (^^)

308. To these different methods the following are examples

:

1st. Let F a g = fi I. Then (see 304)

.-. v^ = g^(D^-r)
and if P and V belong to an apse or when P = ^

;

V^ = g/.(D"- — P^)

_ 1 /• g d g

D*
Let g

^ — = u. Then we easily get

u ^= sin.-^
D-^

+ C
p2 td-

2

and making t = at an apse or when g = P, we find

pa -^

2C =; — sin. - K ^-^ = — sin. -" * 1

ps ^
2

IT

' 2
'

1 ).
' T rr)

.*. t = = X J sm. -' ~ — _ V . .

2Vgf^
I

P3_D^ sr (1)

Also

'V=>?'=2vV/(u+^y|(pL^V_u^}
and assuming

2 ^ - • -> V* 2
P^—^— u = v2x (P2— :^ + u)

we get

ttTt = = X < sin.-' r^, h C?PV 2Vg/*P.VD2-P2 I g2rp2_2J\ 3
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and making ^ = 0, when ^ = P we find

C=— sin.-'l= ^.

Also

V= VYa^. V (D2 — P2)

•• —. ; -nv- = sin. (2 « + -g-)

= COS. 2 6=2 COS. 2^—1
which gives

^ P2_(2 P^ — D=^) cos.^tf - ^ ''

Now the equation to the ellipse, g and 6 being referred to its center, is

^ 1 — e' COS.* d

Therefore the trajectory is an ellipse the center of force being in its

center, and we have its semiaxes from

b2 = D^— P*

c« a«— b^ 2P'— D*
i

e' =
a

'}

viz.

b = V(D^— P«)

and J- (3)

a = P
which latter value was already assumed.

Tojind the Periodic time.

From (3) it appears that when

t=^,or^= |,g = b= V(D«-P2)

and substituting in (1) we have

1 ) . . 2 ff f=—7= X <sm. -^
T^r^-^'irr2Vg^

I P2_5I 2|

= _i=x {siii.-'(-l)-|-}

P2
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But

sin.
- '(--1) = 3or

2 -

•••

T
4
=

«•

and

2 V git.

T __ 2«r

A COMMENTARY ON TSect. VIll

(4)

which has already been found otherwise (see 147).

To apply (9) and (10) of 307 to this example we must first integrate

(11) where f ^ :=: fig; that is since

we have

1p2
2

p2 =

But

V2=g^(D2_P2)
PMJD^-Pf) ..

••P - D^=V~ (5)

which also indicates an ellipse referred to its center, the equation being

generally

2_ a^b^
P - a^+h^— S^'

Hence

p2
^-

P2(D2_P2)

... t = -i/- ?dg

v'i;;^.' vjg2 (D^ — f 2) - p«(D2 — p2)]

the same as before.

With regard to 6, the axes of the ellipse being known from (5) we have

the polar equation, viz.

b2
S' =

1— e 2 cos.

309. Ex. 2. Let F = 4- • Then (304)

^ = ^-~x(D-'-r')
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V2-2ff /(i X

and

D —

P

DP
P and V belonging to an apse.

J k/ 9 IT „.

D^
whicfe, adding and subtracting —— , transforms to

^T^ ^ ^(Df-e^-DP + P^)

4

V D
t=:

^^g'''/^{(p-£)"lo-^)»}

and making f g" = "
2

D

t = VD /_ (^ + -2)^"

V2

=VsT.x Jc-.'{(p-2:).-«^}+|sin.-.-^^|

(see 86).

Let t — 0, when g = P. Then

C = -^sin.-'l = -^X
D

^2
Also

But assuming

P— ^ — U=V2X (P— ^ +u)

the above becomes rationalized, and we readily find

P3
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/(" + t)-v''{(p-t)^-"1^

. 5 (''-f)'+
°"

)

and making ^= 0, when g == P, or when u= P— -„-
, we get

C = -tan.-.i.=-|.

Hence, since moreover

+ ^=tan.-

or

= sin.

_ pg— PD

_ 2P.(D— P) 1~ D , . /, 2P;

= sin. \6 + -_- j = COS. 6

1+ (l— ^)cos.<J
(2)

But the equation to the ellipse referred to its focus is

1)2 1

a 1 + e cos. ^

b«_ 2P(D— P)
•*•

a ~ D
and

a'-* - * a«"" V D^



Book L] NEWTON'S PRINCIPIA. 231

•
.
-2 = TJ — D^ -

C"2
X (^— ^)

b2 2
= — X -rJa D

^
}b = >/ P X rD— P)-)

and r
^'^

X (D— P).

To find the Periodic Time ; let ^ = ie. Then g = 2a— P=D— P,

and equation (1) gives

T ; D D / • 1 1
«f \

-1)

^ 2-a*
••^ ^^gA6'

see 159.

OTHERWISE.

p2
First find the Trajectory by formula (11. 307) ; then substitute for -=-g

in 9 and 10, &c.

LO. JReqi

By 304

310. Required the Time and Trajectcn-ywhen F= j

— g/.X (D-2— g-2)

— D3 ^ g2

.'. if V and P belong to an apse we have

,.o g** D2— P2
V 2= g-2 X p 2

-I,:(P--e)
-

^ J V P^
P4,
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^ X (C± Vpa— ^^)

and taking t = at an apse or when ^ = P, 0=0,
Dt=-=^ X VP2_^2 . (1)
V g/tt

also

6 _ r d_t _ D - d g

PV-y ^« - V~^ ^-/f V(P«-g^)
But

r—^-L— - J- X li
^(P^-g') + p", cl

and

V = ^^ X V {D^-P').

TVs r>2\ — *• ^ T ^•• V (D« — P«) ~ •

s

and making tf z= at the apse or where f
= Pj

p
C = -1.| =

" - V D«— P* ' g

.
P^ _ V (pg — g8)q:p

•*-e V(D2— P2)-
f

which gives

2 P e V'-^*-^'''
2Pe (2)

311. Required the Trajectory and circumstances of motion iiohen

F = -a

or for any inverse law of the distance.

The readiest method is this ; By (11) 307, if r, and P be the values of

f and J)
for the given velocity V (P is no longer an apsidal distance)

the equation to the Trajectory.

Also since

vdv = — gFdf
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Hence

and if we put

•'•
"'

' = (n— f)^"-i (^'°™ "^ ^"^ ^^

V2 = 2 m g/A

(n— 1) r"-!

in which ra may be > = or < 1 we easily get

2/ m Pea ^ -

-70"- + ^)
^ " —

1

P -2-

P=-^zri X f

/

P = >^ m— 1

n —

1

X P^

VVl—m ^""^

Tb ^«d ^ ore this hypothesis.

We have (307)

in= 1

m< 1

which gives by substitution

d^=±r /—f^Px
N' m— 1

? 2 dg

(2)

// m n —

3

-n— Z.3y-..m>l

d^ =
n_5

rg 2 dg

V(^-^"-1
m= 1

d^ = + /VI —

m

X Px
n-3

g 3 d g

«-V(t^-t^p^«"-^-«"-')
the positive or negative sign being used according as the body ascends or

descends.

Ex. If n = 2, we get

/ 111 T1

V0'+5^0
. . . . m>l
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P i
P = -T-r m = 1

r i

the equations to the ellipse, parabola and hyperbola respectively.

Also we have correspondingly

cVG^+sr^^-sr^-^O
dtf = +r P. di

fV(rg-P2)

dtf=+r /-= .
— ^

which are easily integrated.

Ex. 2. Let n = 3. Then we get

P = J——T X P X ^ s . . m > 1

V = ~ s
m=l

P = J-^ X P X — i
. . m < 1

d6 = + /—^.Prx ^-^2 2- . m>l— Vm— 1 //o mP2 —t\

d^ = ± V(r^lp^)-7 "='

d^=±>^'T^XrPx 'Jp. . m<l

312. In the first of these values of ^, m P ^ may be > = or < r^.

(1). Let m P 2 > r ^. Then (see 86)

and at an apse or when r = P
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for

/ m —

1

__ j_ _ 1^

N m P* — r^ ~ P ®^ ~ r
•

(2) Let m P^ = r*. Then we have

r

V (m — 1)
^

/, V

^ 0' + sr^)
— 4-_Jll___ /"^^C"~ - V (m— 1) ^y 72'

= ± ,
X ( )

X ^-— (c)~ -• m — 1 i

which indicates the Reciprocal or Hyperbolic Spiral,

(3) LetmP2be<r«. Then

-v^Cn^ + sO

/ e^U'+ m-l )

J. |-L/

-+rP /—^ .., r ^(m-l.f+r^-mP)-V(r-mP^)
--Wr'—mP^'g Vm .(i-^—P)— V (r*— m P«) '*^^

at an apse r = P ; and then

, = +P /-J^xl. ^'-'-^''-^
. . . (f)— ^ 1 — ra i

Thus the first of the values of 6 has been split into three, and integrat-

ing the other two we also get

"-" = + V(r'^-P')
^''g~'''>

- a: V(r'— P') ^ r

«-. = +rP /t-J5- / , . ''^i— >/l — m/ //r^ — mP* a
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m=+rP /

//r*--mP_,\ ,r^—mP
[Sect? VIII.

-mP

and if * is measured from an apse or r = P it reduces to

< = + P /-J!^l/+^g'—^'.

— >r 1 — m g

313. Hence recapitulating we have these pairs of equations, viz.

(1)P=

or

-" = ±^ Viirp?=:?><0^^-~'^V

^ = + p /_?5_. X sec.-^4.— ^ m — 1 P
To construct the Trajectory^

put tf = 0, then

g = P= SA;
let g = CD, then

and

m—

1

m P—r^' -sec."
m

V m P2.—r^)

m

- 2 Vj
m

m— 1'

and taking A S B, A S B' for these values of ^,

and S B, S B' for those of p and drawing B Z,

B' 7/ at right angles we have two asymptotes ; S C being found by put-

ting d zz V. Thus and by the rules in (35, 36, 37, 38.) the curve may
be traced in all its ramifications.

2. p = V (m — 1)

?

VG' + sr^)
and

I— a = + S
—

V (m — 1) g
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This equation becomes more simple when

we make Q originate from 1=00; for then

it is

• _ r'
}_

V (m -. 1)
^

g

and following the above hinted method the

curve, viz. the Reciprocal Sj^iral, may easily be

described as in the annexed diagram.

m .. e

'p=pVt^m
Jii~^^1

and

,_» = +rP /^IL— ^ r— mmP = '

i' Vm(r2_p2)_V (r^— mP^)

and when 6 is measured from an apse or when P' = r

, = + P./-J!L_.i^C-' + fr
— ^ 1 — m g

Whence may easily be traced this figure.*

A

P

V(r='— P'^) r*

From which may be described the Logarithmic Spiral.f

m— 1
X

V(t^-^')
_ / m , r \/(r^—mP— 1— rn.g^)— A/ (r^— mP)

?-«-J:rP^^--^pXl.-. v(m.r^- g^) - V (r ^— m P^)
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or
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'=±'-Vt
m -1. r — V ii' — r')

m
when P = r.

Whence this spiral.

These several spirals are called Cotes' SpiralSi

because he was the first to construct them as

Trajectories.

314. If n = 4. Then the Trajectory, &c.

are had by the following equations, viz.

5

d^ = r P ^/ ^ XS m— 1

*V(^ m— 1 ^^Iir:=i;

315. If n = 6. Then

p = P V m
V (m— l.?«+r*)

d^ V m — 1 // 4

which as well as the former expression is not integrable by the usual

methods.

When

m— 1

is a perfect square, or when

,^^^J^^^^,^+ 'm— 1

m^P*

dg

m — I
~ 4 (m — 1)

*

^ then we have

^ • 2 (m — 1)

Therefore (87)
/ m P

„ / m ^ /2(m—1)^, N 2 (m — 1)
'

Vv ""2(m— 1)/
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F V m— § V 2 (m — f)

V(2.m— l.g2— m P^)

, ./oi f V2 (m— 1) + P Vm
a— ^or=r v 21. = ^^ ^ '

V(mP2_2.m — l.f^)
and these being constructed will be as subjoined.

316. Cor. 1. otherwise.

To find the apses of an orbit 'where F = -^,

Let

P = f-

Then

i

m
m— 1

n —

1

r n — 3 ,

+ = = m > 1m — 1
^

m = 1

Pn-3
and

+
m pspn-;

. . . m < 1

239

1— m " 1—

m

which being resolved all the possible values of f will be discovered in each

case, and thence by substituting in ^, we get the position as well as the

number of apses.

Ex. 1. Let n = 2. Then

, ,
r mV'

m

^ = T =
L

=

g*-
1 —

m

m

4

mP«
g + T =
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which give

r- + 4 m P- . (m — 1)

2(m— 1)—

V

4(m — i;

L,

4.

and
4mP^{l — m)

^ - 2 (1 — m) - -V 4.(1— m) ^

Whence in the ellipse and hyperbola there are two apses (force in the

focus) ; in the former lying on different sides of the focus ; in the latter

both lying on the same side of the focus, as is seen by substituting the

values of ^ in those of ^. Also there is but one in the parabola.

Ex, 2. Let n = 3. Then eq. (A) become

m P^ 4- r*
(1) s' = ,^ ' ^ m — 1

which indicate two apses in the same straight line, and on different sides

of the center, whose position will be given by hence finding 6

;

(2)

r
S = 2 - QO

po
because r is > P,

ienc(

(8)

I there is no apse.

, r^ — mP^

which gives two apses, r * being > m P ^ because m is < 1 and P < r

;

and their position is found from 6.

317. Cor. 2. This is done also by the equation

P
p =r g. sm. <Pf or sin. f = -^

f being the z. required.

Ex. When n = 3, and m = 1, we have (4. 313)

PP=-^
P

.*. sm. (p = -7^

.*. (p is constant, a known property of the logarithmic spiral.

318. To find isohen the body reaches the center offorce.

Put in the equations to the Trajectory involving p, ^ ; or g, ^

J
= 0.

Ex. 1. When n = 3, in all the five cases it is found that

p =
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and

6 = — X.
Ex. 2. When n = 5 in the particular case of 315, the former value of

d becomes impossible, being the logarithm of a negative quantity, and the

latter is = — oo .

319. Tojind 'when the Trajectory has an asymptotic circle.

If at an apse for ^ = cc the velocity be the same as that in a circle at

the same distance (166), or if when

^ = CD

and

P = f

we also have

p - 1p

then it is clear there is an asymptotic circle.

Examples are in hypothesis of 315.

320. Tojind the number of revohitionsfrom an apse to § = co .

Let 6' be the value of ^ — a when ^ = p or at an apse, and 0" when

^ = 00. Then

V = — = the number of revolutions required.

Ex. By 313, we have

^ rv ^' = P J^—^ sec. -» %>f m — 1 P

_ / m ir

- Vm— 1
• T

1 / ^

321. CoR. 3. First let V R S be an hyperbola whose equation, x being

measured from C, is

Then

But

b*

V C R = y-^-^ -/y d X

/ydx = ^/dx ^/(x2-a2)
£1

= ° X V x«-a^ --g-/
a a,

^
h r x« d X

Vou I. Q
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=-xv'(x2—a»)—/dx V(x2— a^)— - f-^-A^
a ^ ^ a^ ^ ^ a«/ V(x*—a^)

•• «7 y a X = —xV(x*—a*)— abl.

—

^ '-

a a

and

VCR=!^l."+^ '"'-"'> .... (1)
2 a ^ '

Again

g = CP = CT = x — subtangent

= x-Ldi^(29)
d y ^ '

_ x' — a^ _ a"~
x ~ X

aiid substituting for x in (1) we have

.•< = VCP«VCR=iJNl. ''+ ^(»'-s')
. . . . (2)

2 a f
^ '

N being a constant quantity.

322. Hence conversely

and differentiating (17) we get

d u^ _ 4 / 2 1 \ .

dJa' - a^b^N^ ^ ^" " ^; * ' ' " V*;

and again differentiating (d d being constant)

d^u 4

d<>2 - a^b^N"
Hence (139)

F =

X U

P'V / 4 x2_ i_
g • Va-^b^Ns + ^J g^'^ g»

322. By the text it would appear that the body must proceed from V
in a direction perpendicular to C V — i. e. that V is an apse.

From (1) 322, we easily get

d g
^
-_ 4

/ 2 2 4\

dtf2~" a^b^N*^" S —S )
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and since generally

d^2- p8- \S P ^

4-
a^b^'N'

Xp*X(a'-g^) =g==-p

.•.P^ = ^—^^
. ... (1)

which is another equation to the trajectory involving the perpendicular

upon the tangent.

Now at an apse

P = S

and substituting in equation (1) we get easily

S = a .

which shows V to be an apse.

OTHERWISE.

Put d ^ = 0, for f is then = max. or min.

324. With a proper velocity.']

The velocity with which the body must be projected from V is found

from

vdv = — gFdf.
325. Descend to the center']. When

g = 0, p = (1. 323) and ^ = CO (2. 321). ^
326. Secondly, let V R S be an ellipse, whose equation referred to the

center C is

b*
y« = -„. (a«— x«)'
•^ a^ ^

'

Then

VCR=y^+/_yd

and as above, integrating by parts,

rA /,! t\
X V (a'— x')

,
a' /» dx

/d X V (a*-x^) = ^-2 -^ + ^/ v(a'_^.)
Q2
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X V (a' — x^)
.
ay. ,x ^.

.•.VCR = ^r^-.sin.-iiV
2 \2 a/

Also

dy
a« — x^ a*= X H = —

X X

and

a b N / <!r= N. VCR =

a T 2 6

.(^- sin.-. !)...(„

«•. sm. - * — = — —
2 ab N

a . /«• 2 ^ \ 2 <)

• • "~ — sm. I -tr- r-^ ) = COS. -
, .. y

f \2 abN/ abN
and

f=asec.^ (2)

Conversely by the expression for F in 139, we have

F ex -^

327. To Jind 'when the hody is at an apse^ eithei' proceed as in 323,

or put

d g = 0.

„ . , d x . sin. X
13y (27) d. sec. x =

^

sin. 6 =
COS. ^ 6

or

'6=0
that is the point V is an apse.

328. The proper velocity of projection is easily found as indicated

in 324^

329. Will ascend perpetually and go off'to infinity.

1

From (2) 327, we learn that when

2 6 _ It

HTN ~ 2

f is oo;

also that f can never = 0.
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330. When the force is changed from centripetal to centrifugal, the

sign of its expression (139) must be changed.

331. Prop. XLII. The preceding comments together with the Jesuits'

notes will render this proposition .easily intelligible.

The expression (139)

g P'df
or rather (307)

p2 y2
P°' = V^-2g/d7Tf

in which P and V are given, will lead to a more direct and convenient

resolution of the problem.

It must, however, be remarked, that the difference between the first

part of Prop. XLI. and this, is that the force itself is given in the former

and only the law offorce in the latter. That is, if for instance F = /* f
" ~ ^,

in the former fi is given, in the latter not. But since V is given in the

latter, we have /x from 304.

SECTION IX.

332. Prop. XLIII. To make a body move in an orbit revolving about

the center of force^ in the same 'way as iti the same orbit quiescent^

that is. To adjust the angular velocity of the orbit, and centripetal force

so that the body may be at any time at the same point in the revolving

orbit as in the orbit at rest, and tend to the same center.

That it may tend to the same center (see Prop. II), the area of the new

orbit in a fixed plane (V C p) must a time a area in the given orbit

(V C P) ; and since these areas begin together their increments must also

be proportional, that is (see fig. next Prop.)

CPxKRaCpxkr
But

KR = CK X Z.KCP
k r= Ck X z-kCp

and CP= Cp, andCK = Ck
.-.ziKCPakCp

and the angles V C P, V C p begin together

.-. /lVCP a ^VCp.
Q3
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Hence in order that the centripetal force in the new orbit may tend to

C, it is necessary that

^VCpa^VCP.
Again, taking always

CP = Cp
and

VCp:VCP::G:F
G : F being an invaa'iable ratio, the equation to the locus of p or the orbit

in fixed space can be determined; and thence (by 137, 139, or by Cor.

1, 2, 3 of Prop. VI) may be found the centripetal force in that locus.

333. Tojind the orbit infixed space or the locus qf\i.

Let the equation to the given orbit V C P be

where f
= C P, and ^ = V C P, and f means any function ; then that of

the locus is

f = f(-|0 (')

which will give the orbit required.

OTHERWISE.

Let p' be the perpendicular upon the tangent in the given orbit, and p

that in the locus ; then it is easily got by drawing the incremental figures

and similar triangles (see fig. Prop. XLIV) that

K R : k r : : F : G
k r : p r : : p : V (g

^— p ^)

pr :PR:: 1 : 1

PR:KR:: V(f^— p'^) : p'

whence

and

1:1 :: F.p V(f2— p'2): Gp' V(f*— p«)

••P - F2g2 + (G2_F2)p'2 v;

334. Ex. 1. Let the given Trajectory be the ellipse with the force in

its focus ; then

P -2T^' ''"'*^"
1 + ecos.d'

and therefore

b^G^(2a-e)g^
P -b2(G2— F'^) + F''^(2ag— g«)
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and

a.(l— e^)
s = 7T"T'

1 + e COS. ( p dj

Hence since the force is (139)

"'a"+")g
and here we have

F
a(l — e*)u=l + e cos. -^ 6

2 F* F«
= Q + aG-(l-e-) "-G'^"'

and again differentiating, &c. we have

d^u _ F^ G^ — F"

dT^ + " ~ G»a(l— e*)
*"

G*^ ^
"'

But if 2 R = latus-rectum we have

.. the force in the new orbit is

P»V' jF'^ , RG'— RF« ^

gRG«^t^^+ e j

335. Ex. 2. Generally let the equations to the given trajectory be

f
= f(^)

and

Then since

G*
... d^^ = ^dd'«

d«u _ F'd'u ,

F^ /d^u . \ . F«

and if the centripetal forces in the given trajectory and locus be named

X, X', by 139 we have

gX^ _ FJ gX G' — F' 2.

Q4

}
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p« v« / F^X G'-F ' 1 X

Also from (2. 333) we liave

J^ _ Fj J_ G'— F g J^
p« ~ G^^ p"* "^ G* ^ g«

••p'dg~ G^ P"d§ G^ g^

.-. by 139

gX' F^gX , G-— F« I

p2y2— p/ay/aT^ Qs ^ ^j

the same as before.

This second general example includes the first, as well as Prop. XLIV,
&c. of the text.

336. Anothej' determination of the force tending to C and txihich shall

make the body describe the loctis of-^.

First, as before, we must show that in order to make the force X tend

to C, the ratio /iVCP: iiVCp must be constant or = F : G.

Next, since they begin together the corresponding angular velocities

w, w' of C P, C p are in th^t same ratio ; i. e.

« : <w' : : F ; G.

Now in order to exactly counteract the centrifugal force which arises

from the angular motion of the orbit, we must add the same quantity to

the centripetal force. Hence if f, f' denote the centrifugal forces in the

given orbit and the locus, we have

X' = X + 9' — p

X being the force in the given orbit.

But (210)

p 2 V *
]

f = X —
g f

and

a «*

when I is given.

«'» G*P*V«G« 1
•*. P' = ? X -T = f X ,^, = ——- X V.-Y X

(a F«- g -^F'-^g

p£V2 G^— F* 1
.'. f'— f = X rr^ X -7

p^V G^— F^ _ 1
X' = X + i-^ x-^^^-pr^ x-L . .... (1)
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or

^i^h^^^) (3)

or

__ P' V^ /_d^p ^ G' — F'

"
g ^ ^P'

337. Prop. XLIV. Take u p, u k similar and equal to V P and V K ;

also

mr:kr::^VCp:VCP.
Then since always C P = p c, we have

p r = P R.

Resolve the motions P K, p k into P R, R K and p r, r k. Then

RK(=rk):rm::z.VCP:^VCp
and therefore when the centripetal forces PR, p r are equal, the body

would be at m. But if

pCn:pCk::VCp:VCP
and

Cn = Ck
the body will really be in n.

Kence the difference of the forces is

mkxms (mr— kr).(mr+kr)m n = = i —

^

^

.

m t m t

But since the triangles p C k, p C n are given,

K r a m r a j^
—
Cp

1 1
.*. m n 05 7s—i X —- .

C p* m t

Again since

p Ck: p Cn : PCK:pCn:: VCP: V Cp
: k r : m r by construction

: p C k : p C m ultimately

.*. p C n = p C m
and m n ultimately passes through the center. Consequently

m t = 2 C p ultimately

and

1

Cp
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OTHERWISE.

338. By 336,

~ g ^ F^ ^P
1a — .

i'

339. To trace the variatiofis of sign ofmn.
If the orbit move in coiisequentia, that is in the same direction as C P,

the new centrifugal force would throw the body farther from the center,

that is

Cmis>CnorCk .

or m n is positive.

Again, when the orbit is projected in antecedentia with a velocity <
than twice that of C P, the velocity of C p is less than that of C P.

Therefore

C m is < C n

or m n is negative.

Again, when the orbit is projected in antecedentia with a velocity =
twice that of C P, the angular velocity of the orbit just counteracts the

velocity of C P, and

m n = 0.

And finally, when the orbit is projected in antecedentia with a velocity

> 2 vel. of.C P, the velocity of C p is > vel. of C P or C m is> C n, or

m n is positive.

OTHERWISE.

By 338,

But

m n oc <p'— p

w' = « + W
W being the angular velocity of the orbit.

.•. m n cx-4-2 wW+ W^
a + 2 w + W

4" or — being used according as W is in consequentia or antecedentia.
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Hence m n is positive or negative according as W is positive, and nega-

tive and > 2 w ; or negative and <C 2 w. That is, &c. &c.

Also when W is negative and =: 2 w, m = 0. Therefore, &c.

340. CoR. 1. Let D be the difference of the forces in the orbit and in

the locus, and f the force in the circle K R, we have

D: f : : m n : z r

^^mkXms.rk'
m t * 2kc

(m r 4" r k) (m r — r k) , r k '

*
*

2 k c • 2'kc

:: mr* — rk^ : rk'^

:: G«— F* : F«.

341. CoR. 2. In the ellipse *with theforce in thefocus, we have

F ' R G2 R F^

A«^ A^
For (C V being put = T)

V* v'*
Force at V in Ellipse : Do. in circle : : -; tttxt : t^, ,t/'^ chord P V _r V

_ 1 1

• ' 2 R* 2T
::T: R

Also F in Circle :mnatV::F*:G«— F*

m n at V : m n at p : : Tpj : -r-j

. T? .T7- 11- .
TF^ RG« — RF«

.'. 1^ at V m ellipse : m n at p : : —j^-3

Hence

F'

we have

F*F in ellipse at V = ™j

and

RG«— RFm n =

and

X' = X + m n

F« , RG«— RF*
T^+ A^

see 834.
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OTHERWISE.

342. By 336,

But

X = ^.

and

P* V* L= ~ /* = R f* (157)
g 2

345. Cor. 3. In the ellipse with theforce in the center.

V, F«A
, RG* — RF«

For here X a A and the force generally a p-^ (140)

Force in ellipse at V : Force in circle at V : : T : R

I

Fin circle : m n at V ::F«:G*— F*

m n at V : m n at p : : ip-g : -^3

r- 11- .xr .
F« ^ RG' — RF

.*. F m ellipse at V : m n at p : : «r3 • 1 '- T-3

F* A
.*. assuming F in ellipse at P = ^^

-

3 > we have

F in ellipse at V = ^3 X T

and

RG* — R F«
.-. m n = ^^-3

.•.X' a X 4- m n a, &c.

OTHERWISE.

„ ,P«V« 4 (Area of Ellipse)
344. X = /* p, and — = —^

,^^ ./,''

g g (Period)*

= Ata«b« (147)
g( Period)*
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Therefore by 336

X' = /*g + ^a«b* X

S58

-^ X I- F^ ^ 1
F'S

G^— F2 1

b^ X

X gs

(G«—

F

RG« — RF*
}
F

345. Con. 4. Gena^ally let X he the force at P, V ttt^ at V, R the

radius of cui'vature m V, C V = T, &c. then

V RG^— VR F2
X'oc X-f

A^

For

{

F in orbit at V : F' in circle at V
F' : m n at V
m n at V : m n

.'. F in orbit at V : m n

.'. since by the assumption

T : R
F": G*^ — F«

A': T'
V F'' G^ F*44 : VR. A =

F in orbit at V = VF'

m n _ VR(G^ — F»)

and

A^

OTHERWISE.

This may better be done after 336, where it must be observed V is not

the same as the indeterminate quantity V in this corollary.

346. CoR. 5. The equation to the new orbit is (333)

P - F2g« + (G* — F=^)p'*

p' belonging to the given orbit.

Ex. 1. Let the given orbit be a common parabola.

Then
p' ^ = r f

.•.p« = G^re'
F^^ + (G^— F*)f

and the new force is obtained from 336.
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Elx. 2. Let the given orbit be any one of Cotei SpiralS) ivhose general

equation is

b* P*
P a^ + s^'

Then the equation of 333 becomes

P' = rL2

—-b* p*

g-b^+a'^ — b« + j«
F

which being of the same form as the former shows the locus to be similar

in each case to the given spiral.

This is also evident from the law of force being in each case the same

(see 336) viz.

fi , P2V« _ G« — F*
^^ JX' — 3 + g X Qi X ,3

1

Ex. 3. If the given orbit be a circle, the new one is also.

Ex. 4. Let the given trajectory be a straight line.

Here p' is constant. Therefore

V — Y^ G* F^
? H JM P

the equation to the elliptic spiral, &c. &c.

Ex. 5. Let the given orbit be a circle 'with theforce in its circumference.

Here

P ~ 4r2

and we have from 333

G'g*
P*- 4r«F*+ (G«— F*)g**

Ex. 6. Let the given orbit be an ellipse laithforce in thefocus.

Here

t

and this gives

*^
2 a—

g

F'g(2a — g)+ b*(G*- F*)'
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347. To find the points of contrary jlexurCi in the locus put

dp = 0;

and this gives in the case of the ellipse

_ b' F' — G»
^ ~ T' F^

OTHERWISE.

In passing from convex to concave towards the center, the force in the

locus must have changed signs. That is, at the point of contrary flexure,

the force equals nothing or in this same case

F' A + RG* — R F* =

'•• A =^, X(F«-G»)

- k! F^ — G'
~"

a • F* •

And generally by (336) we have in the case of a contrary flexure

pa V2 G'^ F* 1

which will give aU the points of that nature in the locus.

348. To find the "points 'where the locus and given Trajectory intersect

one another.

It is clear that at such points

g = g', and (J' = 2 W T + /J

W being any integer whatever. But

F

. . . __ 2 W*
m+

1

This is independent of either the Trajectory or Locus.

349. To find the number of such intersections during an entire revolution

of C P.

Since 6 cannot be > 2 «•

W is < m + 1 and also < m — 1

.-. 2 W is < 2 m.

2 GOr the number required is the greatest integer in 2 m or -p-

.

This is also independent of either Trajectory or Locus.
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350. To Jind the number and position of the double points of the Loctts,

i. e. ofthose points where it cuts or touches itself.

Having obtained the equation to the Locus find its singular points

whether double, triple, &c. by the usual methods; or more simply,

consider the double points which are owing to apses and pairs of equal

values of C P, one on one side of C V and the other on the other, thus :

The given Trajectory V W being

symmetrical on either side of V W, let

W be the point in the locus correspond-

ing to W. Join C W and produce

it indefinitely both ways. Then it is

clear thatW is an apse; also that the

angle subtended by V v' x' W is

5= -=- Xffrrwff+^VCy', w being

the greatest whole number in -^ (this

supposes the motion to be in consequentia). Hence it appears that where-

ever the Locus cuts the line C W there is a double point or an apse, and

also that there are w + 1 such points.
pi

Ex. L Let -=r = 2 ; i. e. let the orbit move in conse-

quentia 'with a velocity = the velocity of C F. Then z,

V C y' = 0, y' coincides with V, and the double points

are y' V, x' and W.
The course of the Locus is indicated by the order of

the figures 1, 2, 3, 4.

Ex. 2. Let % =S.
F

Then the Locus resembles this figure, i, 2, 3,

4, 5, 6. showing the course of the curve in which

V, x', A,W are double points and also apses.

Ex. 3. Let ^ = 4.
'

Tlien this figure sufficiently traces the Locus.

Its five double points, viz.

also apses.

V, x'. A, B, W are

G
Higher integer values of -p will give the Locus
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still more complicated. If -p be not integer, the

figure will be as in the first of this article, the

double points lying out of the line C V. More-

over if ^r be less than 1, or if the orbit move in
F '

antecedentia this method must be somewhat

varied, but not greatly. These and other curio-

sities hence deducible, we leave to the student.

351. To investigate the motion of (p) 'when the

ellipse, the force being in the focus, moves in ante-

cedentia with a velocity = velocity of C V in

consequentia.

Since in this case

G =
.-, (333) also

P =
or the Locus is the straight line C V.

Also (342)

X' = ^ r^
R F'

f

= /i X
?~R

Hence

vdvcx X'dga dg Rd
2 I .3

2g. R , 2g—

1

1 OC 2
e^ — e'

(where o^~^ = 1 and the body stops when

2g— 1 + e'' — A^ = 0,

or when

g = 1 + e.

Hence then the body moves in a straight line C V, the force increasing

3
to — of the latus-rectum from the center, when it = max. Then it

4

decreases until the distance = — or R. Here the centrifugal force pre-

vails, but the velocity being then = max. the body goes forward till tVie

Vol. I. R
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distance = the least distance when v = 0, and afterwards it is repelled

and so on in infinitum.

352. Tojind isolien the velocity in the Locus = max. or min.

Since in either case

d.v2 = 2vdv =
and

V d V = X' d f

.-. X' =
.-. (336)

Ex. In the ellipse with the force in the focus, we have (342)

.-. ? = R X pa

- b^ F' — G'
~ V ^ F^ •

b 2 L
If G = 0, V = max. when g = —

o" > °^ when P is at the extie-
a /i

mity of the latus-rectum.

If F = 2 G, V = max. when ? = R .
^^^~;— = -?^ R = -f

-

' 1 (jr - 4 8

lat. rectum.

353. To find nahen the force X' in the Locus = max. or min.

Put d X' = 0, which gives (see 336)

, ^ 3P^V^ ^ G' — F' 1—g
F* g*

Ex. In the ellipse

and (157)

x = A

= /i R
g

— 2F'dg 3RG*df— 3RF«dg _

which gives

r

3R F* —

G

-

S = -2- X
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Hence when

G =X, 3 R= max. when § = —^- .

When f = R, and G = 0. Then

R^ ~BJ'
~

When F = 2 G, or the eUipse moves m consequentia with ^ the velo-

city of C p ; then
^

X = max. when

- i^ 4G^ — G^ _ _^ T?
^ ~ 2 • 4 G^ - 8

354. CoR. 6. Since the given trajectory is a straight line and the center

offorce C not in it, this force cannot act at all upon the body, or (336)

X = 0.

Hence in this case

^, _ P^V^ ^ G^-F^ 1^ - —g— X pi ^ -p

where P = C V and V the given uniform velocity along V P.

In this case the Locus is found as in 346.

355. If the given Trajectory is a circle, it is clear that the Locus of p
is likewise a circle, the radius-vector being in both cases invariable.

356. Prop. XLV. The orbits (round the same center- offorce) acquire

the sameform, if the centripetalforces by which they are desciibed at equal

altitudes be rendered proportional.']

Let f and f be two forces, then if at all equal altitudes

f a f

the orbits are of the same form.

For (46)

d«e 1 1

f a T-r? a T—„ a

and

QT^

a
1

d 6^'

1
a

1

d6'^

d^ a d^.

dt^ dt'' S P'^ X QT^
1 _ 1

SP'^X d^^

R 2
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But they begin together and therefore

6 a: 6'

and

f = (.

Hence it is clear the orbits have the same form, and hence is also sug-

gested the necessity for making the angles 6, ^ proportional.

Hence then X', and X being given, we can find -^ such as shall ren-

der the Trajectory traced by p, very nearly a circle. This is done ap-

proximately by considering the given fixed orbit nearly a circle, and

equating as in 336.

357. Ex. 1. Tojind the angle hetisoeen the apsides lahen X' is constant.

In this case (342)

X' a 1 a -^ a —^__!
.

Now making g = T — x, where x is indefinitely diminishable, and

equating, we have

(T— x)^ = F2T— F2x + RG^—RF^
= T3— 3T2x4-3Tx2— x^

and equating homologous terms (6)

T3=F2T+RG2_RF2=F2 X (T— R) + RG*
and

F*= ST"
G_2 _ T^ T —

R

•*• F 2 - R F 2 R
_ T^ T —

R

~ 3 RT=^ R
_ _T T — R _ 3 R — 2T

3 R li 3 li

=r -—nearly
3 •'

since R is = T nearly.

Hence when F = 180° = cr

r = G = -;-3 . . . (I)

the angle between the apsides of the Locus in which the force is constant.

358. Ex. 2. Let X' a g''-^. Then as before

(T— x)n = F^(T— x) + RG^— RF*
and expanding and equating homologous terms

T° = F«T + RG'— RF*
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and

But since T nearly = R
'J'

n— 1 _. Q. 2

•*• F 2 ~ n

and when F = t

Thus when n— 3 = 1, we have

^=;^i = f = ««"-

When n— 3 = — 1, n = 2, and 7 = -^ = 1270. 16'. 45'^

When n— 3 = — ^,n = 4 ,and7 = 2cr= 360°.
4 4

359. Let X' a ^^"^^^°
. Then

b.(T— x)'« + c(T— xj'^zr F^(T— x)+ R.(G2— F^)

and expanding and equating homologous terms we get

bT'" + cT« = F2(T — R) + RG^
and

bmT'»-i + cnT"-^ = F^.

But R being nearly = T, we have

b T'^-ii cT"-i = G^
G^ _ bT'^-i + c T°-' _ bT'^ + cT"

•*'F2~ bmT"»-i + cnT°-i "mbT">±ncT''
which is more simply expressed by putting T = 1. Then we have

9l - b+c
F^ "" mb + nc

and when F = w •

r / b + c
' N m b + n c

360. CoR. 1. Given the l. between the apsides to Jind theforce.

Let n : m : : 360° : 2 y

: : 180° =r ^ : 7

m
.". 7 = — «

But if X' a gP--

7 = Vp-
R3
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n

n2

Ex. 1. If n : m : : 1 : 1,

as in the ellipse about the focus.

2. If n : ra : : 363 : 360

X' a mS"

X'«l

3

X'a gCl2i;
-^

3. Ifn : m : : 1 : 2

1X'«

And so on.
S

Again if X^ « —

j

and the body having reached one apse can never reach another.

1
IfX'oc _ .

^

7 = V — q
.*. the body never reaches another apse, and since the centrifugal force

^'f —5 , if the body depart from an apse and centrifugal force be > centri-

petal force, then centrifugal is always > centripetal force and the body

will continue to ascend in infinitum.

Again if at an apse the centrifugal be <^ the centripetal force, the centri-

fugal is aWays < centripetal force and the body will descend to the center.

The same is true if X' a -^ and in all these cases, if

centrifugal = centripetal

the body describes a circle.

361. CoR. 2. First let us compare the force -j-^ — c A, belonging to

the moon's orbit, with

A'^
*

A^"

Since the moon's apse proceeds, (n m) is positive.
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.*. — c A does not correspond to n m and .•. --^ does not correspond
A.

Now
1 . A — cA* bA" — cA__ c A «—A» - °^

A-3
1— 4c „ F« „

.-. X'a Al^^"^a Ag1-3
1 — 4c _ Fj

•*•
1 — 2 ~ G^

£! KG' — RF'' _ 1 —4c 3cR
•"'A'''*" A' ~ A' "^ A^

F« 1 —4c , 1
•*• A« "^ —AT^^

^"
A^

3c Rm n = . „ .

and

Hence also

y =» /-———- . &c. &c. &c.
' 'VI — 4 c.

362. To determine the angle between the apsides generally.

Let

x«£^
'

.

. .

f (A) meaning any function whatever of A. Then for Trajectories which

are nearly circular, put

f(A) _ F'^ A + R.(G''— F')

A' ~ A'

.-. f. A = F' A + R(G*— F^)

or

f.(T — x) =5 F2(T — X) + R(G' — F*)

But expanding f (T — x) by Maclaurin's Theorem (32)

u = f (T— x) =U— U'x + U""^— &c.

U, U' &c. being the values of u, t— , -,

—

-. &c.° d x d x^

when X = 0, and therefore independent of x. Hence compaiing

homologous terms (6) we have

U = F'^T + R(G' — F')

U' = F''

R4
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Also since R = T nearly

U = TG^
G« U
F '^ ~ T . U'

Hence when F = ff, the angle between the apsides is

y = G = 'rJ,^-jjA

or

making T = 1.

Ex. 1. Let f (A) = b A •" + c A " = u

Then

T— = mbA'»-'+ncA'»-"'.
d X

Hence since A = T when x =
U = f T = b T " + c T "

U'= mbT"-' + ncT"-i
G« bT'» + cT«

or

and

F^ "" mbT^+ncT"

GJ _ b+ c

F 2 ~ m b + n c

/ b+c
V m b + n

(1)

(2)

as in 359.

Ex. 2. Let f . (A) = b A •» + c A » + e A ' + &c.

.-. ~ = mb A'^-' + ncA"-' + re A'-' + &c.
d X

.-. U = bT"* +cT"+eT^ + &c.

and «

T X U' = m b T "» + n c T " + r e T' + &c.

. G^ _ b T" + c T» + e T^ + &c.
•*• F^~mbT™+ncT"+reT^+&c.

or

when T = L
Also

— b + c+e + f+&c.
~mb + nc+re + sf+ &c.

-J b + c + e . . .

ni b + n c + J' e +
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A
Here (17)

^ = A«aA X (3+ Ala)

Hence

U = T=^aT X (3 + Tla)
T X U' = T3aT(3 + Tla)

G^ _ 1

F 2 ~ T X (3 + T 1 a)

and when T = I

21- i

F2~ 3 + la

Hence if a = e the hyperbolic base, since I e = 1, we have

Ex. 4. Let f (A) = e A = u.

Then

^ - eA
dx - ^

.-. U = e T

and

T.U' = TeT

••• p 2 - T
.*. y = T.

f (A)
Ex. 5. Let ). J = sin. A.

A^

and

u = f (A) = A^sin. A
.-. U = T^sm. T

T^ = 3 A 2 sin. A + A 'cos. A
d X

T U' = 3 T^sin. T + T*cos. T

. 21 _ sm. T
'• F * ~ 3 sin. T + T cos. T

_ / sin. T
•*'^ -''V3sin.T + Tcos.T*
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IfT = -J. Then
4

= 'V7^-
^ + 7

363. To j^cfoe that

bA"+cA» 1
inb + nc_3

in =
I—i— 'A i* + <=

A^ b + c

bA'° + cA" = b.(l — x)'" + c.(l — x)"

= b + c— (rab + nc)x+ &c.

mb+ nc
= bTT(> b + c

mb + nc

+ &C.)

b + c
X(l— x) b + .

1 m b +_n c

A b + c^-
b + c

364. To Jind the apsides when the excentricity is infinitely great.

Make
2 q : -v^ (n + 1) : : velocity in the curve : velocity in tlie circle of the

same distance a.

Then (306) it easily appears that when F « ^n

n + 3

, q a 2 d ^~
^ V (a » + 1— g » + 1yp^ZT^slT" +^"(a«^^'*)

and
dp

d^

gives the equation to the apsides, viz.

(a» + i — ^n + i)^2_q2an + i (^2— ^2) _

whose roots are

a (and — a when n is odd) and a positive and negative quantity (and when

n is odd another negative quantity).

Now when q =
(an + i—

f
" +

^)f'^ =
two of whose roots are 0, 0, and the roots above-mentioned consequently

arise from q, which will be very small when q is.

Again since

1
5 ** 4 , „ 2

a^ + i ^^ i- q - "

when q and ^ are both very small

t
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and

^ = + a q.

.'. the lower apsidal distance is a q.

A nearer approximation is

S=±
aq

Hence
n + 3

rl^-
qa ^ dg

^V(g2_a2q^ + /3) X Q
where jS contains q * &c. &c., and this must be integrated from g = b to

g = a (b = a q).

But since in the variation of g from b to c, Q may be considered con-

stant, we get

p c= sec.
-

'. -^ 4- C = sec. ~K—

.

aq a q
and

7 = -^, -g- ,
—

, &c. ultimately

the apsidal distances required.

Next let

1 fa" •
F«-!-and=—

.

Then again, make
V : V in a circle of the same distance : : q V 2 : V {n — 1)

and we get (306)

ov/a"-ig3_n— ^i — q2)g2— a*q*

and for the apsidal distances

^^="1 + ' ^ n^^l .3_n — ^an — 1 ' a" — "^ p3 —

n

which gives (n > 1 and < 3)

2

f = a q 3 — u'

Hence

=/;
aqdg

= -^ . f ^^^^
VQv^y (p3-n q2a^-""
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and
3—

n

y = 3=71
^"^- -lE^ = 3=11 = 3=11' ^^-

qa 2

Hence, the orbit being indefinitely excentric, when

F « g . ... we have . . . . y "= -^

for

JToe \ y=5^
any number < 1 '2

Fa-1 y='-
g

^ 2

1- — 1 ^ '"' ^

£ number between 1 and 2 * " * ' ' 2

F^pWs 7>*.

But by the principles of this 9th Section when the excentricity is inde-

finitely small, and Fag"

^~ V (n + 3)

(see 358), and when

F a —

.

y - V (3 — n)

Wherefore when n is > I

7 increases as the excentricity from

V (3 + n)
^^ "2 •

When F OC
g

y = — is the same for all excentricities.

When F a g
- «i

7 decreases as the excentricity increases from

It It

'/(3— n)
'"^ 2"

which is also true for Fa—.
i
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WhenFot_J_

y decreases as the excentricity increases from

toV (3— n) 3

When F « Jr
i

1
When F a

g
>2<3

7 increases with the excentricity from

toV (3— n) 3— n
*

If the above concise view of the method of finding the apsides in this

particular case, the opposite of the one in the text, should prove obscure

;

the student is referred to the original paper from which it is drawn, viz.

a very able one in the Cambridge Philosophical Transactions, Vol. I,

Part I, p. 179, by Mr. Whewell.

365. We shall terminate our remarks upon this Section by a brief dis-

cussion of the general apsidal equations, or rather a recapitulation of re-

sults—the details being developed in Leybourne's Mathematical Repository,

—by Mr. Dawson of Sedburgh.

It will have been seen that the equation of the apsides is of the form

x"— Ax*"— B = (1)

the equation of Limits to which is (see Wood's Algeb.)

nx^-J — mAx™-^ = (2)

and gives

-(^AV
1

— m

If n and m are even and A positive, i; has two values, and the number
of real roots cannot exceed 4 in that case.

Multiply (1) by n and (2) by x and then we have

(m—n)Ax™— nB =
which gives

/ B \ m"

-(^)"(i)
and this will give two other limits if A, B be positive and m even ; and if

(1) have two real roots they must each =: x.
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If m, n be even and B, A positive, there wiD be two pairs of equal roots.

Make them so and we get

(m— n)"-". /n\ „^ —^ A«— ( — ) «B"-™ =

which will give the number of real roots.

(1). If n be even and B positive there are two real roots.

(2). If n be even, m odd, and B negative and (M), the coefficient to

A ", negative, there are two ; otherwise none. .

(3). If n, m, be even. A, B, negative, there are no real roots.

(4). If m, n be even, B negative, and A positive, and (M) positive there

are four real roots ; otherwise none.

(5). If m, n be odd, and (M) positive there will be three or one real.

(6). Ifm be even, n odd, and A, B have the same sign, there will be

but one.

(7). Ifm be even, n odd, and A, B have different signs, and M's sign

differs from B's, there will be three or only one.

(8). If

x° + An™— B =
then

(^")
n —

m

A°.

is positive, and it must be > B, and the whole must be positive.

If

x^— Ax^^. B =
tlie result is negative.

SECTION X.

366. Prop. XLVI. The shortest line that can be drawn to a plane

from a given point is the perpendicular let fall upon it. For since

Q C S = right ^L, any line Q S which subtends it must be > than either

of the others in the same triangle, or S C is < than any other S C.

A familiar application of this proposition is this

:

367. Let SQ be a sling with a body Q at the end of it^ and by the hand

S let it be whirled so as to describe a right cone whose altitude is S C, a7id

base the circle xsohose radius is Q C ; required the time of a revolution.

Let S C = h, S Q = 1, Q C = r = '^V— \\\



h

P = 2-J^ (I)
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Then if F denote the resolved part of the tension S Q in the direction

Q C, or that part which would cause the body to describe the circle P Q,
and gravity be denoted by 1, we have

F : 1 : : r : li

...F = ^.
But by 134, or Prop. IV,

g

the time required.

If the time of revolution (P) be obsetved, then h may be hence obtained.

If a body were to revolve round a circle in a paraboloidal surface, whose

axis is vertical, then the reaction of the surface in the direction of the

normal will correspond to the tension of the string, and the subnormal,

which is constant, will represent h. Consequently the times of all such

revolutions is constant for every such circle.

368. Prop. XLVII. When the excentricity of the ellipse is indefi

nitely diminished it becomes a straight line in the limit, &c. &c. &c.

369. Scholium. In these cases it is sufficient to consider the motion

in the generating curves.]

Since the surface is supposed perfectly smooth, whilst the body moves

through the generating curve, the surface, always in contact with the

body, may revolve about the axis of the curve with any velocity whatever,

without deranging in the least the motion of the body ; and thus by ad-

justing the angular velocity of the surface, the body may be made to trace

any proposed path on the surface.

If the surface were not perfectly smooth the friction would give the

body a tangential velocity, and thence a centrifugal force, which would

cause a departure from both the curve and surface, unless opposed by

their material ; and even then in consequence of the resolved pressure a

rise or fall in the surface.

Hence it is clear that the time of describing any portion of a path in a

surface of revolution, is equal to the time of describing the corresponding

portion of the generating curve.

Thus when the force is in the center of a sphere, and whilst this force

causes the body to describe a fixed great-circle, the sphere itsej^ revolves

with a uniform angular velocity, the path described by t^©: body on the

surface of the sphere will be the Spiral of Pappus. A" -\
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370. Prop. XLVIII and XLIX. Li the Epicycloid and Hypocycloid,

s: 2 vers. "I-:: a(R + r) : R

•wJiere s is any arc of the curve, s,' the corresponding one of the wheel, and R
the radius of the globe and r that of the wheel, the + sign being used for

theformer and — in the Hypocycloid. (See Jesuits' notes.)

OTHERWISE.

If p be the perpendicular let fall from C upon the tangent V P, we

have from similar triangles in the Epicycloid and Hypocycloid

PY:CB::VY:VC
or

^!_p8:R2 :: (R + 2r)'— p^: (R + 2r)2

which gives

Now from the incremental figure of a curve we have generally

d s g

But

e-r^

V(g«— p»)

R'
(R + Sr)*^—

R

(1)

(2)

, 2Vr2 + Rr^
...ds = —— X

X {(R±2r)^— g^^

V (R±2r)2— g2

and integrating from

s = 0, when ^ = R
we get

s = g^r^±R^-
X W(R±2r)^— R^—V(R±2r)^-g'J

which is easily transformed to the proportion enunciated.

The subsequent propositions of this section shall now be headed by a

succinct view of the analytical method of treating the same subject.

371. Generally, A body being constrained to move along a given curve by

knff-jonforces, required its velocity.

Let the body P move along the curve

P A, referred to the coordinates x, y
originating in A ; and let the forces be

resolved into others which shall act

parallel to x, y and call the respective

aggregates X, Y. Besides these we

have to consider the reaction (R) of the
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curve along the normal P K, which being resolved into the same .direc-

tions gives (d s, being the element of the curve)

R -r— , and R ^^

.

d s as

Hence the whole forces along x and y are (see 46)

d

d_«

d

Again, eliminating R, we get

j~ =^ ^ = 2Xdx + 2Ydy

and

dx*+dy'' ^..,xr I . ^r 1 \ji—^ =2y(Xdx + Ydy)

But

ds^_ dx' + dy-
^ -dt«- dt«

^^^'

.•.v=' = 2/(Xdx + Ydy) (1)

Hence it appears that The velocity is independent of the reaction of the

curve.

372. If the force be constant and in parallel lintis, such as gravity, and

X be vertical ; then

X = -g
and

Y =
and we have

v2 = 2/— gdx
= 2g(c— x)

= 2g(h-x)
h being the value of x, when v = ; and the height from which it begins to

fall.

373. To determine the motiofi in a common cycloid, ixhen theforce is gravity.

The equation to the curve A P is

'2r— X
dy = dx^:

X

r being the radius of the generating circle.

.•.ds=:dx^^

Vol. I. S
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and

dt = ds / r d X= ^ — X,-
V2g.'v/(h— x) ^g V(hx— x^)

.•.t = C-,^-I-'vers.-^^ji^(86)

t being = 0, when x = h.

Hence the whole time of descent to the lowest point is

T ;r"

which also gives the time of an oscillation.

374. Required the time ofan oscillation in a small circular' arc.

Here
y=v'(2rx— x^)

r being the radius of the circle, and

1 r d X
us V (2rx— x^)

.-. dt = ds
V 2 g V (h --x)

- V2 g
"^

dx
V{\i-— x) (2 r X —-x^)}

r
XV2g

dx
V{{h^ X— X ^) (2 r -X)}

to integrate which, put

' = sin. ~ ^ ^ / (-^ h >

.-. d ^ = dx
2 V rhx— x*)

and since

Jl = sin. 6

X = h sin. ^ ^, 2 r -— X = 2 r— h sin.

'

d

= 2r(l — a^sin. 2^), 5 '^ being put=
h

"2r

.-. dt = - /i^x- d^
V g V (

1—3 'sin. 2^)*

Now since the circular arc is small, h is small ; and therefore 3 is so.

And by expanding the denominator we get
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and integrating by parts or by the foi'mula

yd ^. sin. n»^ = COS. ^ sin. "»-' ^ + ^^i^n_ fddsin.^-^6m m ^

and taking it from

^ = to ^ = -J
2

we get

/ d d sin. "i
6 = ^~^X ^ ^ sin, "-^ 6

the accented^ denoting the Definite Integration from ^= 0, totf= *
.

In like manner

^ m— 2^/; d ^ sin. « - 2 ^ = l!^ r
/; d tf sin. » -* ^

and so on to

/d^sin.^5 = ^/d^-^ 2

Hence

y;d^sin.--^=(V^^("^-^) 1x4*^' m (ra — 2) 2 2

andyd ^ ^ d =.

wTi—^"~^~^' ^''''^
(1 — S^sin.^^

is the same as

:!}
V (1 —32 sin. '^ 6) from

whence then

and taking the first term only as an approximate value

. ' = Wi (')

. . r
which equals the time down a cycloidal arc whose radius is -j-.

If we take two terms we have

: -Wi-('+x)
= Wio + s^)

••••••• w
S2
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375. To determine the velocity and time in a Hypocycloid, the force

tending to the center of the globe and « ^.

By (370)

the equation to the Hypocycloid is

- R«_D«
by hypothesis.

Now calling the force tending to the center F, we have

X= — F X -,Y = — F x^

../(Xdx+Ydy)=-/F "^" + y<^y

^-/Fdf
.•.v» = C— 2/Fdf (1)

But by the supposition

F = t^s

.'.v' = /.{h'— s') (2)

Hence

V
— V R^— D*

RV/M ^

To integrate it, put

S^— B' = u'

^"^^ -du

D'^— u«

and

VU§'-D«)(h^-g')]-

VR^— D^ du
at = —

RVfx, -/(h«— D*— u«)

Hence making g = D, we have

Oscill. cr /R2—

D

- 2V RV ^^^2

376. Since h does not enter the above expression the descents are

Isochronous.

We also have it in another form, viz.

T
2 ""V VR/tt R'fJ
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IfRfjk = g or force of gravity and R be large compared with b,

T /r

2=Wg
the same^as in the common cycloid.

377. Required to^nd the value of the reaction R, 'ivhen a body is con-

strained to move along a given curve.

As before (46)

^^ = X + R^
dt' ^ dx

i!y = Y-R^.
dt ds

Hence

dyd*x— dxd^y ^j ttj .tjj—^ -V--2 ^ = Xdy—Ydx+Rds
.R_ Xdy— Ydx , dyd^x— dxd»y

ds
But if r be the radius of curvature, we have (74)

ds^

dyd*x— dxd^y *

dt^ds

r =

Hence

R _ Ydx— Xdy ,ds^^-
dl "^rdt*

Another expression is

_ Ydx— Xdy .
v'-

^ =
dl * 7

or

_ Ydx— Xdy
- ds

f being the centrifugal force.

If the body be acted on by gravity only *

_gdy ds^-
- ds "^rdt*

+ 9

(1)

(2)

R

or

or

- ds "^ r

_gdy
" ds + P

(3)

If the body be moved by a constant force in the origin of x, y, we hav6

xri xri T^xdy— ydxYdx— Xdy= F-- ^ '-

= Fed
e

S3
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for

xdy — ydx = f*d

or

or

•

"

^
d s "^ r d t

*

_ Fgd <? vj
- ds "•" r

Fgd ^

ds + f

(4^)

378. To Jind the tension of the string in the oscillation of a common

cycloid.

Here

but

^d s^ rdt'

and

d y _ 2 a — x
d s ~ V 23"

r = 2V2a's/(2a — x)

d s^

Jti = 2g(h-x)

.••R = gV
2 a — x

_^ g (h^— x)

2 a ' V2 a V (2 a — x)

_ 2 a + h — 2 X

When X = h

R =

• V(4a^— 2ax)*

2a —

h

V(2a— h)

When x =
;^* V (4.a* — 2ah) ~ ^ V (2 a) '

J, 2a + h/'-,h\

When moreover h = 2 a, the pressure at A the lowest point is = 2 g.

379. To Jind the tension ivhen the body oscillates in a circular arc by

gravity. •
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Here

dv - (^ - ^) ^ ^
^ ~ V(2cx— X*)

J c d X
d s = V (2 ex — x*^)

dj' _ c —

X

d X c

r = c

d s'^

-i-— = 2 ff (h — x)

n c — x . 2 g (h — x)

° C C

When X =

= g

R = g

c + 2 h — 3 X

c + 2 h

= 3 g or h = c.

If it fall through the whole semicircle from the highest point

h = 2 c,

and

R = 5g
or the tension at the lowest point is five times the weight.

When this tension = 0,

c + 2 h — 3 X = 0, or X = ^ \^^
.

A body moving along a curve whose plane is vertical will quit it when

R =
that is when

c + 2 h

and then proceed to describe a parabola.

/ 380. To Jind the motion of a body upon a surface of revolution^ when

acted on by forces in a plane passing through the axis.

Referring the surface to three rectangular axes x, y, z, one of whicli (z)

is the axis of revolution, another is also situated in the plane of forces, and

the third perpendicular to the other two.

Let the forces which act in the plane be resolved into two, one parallel

to the axis of revolution Z, and the other F, into the direction of the

radius-vector, projected upon the plane perpendicular to this axis. Then,

S4
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calling this projected radius
f,

and resolving the reaction R (which also

takes place in the sanie plane as the forces) into the same directions, these

components are

a s

d s

supposing ds=:V(dz^ + df^) and the whole force in the direction

of
f'

is

d s

and resolving this again parallel to x and y, we have

d t^ V a sJ P

and
d^z = — Z + R
d 1 2

"" " •
*•' d s

Hence we get

X d' y — y d' x _ ^v __ i xd y — y d x
dt = dt

and

dxd'x+dyd^y+dzd*z__ ^ xdx+ y dy
dl^

- •

S

— Zdz ^ dz fxdx + y dy dgdz\
^•dll ~1 ds j

df

(1)

(2)

(3^

Which, since

X dx + y d y

i

,/dxHdy^+dx% ^_, ^_,
\ \i'[2 ) =— 2Fdf— 2Zdz.

Again

d z^ _ d z^ dg'

dt2-dg**dt«'

and from the nature of the section of the surface made by a plane passing

through the axis and body, t— is known in terms of g. Let therefore

dz
.d7=P
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and we have
d_z^ _ ^

dg'
d t* ~ P dt^ •

Also let the angle corresponding to f be ^, then

xdy — ydx = ^*d^ *^

and

dx^ + dy^ = di^ + g^ddS
and substituting the equations (2) and (3) become

d. 4^11 =

Integrating the first we have

g
2 d ^ = h d t

h being the arbitrary constant,

or

at = i^ •

(4)

The second can be integrated when

— 2Fd^ — 2Zdz
is integrable. Now if for F, Z, z we substitute their values in terms of ^,

the expression will become a function of § and its integral will be also a

function of g. Let therefore

/(F d f + Z d z) = Q
and we get

dg' g'd^' dg' _ /
dT^ + "TT^ + P-a-F--^-2Q (5)

which gives, putting for d t its value

• >/Uc-2Q)g^-h^} ^^^

Hence also

d t
- V(l +P^)»gdg

^^ - V f(c — 2Q)g2 — h^j • • • • ; • • ^'^

If the force be always parallel to the axis, we have

F =
and if also Z be a constant force, or if

Z = g
we then have

Q = /Zdz It: gz . (8)
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Z being to be expressed in terms of g.

381. Tojind under tohat circumstances a body will describe a circle on a

surface of revolution.

For this purpose it must always move in a plane perpendicular to the

axis of revolution ; p, z will be constant; also (Prop. IV)

I COS. ^ = X

_
d * X _ I COS. ^ d ^

-

•"•

dT^
~

d~P

Also

ed 6
V = ^—,—

d t

d * X _ V ^ COS. d

•'* dlF
~

~i

•

Hence as in the last art.

f ds f

ds

^

...I-'^F+Z^-^ ........ (,)

If the force be gravity acting vertically along z, we have

Z = g
V* __ d z

Hence may befound the time of revolution of a Conical Pendulum,

(See also 367.)

382. To determine the motion of a body moving so as not to describe a

circle, when acted on by gravity.

Here

Q = gz
and

C — 2Q = 2g.(k — z)

k being an arbitrary quantity.

Also

g« = 2 r z — z*

z being measm-ed from the surface.

.-. D(\g = (r — z) d z

and

r-
1 + p2 = 1 +

(r_ z) '^ - (r
s •
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Hence (390)

dt= ^{^ + P')X^S
Vj2g(k— z). (2 rz — z*) — h^ '

In order that

d t

the denominator of the above must be put = ; i. e.

2g(k — z)(2rz — z2)_h2 =
or

z^" — (k + 2r)z2 + 2krz — 2l = o
2g

which has two possible roots ; because as the body moves, it will reach

one highest and one lowest point, and therefore two places when

dz
di = »-

Hence the equation has also a third root. Suppose these roots to be

S ^> 7
where a is the greatest value of z, and/3 the least, which occur during the

body's motion.

Hence

1 . rd^
- V(2g) V J(«-z).{z-^)(7-z)-

To integrate which let

^=:sm.-^^---3.

Then
dz

d^ =
2V|(z-/3).(a-^)J^{l_^^}

- 2V J(« - z) (2 - /3)}

Also

sm. * d = 3

.-. z = j8 + (a — i8) sin. * 6

and

y — z = 7 — J^ + (a — /3) sin. ' 6]

= (7 — ^) n — ^'sin.M^,

if

3- /"-^
^-Vy_(3
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. , 2r«d 6

"" V2 g . (7 -— /3) . Vfl — a^ sin. 2
^}

which is to be integrated from z = /8, to z = a ; that is from

tf = to tf = -|.

this expanded in the same way as in 374 gives

2r
t = =Sx{'+(l)'-(^)Hacc.};V2g(7-

which is the time of a whole oscillation from the least to the greatest

distance.

Also

, , h d t h dt
g^ 2 r z — z*

and 6 is hence known in tei-ms of z.

383. A body acted on by gravity moroes on a surface of revolution xohose

axis is vertical : 'when its path is nearly circular^ it is requiied to find the

angle between the apsides of the path projected in the plane of'SL, y.

In this case

/ZdzrrgzrrQ
and if at an apse

g = a, z = k

we have

(C— 2gk)a*— h«=

Hence (380)

h'
•. C = ^, + 2 g k.

d,^^
V(J^+p«)hd^

^{2g(k_z)-.h^(-V—^)}

Let L = ± + «

S
a

__
V (1 + pgjhdfe

^{2g(k-z)-h»(l-i)}
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^ _ 8g(k-z)-h'(-l-(-^)
" d&^ ~ h2(l + p-i)

It is requisite to express the right-hand side of this equation in terms

of w

Now since at an apse we have

« = 0, z = k, and g = a

we have generally

,dz d^zw^
d u d w2 1.2

the values of the differential coefficients being taken for

w = (see 32)

And
dz = pdg = — pf'^dw
d^z = — 2pfdgdw — g*d«Mdp

or, making

dp = qdf
d^zzr — (2p+qg)^d^d«=(2p + qf)g»d«*.

And if P/ and q, be the values which p and q assume when « = 0,

f
= a, we have for that case,

3-^2= (2p,+ q,a)a'

Z = k— p,a«« + (2p + q,a) a^ |^ — &c.

e* \a / a' a ^
Hence

2g(k-z)-h'(-i-l)

becomes

' 2 g (p, a* « - (2 p,+ q, a) a^^ + &c.)-h«(^ + a,*).

But when a body moves in a circle of radius = a, we have

h2 = ggSp _ ga'p,
in this case. And when the body moves nearly in a circle, h * will have

nearly this value. If we put

h« = (1 + a)ga^p,
we shall finally have to put

5 =
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•in order to get the ultimate angle when the orbit becomes mdefinitely near

a circle. Hence we may put

h^ = ga>,
and

2g{k-z)_h-(l-l)
becomes

- {3ga3p, + ga*q,]a>2 + &c.

in which the higher powers of a may be neglected in comparison of w *

;

.
d^ _ _ ga^(3p, + q,a)u>' _ — (3 p, + g, a) a;

^

"dd'2 h^l+P') ~
P. (l+P')

_ (3p,+ q.a)a,^

P/(l+P/)
again omitting powers above « ^ : for p = p; + A w + &C'

Differentiate and divide by 2 d w, and we have

^L" = - ^-P'-ig^. . = _ N «
d <j»

-
p, (1 + p/)-

suppose; of which the integral is taken so that

^ = 0, when w =
is

w = C sin. 6 V N.

And w passes from to its greatest value, and consequently § passes

from the value a. to another maximum or minimum, while the arc ^ V N
passes from to sr. Hence, for the angle A between the apsides we have

AVN=i«-orA=,T,T
V N

where

_ 3 p, + q, a

~R(1+P/)
384. Let the surface he a sphere and let the path described be iiearly a

circle ; to Jind the horizontal angle between the apsides.

Supposing the origin to be at the lowest point of the surface, we have

z = r —• V (r 2 — g ^)

_ d z _ f
P ~ d7 ~ vTT^ — fO

_ d p _ r'

__ a
•*• P' ~ V (r*— a~«)
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9/
=

3.

(r^ — a^)^

. ^ 4 r 2 _ 3 ca
2

.'. N = .

Hence the angle between the apsides is

A - - "^
-/(4r2_3a2)'

The motion of a point on a spherical surface is manifestly the same as

the motion of a simple pendulum or heavy body, suspended by an inex-

tensible string from a fixed point ; the body being considered as a point

and the string without weight. If the pendulum begin to move in a ver-

tical plane, it will go on oscillating in the same plane in the manner al-

ready considered. But if the pendulum have any lateral motion it will

go on revolving about the lowest point, and generally alternately ap-

proaching to it, and receding from it. By a proper adjustment of the velocity

and direction it may describe a circle (134) ; and if the velocity when it

is moving parallel to the horizon be nearly equal to the velocity in a cir-

cle, it will describe a curve little differing from a circle. In this case we
can find the angle between the greatest and least distances, by the for-

mula just deduced.

Since

w rA = V (4 r 2 — 3 a 2)

if a = 0, A = -^ 5 the apsides are 90° from each other, which also ap-

pears from observing that when the amplitude of the pendulum's revolu-

tion is very small, the force is nearly as the distance ; and the body de-

scribes ellipses nearly ; of which the lowest point is the center.

If a = r,

A = ^ = 180°

this is when the pendulum string is horizontal ; and requires an infinite

velocity.

If a = - ; so that the string is inclined 30° to the vertical

;

2

A = ~— = 99° 50'
V 13



288 A COMMENTARY ON [Sect. X

If a ' = — ; so that the string is inclined 45° to the vertical

;

•

A = ,^| =n3°.S6'.
I

3 r

'

If a ' = -J— ; so that the string is inclined 60° to the vertical

;

2 VA = —^ = 136° nearly.

385. Let the surface be an inverted cone, with its axis vertical : to find

the horizontal angle between the apsides when the orbit is nearly a circle.

Let r be the radius of the circle and y the angle which the slant side

makes with the horizon. Then

z = g tan. y

p = tan. 7

q =

T.,
3 tan. 7N = : ^-5- = 3 cos. ^ y

tan. y. sec. ^ y
'

and

A =
cos. y V 3

*

If 7 = 60°

A = ^^ = 120°.

386. Let the surface be an inverted paraboloid whose parameter is c.

f* = cz

d z 2 e

*^ dg c

2
^= c

6 a 2a
VT c c 4 c

.•. N =
2a/- . 4a \ c*+4a^a + V-)

2
*

c
If a = Q > or the body revolve at the extremity of the focal ordinate,

to

N = 2

and

A - —^- V2-
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387.- When a body moves on a conical surface^ acted on by a force tend-

ing to the vertex ; its motion in the surface 'will be the same, as if the sur-

face "were un'wrapped, and made plane, the force remaining at the vertex.

Measuring the radius-vector (g) from the vertex, let the force be F,

and the angle which the slant side makes with the base = y : then

z = g tan. y

p = tan. y

1 + p '^ = sec. ^ y
also

Q=/(Fd^ + Zdz) =/Fdg'.
Hence (380)

or putting

and

we have

, __ sec, y h d g

"
i V \{C-2f¥'d^')e-m

h' cos. y for h

d ^ sec. 7 for d ^

^ COS. 7 for g

g' VJ(C— 2/F'dg')g'2— h'^r

Now d ^ is the differential of the angle described along the conical sur-

face, and it appears that the relation between ^ and g' will be the same as

in a plane, where a body is acted upon by a central force F. For in that

case we have

and integrating

h'^dg'^ h/2

J 4 d^' + ^ =C-2/Fdg'
which agrees with the equation just found.

388. JVJien a body moves on a surface of revolution, to find the reac-

tion R.

Take the three original equations (380) and multiply them by x d z,

y d z, g d g ; and the two first become

xd^xdz F'xMz p dz' x'

d t* g ds '

g

i*ydz_ F'y^dz r^Iz" y
d t^

—
e "dT'T

Vol. 1.
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add these, observing that

and we have

(xd'x.fyd'y)dz^__^,^^^_^ dz^^
d t*

' ^ ds

Also the third is

d t* 5 5 ^ 5 d s

Subtract this, observing that dz* + dg* = ds*, and we liave

(xd'x + yd^y) dz— gdgd'z _
dT^

"

f (Z d g — F' d z) — R g d s.

But
x^ + y« = S'

xdx+ydy = gdg
xd*x + yd*y + dx2+dy2 = gd''g + df*.

Hence
(dg'— dx"— dy') dz g d z d" g— g dgd^z _

dt^
"*"

dt^
^

g (Z d g— F' d z) — R g d s

and

dg2 = d s'' — d z*.

Hence

P __ Z d g — F d z dgd'^z— dzd^g
ds

"*
dt^ds

(dx^ + dy^ + dz^—ds') dz*
gdt'ds

Now if r be the radius of curvature, we have (74)

_ d s^
~ dgd'^z — dzd'^g

and

d x« + dy«4- dz* = d tf«

a being the arc described.

Hence

P _ Z d g -- F d z ds«
^ ~

dl + rdt«
d g' — d s' d z . .

+ ^n^ •d's
^*''

Here it is manifest that

ds«
are
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is the square of the velocity resolved into the generating curve, and that

da- — d s
-

dT^

is the square of the velocity resolved perpendicular to §. Tlie two last

terms which involve these quantities, form that part of the resistance

which is due to the centrifugal force ; the first term is that which arises

from the resolved part of the forces.

From this expression we know the value of R ; for we have, as before

^^; = C-2/(Fd^ + Zdz).

Also

d_(j= — d s = _ gMr- _ hj

dt* ' ~ dt^ " §•'

Hence

^'=C-2/(Fdg+Zdz)

889. To find the tension ofa pendulum moving in a spherical surface.

C-2/(Fdg + Zdz) = 2g(k-z)

1= V (2rz— z^)

d _ r— z

d~z ~ V (2rz— z^)

d s _ r

dg ~ r—

z

d s _ r r

cTz ~ V(2rz—z^) ~ Y
'

Hence

,
. 2g(k— z) -z

I J

R = glLl^) . __L\i_ !i_ . _L
r r ?'* -

_ g(r+2k— .3z)

r

and hence it is the same as that of the pendulum oscillating in a vertical

plane with the same velocity at the same distances.

390. To find the Velocity^ Reaction^ and Motion of a body upon any

surface xvhatevei:

Let R be the reaction of the surface, which is in the direction of a nor-

mal lo it at each point. Also let «, «', t" be the angles which this normal

T2
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makes with the axes of x, y, z respectively ; we shall then have, consider-

ing the resolved parts of R among the forces which act on the point

d*x
T-—2 =X + R cos. i

d^v^ = Y+R.cos..'

^,= Z+R.cos..-

Now the nature of the surface is expressed by an equation between

X, y, z : and if we suppose that we have deduced from this equation

dz =pdx + qdy
. dz , d z

where p = ^p- and q = -^—

-

^ dx ^ dy
p and q being taken on the supposition of y and x being constants respec-

tively ; we have for the equations to the normal of the points whose co-

ordinates are

X, y, z

x'— X 4- p (z' — z) = 01
y'— y + q(z'— z) = 0i

x', y', z' being coordinates to any point in the n

No. 143.)

Hence it appears that if P K be the normal,

P G, P H its projections on planes parallel to

orm

z

1

al (see

1

Lacr<^ix,

p

X z, y z respectively. yl ^-^
The equation of P G is

x'— X + p . (z'— z) = 0, 'i/ si

N
and hence ly

XGN+pPN=0 ^

and

GN = — p.PN.
Similarly the equation of P H is

/— y + q(z'— z) =
wheDce

HN+q.PN =
HN = — q.PN.

And hence,

cos. s = cos. K P h = ^-^

GN

C I1

V(PN«+NG=+ HN«)
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_ P

COS. i' = COS. K P g = p .°

HN
V(PN* + NG'^.f HN«)

q
V(l+p« + q^)-

Whence, since

COS. ^ « + COS. ^ g' + COS. ' s" = 1

COS. '^ ?" = V (1 COS. ^ f COS. ® ?')

1

-V(l+p2 + q2)-

Substituting these values ; multiplying by d x, d y, d z respectively, iu

the three equations ; and observing that

dz — pdx— qdy =
we have

!l^iii+ili;y±ii^^ = X d X + Y d y + Z d z

and integrating

dx'+dy* + dz* ^ ^ ,^ , tt, r, i ^

^l^^ = 2/(Xdx+ Ydy+ Zdz)

and if this can be integrated, we have the velocity.

If we take the three original equations, and multiply them respectively

by — p, — q, and 1, and then add, we obtain

d'^x d*y d'^z __
~" P dF*— ^ • dT^ * dT«

~

— pX— qY+ Z + R V(l + p^+q^).
But

dz = pdx + qdy.
Hence

d^z _ d^x d'^y dpdx + dq d y
dF ~ P d~r- + ^dl^

*" dF •

Substituting this on the first side of the above equation, and taking

the value of R, we find

_ pX + qY— Z dpdx + dqd y^- V(l+p^4 q=)f dtW(H-p'^+q*)
If m the three original equations we eliminate R, we find two second

differential equations, involving the known forces

X,Y, Z
T3
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and p, q, which are also known when the surface is known, combining
with these the equation to the surface, by which z is known in terms of

X, y, we have equations from which we can find the relation between tlie

time and the three coordinates.

391. To find the path "johich a body raill describe upon a given surface^

'jchen acted upon by noforce.

In this case we must make

X, Y, Z each = 0.

Then, if we multiply the three equations of the last art. respectively by

— (qdz + dy), pdz + dx, qdx— pdy
and add them, we find,

— (qdz + dy)d«x + (pdz+dx)d«y+ (qdx— pdy)d*z
/-— (q dz + dy) cos. e ^

= Rdt2-|+(pdz+dx) COS. i' \

(.4. (qdx— pdy) cos. ^'J

or putting for cos. e, cos. «', cos. il' their values

p J i 2

Hence, for the curve described in this case, we have

(pdz+dx)d2y= (pdy— qdx)d2z+(qdz+dy)d'^x.

This equation expresses a relation between x, y, z, without any regard

to the time. Hence, we may suppose x the independent variable, and

d * X r= ; whence we have

(pdz4-dx)d*y = (pdy— qdx)d*z.

This equation, combined with

dzrrpdx + qdy,

gives the curve described, where the body is left to itself, and moves along

the surface.

The curve thus described is the shortest line which can be drawTi from

one of its points to another, upon the surface.

The velocity is constant as appears from the equation

v« = 2/(X d X + Y d y + Z d z).

By methods somewhat similar we might determine the motion of a point

upon a given curve of double curvature, or such as lies not in one plane

when acted upon by given forces.

392. To find the curve qfi equal pressure, or that on 'which a body descend'

infr by thefarce ofgravity, pesses equally at all points.
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(1)

But if H M be the height due to the velocity at P,

A H = h, we have

ds°
dt'

= 2g(h — x).

Also, if we suppose d s constant, we have (74)

d s d X

Let A M be the vertical abscissa = x, M P the hori-

zontal ordinate = y ; the arc of the curve s, the time t, g
and the radius of curvature at P = r, r being positive /^T

when the curve is concave to the axis ; then R being the
^"""'""/

reaction at P, we have by what has preceded. V

R = Sdj:+ ds^
. ....

d s r dt^

295

H

M

and if the constant value of R be k, equation ( 1 ) becomes

k
^gdy 2g(h-x)d^y

d s d s d x

h_ dx __^/i^ \
^^y dy ^^

g •2'V7h— x)- ^ ^^~''^^'l^~Ts'2V (h^l^
The right-hand side is obviously the differential of

V(h-K)||-,

hence, integrating

|. V{h-x) = V(h-x).^ + C,

dy ^ k C
d s g V {h — x)

If C = 0, the curve becomes a straight line inclined to the horizoii,

. . . . k
which obviously answers the condition. The sine of inclination is — .

•" ao
In other cases the curve is found by equation (2), putting

V(dx2+dy2) for ds

and integrating.

If we differentiate equation (2), d s being constant, we have

(3)

ds
y_ Cdx

2 (h— x) 2

,

dsdx _ 2(h— x)^
(3)d^y " C

And if C be positive, r is positive, and the curve is concave to the axis.

T4
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We have the curve parallel to the axis, as at C, when -j-^ = 0, that is,us '

C
when —

g V (h -X)

X =:h

; when

When X increases beyond this, the curve approaches the axis, and -j^

is negative ; it can never become < — 1 ; hence B the limit of x is

found by making

g V(h_x)
or

If k be < g, as the curve descends towards Z, it approximates perpe-

k
tuallv to the inclination, the sine of which is —

.

g
If k be> g there will be a point at which the curve becomes horizontal.

C is known from (2), (3), if we knew the pressure or the radius of cur-

vature at a given point.

If C be negative, the curve is convex to the axis. In this case the part

of the pressure arising from centrifugal force diminishes the part arising

from gravity, and k must be less than g.

393. Tojind the curve *which cuts a given assemblage of ctirves, so as to

make them Synchronous, or descriptible by the force ofgravity in the same

time.

Let A P, A P', A P", &c. be curves of the

same kind, referred to a common base A D,

and differing only in their parameters, (or the

constants in their equations, such as the radius

of a circle, the axes of an ellipse, &c.)

Let the vertical A M = x, M P (horizontal)

r= y ; y and x being connected by an equation

involving a. The time down A P is

/dx
V(2gx)

the integral being taken between

X = and X = A M

;

and this must be the same for all curves, whatever (a) may be.
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Hence, we may put

/V{2gx)=^ <^^

k being a constant quantity, and in differentiating, we must suppose (a)

variable as well as x and s.

Let
d s = pd X

p being a function of x, and a which will be of dimensions, because d x,

and d s are quantities of the same dimensions. Hence

/
- Pdx _,

-'V(2gx)-^
and differentiating

Pf ""
, +qda = (2)V(2 gx) ^ ^ ^

'

Now, since p is of dimensions in x, and a, it is easily seen that

/pdx

is a function whose dimensions in x and a are ^, because the dimensions

of an expression are increased by 1 in integrating. Hence by a known

property of homogeneous functions, we have

px
+ qa = ^ k;

V(2gx)
k X) V X

.-. q =
2a aV(2g)

substituting this in equation (2) it becomes

pdx kdapdaVx _ ._.

V (2 g x) "^ 2 a a V (2 g)
~

''
" ' ^^

in which, if we put for (a) its value in x and y, we have an equation to the

curve P F F'.

If the given time (k) be that of falling down a vertical height (h), we

have

'2h

g
and hence, equation (3) becomes

p (a d x— X d a) + d a V (h x) = . . . . (4}

Ex. Let the curves A P, A P', A P'' be all cycloids of iiohich the bases

coincide 'with A D.

Let C D be the axis of any one of these cycloids and = 2 a, a being

the radius of the generating circle. If C N = x', we shall have as before

— ds zr dx' / —J'S x'

=v=
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and since

x' = 2 a— X

ds = dx ^ ./-

2a

Hence
N 2a— X*

- V 2a— x'P

and equation (4) becomes

^^^^^E^ + ^^i^-) = .... (5)

Let — = u
a

so that

adx— xda = a^du
X = au

;

and substituting

a«du V 2

V(2— u)
+ dav'(hau) =

du V2 da Vh
T 3— = "•• V(2u— u'')

•. V2x vers.-»u— 2^ ^ =: C (6)

When a is infinite, the portion A P of the cycloid becomes a vertical

line, and

X = h, .-. u = 0, .-. C = 0.

Hence

- rrvers. /— . . (7)
a N a

From this equation (a) should be eliminated by the equation to tlie

cycloid, which is

y = avers.-'—— V(2ax— x'^) .... (8)
Si

and we should have the equation to the curve required.

Substituting in (8) from (7), we have

y= V (2ah) — V (2ax— x2)

J _dav^h xda + adx— xdx^ ~ V~(2a) V {2ax— x«)

and eliminating d a by (5)

d y _ 2a— x __ 2a— x

dx"~ v'(2ax— x*)~ ^ x
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But differentiating (8) supposing (a) constant, we have in the cycloid

dy= / .

y /S 2 a—

X

And hence (31) the curve P P' F" cuts the cycloids all at right angles,

the subnormal of the former coinciding with the subtangent of the latter,

each being

2 a—

X

y /:

AOC

The curve P P' F" will meet A D in the point B, such that the given

time is that of describing the whole cycloid A B. It will meet the vertical

line in E, so that the body falls through A E in the given time.

394. If instead of supposing all the cycloids

to meet in the point A, we suppose them all to

pass through any point C, their bases still being

in the same line A D ; a curve P P' drawn so

that the times down PC, P C, &c. are all

equal, will cut ail the cycloids at right angles.

This may easily be demonstrated.

39.5. Tojind Tautochronoiis curves or those down which to a givenJixed

point a body descending all distances shall move in the same time.

(1) let the force be constant and act in parallel lines.

Let A the lowest point be the fixed point, D that

from which the body falls, A B vertical, B D, M P
horizontal. A M = x, A P = s, A B = h, and the

constant force = g.

Then the velocity at P is

V = V (2 g . h— x)

and

, As _ — ds
V~ V2g^/(h— x)

and the whole time of descent will be found by integrating this from

X rr h, to X = 0.

Now, since the time is to be the same, from whatever point D the body

falls, that is whatever be h, the integral just mentioned, taken between the

limits, must be independent of h. That is, if we take the integral so as

to vanish when

X =
and then put h for x, h will disappear altogether from the result. This

must manifestly arise from its being possible to put the result in a form
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involving only -p- , as f-j , &c. ; that is from its being of dimensions in

X and h.

Let
ds = p dx

where p depends only on the curve, and does not involve h. Then, we

have

_ p pdx
^V{2g(h— x)}

1 ^rpdx 1 pxdx 1.3 pxnix )

~ ^{2gK I h^ 2 • 1^1 ^2.4 i^f

nnd from what has been said, it is evident, that each of the quantities

/»p d x r-pxdx /»px°dx

h^ h^ h-2-
must be of the form

that is

hence

or if

2n+ l

C X 2

-in + l
'*

h-i~

8n + l

yp x"d X must = cx 2 ;

p x " d X = ^— ex ii d X

;

2n + 1 c
P = 2 '"l'

2n + 1 i
c =r a

2

P=V^
and

which is a property of the cycloid.

Without expanding, the thing may thus be proved. If p be a function

of m dimensions in x, -
; ,. r is of m — \ dimensions ; and as the

' V (h— x)
^

dimensions of an expression are increased by 1 in integrating

y V (h— x)
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is ofm + 1 dimensions in x, and when h is put for x, ofm + ^ dimen-
sions in h. But it ought to be independent of h or of dimensions

Hence

m+i =

.-. p = a 2 V fi

as before.
.

"•

396. (2) Let the force tend to a center and vary as ant/Junction of the

distance. Required the Tautochronous Curve.

Let S be the center of force, A the point to

which the body must descend ; D the point from

which it descends. Let also

SA = e, SD = f, SP=^, AP = s

P being any point whatever.

Now we have

v^= C— 2/Fdf
or if

2Pd^=f (g)

v' = f(f) — ?>(g)

the velocity being when g
— f.

Hence the time of describing D A is

t=/-
V(?>f— pg)

taken from g = f, to ^ = e. And since the time must be the same what-

ever is D, the integral so taken must be independent of f.

Let

9 S — 9^ = z

^f— pe = h

d s = p d z

p depending on the nature of the curve, and not involving f.
•

, from z = h to z =

Then

/p d z

V fh— z)V (h

/p dz
V (h— z)

from z = to z = h.

And this must be independent of f, and therefore of <p f, and of h«

Hence, after taking the integral the result must be when z = 0, and

independent of h, when h is put for z. Therefore it must be of dimen-

sions in z and h. But if p be of n dimensions in z, or if

p = cz°

P
V(h— z)

will be of n— ^ dimensions,
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and

/,^, r of n 4- I dimensions.V {h— z)
.

^ ^

Hence, n + ^ = 0, n = — ^5 and

Therefore

ds = dz /

—

=p'e^eu 7;

whence the curve is known.

If 6 be the angle A S O, we have

ds^zz dg2 + ?'d^*
and

whence may be found a polar equation to the curve.

397. Ex. 1. Let the force vary as the distance, and be attractive.

Then
F = /(A

g, p g = /i g
'^

;

z = fs— (pe = /A(g2_e');

dz = 2^0-^ d^

d s
when P = e, -J— is infinite or the curve is perpendicular to S A at A.

If S Y, perpendicular upon the tangent P Y, be called p, we have

p* _ d s'— dg'

P ~
ds"2

-
ds^

= 1
4c/ig*

e^— (1— 4c/ti)g2
p* = ^^-j .

If e = 0, or the body descend to the center, this gives the logarithmic

spiral.

In other cases let

e*
1 — 4c^ = ^,
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.•. 4lC fL ZZ

and

the equation to the Hypocycloid (370)

If 4 c |ti = 1, the cuiTe becomes a straight line, to which S A is per-

pendicular at A.

If 4 c i«. be > 1 the curve will be concave to the center and go off to

infinity.

398. Ex. 2. Let the force vary inversely as the square of the distance.

Then

F =

and as before we shall find

r!»

V' = i'~
? Mf - e)

2 /i c e

399. A body being acted upon by a fm-ce in parallel lines^ in its descent

from one point to another, tofind the Brachystochron, or the curve of' quick-

est descent between them.

Let A, B be the given points, and A O P Q B
the required curve. Since the time down
A O P Q B is less than down any other curve, if

we take another as A O p Q B, which coincides

with the former, except for the arc O P Q, we

shall have

Time down A O : T. O P Q + T. Q B, less than

Time down A 0+ T. O p Q + T. Q B

and if the times down Q B be the same on the two suppositions, we shall

have

T. O P Q less than the time down any other arc O p Q.

The times down Q B will be the same in the two cases if the velocity

at Q be the same. But we know that the velocity acquired at Q is the

same, whether the body descend down

A O P Q, or A O p Q.

Hence it appears that if the time down A O P Q B 6^ a minimum, the

time down any portion O V Q,is also a minimum.
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Let a vertical line of abscissas be taken in the direction of the force;

and perpendicular ordinates, O L, P M, Q N be drawn, it being sup-

posed that

L M = M N.

Then, if L M, M N be taken indefinitely small, we may consider them

as representing the differential of x : On this supposition, O P, P Q, will

represent the differentials of the curve, and the velocity may be supposed

constant in O P, and in P Q. Let

AL = x, LO = y, OA = s,

and let d X, d y, d s be the differentials of the abscissa, ordinate, and

curve at Q, and v the velocity there ; and d x', d y', d s', v' be the cor-

responding quantities at P. Hence the time of describing O P Q will

be (46)

d s d s'

which is a minimum ; and consequently its differential = 0. This dif-

ferential is that which arises from supposing P to assume any position as

p out of the curve O P Q; and as the differentials indicated by d arise

from supposing P to vary its position along the curve O P Q, we shall

use 8 to indicate the differentiation, on hypothesis of passing from one

curve to another, or the variations of the quantities to which it is

prefixed.

We shall also suppose p to be in the line M P, so that d x is not sup-

posed to vary. These considerations being introduced, we may pro-

ceed thus,

Hv + ^'} = ° (')

And V, v' are the same whether we take O P Q, or O p Q ; for the

velocity at p = velocity at P. Hence

d V = 0, 3 v' =
and

ads 8 d s^ __

V + v' ~
Now

Similarly

d s=^ = d x* + dy«
.•. ds3ds = dy3dy,
(for 3 d X = 0).

d s' 3 d s' = d y' a d y

.
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Substituting the value of 3 d s, a d s' which these equations give,

we have

dy3dy dyady' _
vds * v'ds' ~

And since the points O, Q, remain fixed during the variation of P's

position, we have

d y + d y' = const,

a d y' = — 3 d y.

Substituting, and omitting 3 d y,

dy _ d/
^0,vds v' d s'

Or, since the two terms belong to the successive points O, P, their

difference will be the differential indicated by d ; hence,

vds

.-. -^ = const. . (2)vds

Which is the property of the curve ; and v being known in terms of x,

we may determine its nature.

Let the force be gravity ; then

v= V(2gx);
dy

ds \^ (2gx)

Ay -

const.

ds \/ X V a

a being a constant.

. ly _ II
•* ds ~ V a

which is a property of the cycloid, of which the axis is parallel to x,

and of which the base passes through the point from which the body

falls.

If the body fall from a given point to another given point, setting off

with the velocity acquired down a given height; the curve of quickest

descent is a cycloid, of which the base coincides with the horizontal line,

fi'om which the body acquires its velocity.

400. If a body he acted on by gravity, the curve of its quickest descent

from a given point to a given curves cuts the latter at right angles.

Let A be the given point, and B M the given curve; A B the curve of

quickest descent cuts B M at right angles.

Voi,. I. u
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It is manifest the curve A B must be a cycloid, for

otherwise a cycloid might be drawn from A to B, in ^
which the descent would be shorter. If possible, let

A Q be the cycloid of quickest descent, the angle

A Q B being acute. Draw another cycloid A P, and

let P P' be the curve which cuts A P, A Q so as to

make the arcs A P, A P' synchronous. Then (394) P P'

is perpendicular to A Q, and therefore manifestly P' is

between A and Q, and the time down A P is less than the time down
A Q ; therefore, this latter is not the curve of quickest descent. Hence,
if A Q be not perpendicular to B M, it is not the curve of quickest

descent.

The cycloid which is perpendicular to B M may be the cycloid of

longest descent from A to B M.

401. If a body be acted on by gravity^ and if A "Q be the

curve of quickest descentfrom the curve A L to the point B

;

A T, the tangent ofA 1^ at A, is parallel /o B V, a peipen-

dicidar to the curve A B a^ B.

If B V be not parallel to A T, draw B X parallel to

A T, and falling between B V and A. In the curve A L
take a point a near to A. Let a B be the cycloid of quick-

est descent from the point a to the point B ; and B b being

taken equal and parallel to a A, let A b be a cycloid equal

and similar to a B. Since A B V is a right angle, the

curve B P, which cuts off A P synchronous to A B, has B V for a tan-

gent. Also, ultimately A a coincides with A T, and therefore B b with

B X. Hence B is between A and P. Hence, the time down A b is less

than the time down A P, and therefore, than that down A B. And
hence the time down a B (which is the same as that down A b) is less

than that down A B. Hence, if B V be not parallel to A T, A B is not

the line of quickest descent from A L to B.

402. Supposing a body to be acted on by anyforces whatever, to determine

the Brachystochron.

Making the same notations and suppositions as before, A L, L O, (see

a preceding figure) being any rectangular coordinates ; since, as before,

the time down O P Q is a minimum, we have

^{t + v-'}=» <•'
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ads ads^ ds_3v_dVa_v^_
Q

y y' y 2 y' 2

Now as before we also have

ad s = —^—^
ds

supposing a d X = 0, and -

.^./- d/.ad/ _ d/.ady
"^"^ - d7~ -~ ds' •

dv =
for V is the velocity at O and does not vary by altering the curve.

v' = V + d V

dv' = av + adv=radv.

Hence

dyady dy'ady d s' a d

v

_
v d s v' d s' -v' * "~ *

Also

1 _ 1 __ 1 _dv
v'~ v+dv"~v V*'

for d V ^, &c. must be omitted. Substituting this in the second term of

the above equation, we have

dy.ady d y' a d y d y' d v a d y ds^dv _
yds vds' v*ds' v'* ~

or

/dy' dy\ 1 dy'.dv ds' adv_
Vd~?~dlJ* 7+ds'.v2~7^ • ad^ - "

Now as before

d s' d s
* d s

*

And in the other terms we may, since O, P, are indefinitely near, put

d s, d y, v for d s', d y', v'

:

if we do this, and multiply by — v, we have

d.dy_ll^ + isadv^^ (2)ds ds.vvady ^ '

which will give the nature of the curve.

If the forces which act on the body at O, be equivalent to X in the

direction of x, and Y in the direction of y, we have (371)

vdv=Xdx+Ydy
, Xdx+ Ydy

.*. d v = ^
V

>A Yady
.*. a d V = ^

V

U2
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because 3v = 0, 5dx = 0; also X and Y are functions of A L, and L O,

and therefore not affected by 8.

Substituting these values in the equation to the curve, we have

, dy dy Xdx+Ydy
,
ds Y ^

dsds V* vv
or

, dy dx Xdy— Ydx ^
^•A —A-' ^—z = ^

ds d s v'^

which will give the nature of the curve.

If r be the radius of curvature, and d s constant, we have (from "74)

d s d X

r being positive when the curve is convex to A M

;

r =

A d y _ d X
' d s "~ r

and hence
Xdy— Ydx

ds
V

The quantity — is the centrifugal force (210), and therefore that part

of the pressure which arises from it. And ^ is the pressure

which arises from resolving the forces perpendicular to the axis. Hence,

it appears then in the Brachystochron for any given forces, the parts of

the pressure which arise from the given forces and from the centrifugal

force must be equal. ^

403. If we suppose the force to tend to a center S,

which may be assumed to be in the line A M, and F
to be the whole force ; also if

SA= a,SP = g,SY = p;

then we have

^-^ = force in P S resolved parallel to

and

YS = F X -^
g

v2= C— 2/gFd»
. C-2g/Fdg ^Fp
••

r s

also

r = — -,—

^

dp
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.•.C_2g/Fdf = -S||i

2dp_ — 2Fdg
•'•

p -C-2g/Fdg
and integrating

P^ = CqC-2g/Fdgl
whence the relation of p and j is known.

If the body begin to descend from A
C— 2g/Fdg =

when f = a.

404. Ex. 1. Let the force vary directly as the distance.

Here
F = iu.g

C-2g/Fdg=v^ = /*g(a«— g^)

p2= CXa«— g^)

which agrees with the equation to the Hypocycloid (370).

405. Ex. 2. Let the force vary i7iversely as the square of the distance ,•

then

1? _ '^

by supposition.

2^' a—_f_.^, a—

I

f' + c^e— c*a
.'. £ *— P ' = ^— ^

d^ = pdg

?^(?^-P^)
_ c V (a— g).dg

> V(g3 + c«g— c'a)

cdg

When g = a, d t) = ; when

g3 + c^g— c^a =
d ^ is infinite, and the curve is perpendicular to the radius as at B. This

equation has only one real root.

If we have c = — , S B = -5-

B being an apse.

U3
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i^^ = 3-o'S^ = m-

Ifc= ,^ ,SB =n3+ n' n''+ r
406. Wf%«* a body moves on a given surface, to determine the Brachy-

stochron.

Let X, y, z be rectangular coordinates, x being vertical ; and as before

let d s, d s' be two successive elements of the curve ; and let

d X, d y, d z,

d x', d y', d z'

be the corresponding elements of x, y, z; then since the minimum pro-

perty will be true of the indefinitely small portion of the curve, we have

as before, supposing v, v' the velocities,

ds . ds'— H — = mm.

^{4^'}']='> •••(')

The variations indicated by 3 are those which arise, supposing d x, d x'

to be equal and constant, and d y, d z, d y', d z' to vary

Now
ds^ = dx^ + dy^ + dz^

.*. ds3ds = dySdy + dz3dz.
Similarly

ds'ads'= dy'3dy'+dz'adz.

Also, the extremities of the arc

d s + d s'

being fixed, we have

d y + d y' = const.

.-. 3 d y + 3 d y' =
d z + d z' = const.

.-. 3 d z + 3 d z' = 0.

Hence

And the surface is defined by an equation between x, y, z, which we

may call

L = 0.
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Let this differentiated give

dz=pdx + qdy (3)

Hence, since d x, p, q are not affected by 8

adz = q3dy (4)

For the sake of simplicity, we will suppose the body to be acted on

only by a force in the direction of x, so that v, v' will depend on x alone,

and will not be affected by the variation of d y, d z. Hence, we have by (1)

3 d s ,
8 d s' ^

J— =V V

which, by substituting from (2) becomes

\v'ds' vdsj •'(^v'ds' vdsj
Therefore we shall have, as before

d.J^3dy + d. ^,-adz=0;
v d s

"^ v d s

and by equation (4), this becomes

J d y , d z - ,^vd.—f- + qd.—^ = (5)vds^vds ^ '

whence the equation to the curve is known.

If we suppose the body not to be acted on by any force, v will be con-

stant, and the path described will manifestly be the shortest line which

can be drawn on the given surface, and will be determined by

'••^^<i-0-a-s = » <«)

If we suppose d s to be constant, we have

d'y + qd^zrz
which agrees with the equation there deduced for the path, when the

body is acted on by no forces.

Hence, it appears that when a body moves along a surface undisturbed,

it will describe the shortest Ime which can be drawn on that surface, be-

tween any points of its path.

407. Let P and Q be two bodies, of which the Jirst hangs

from afxedpoint and the second from the first by means of
inextensiUe strings A P, P Q; it is required to determine the

small oscillations.

Let
A M = X, M P = y,

A N = x', N Q = /
A P = a, P Q = a'

, mass of P = /i, of Q = ^'

tension of A P =p,ofPQ= p'.

U4
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Tlien resolving the forces p, p', we have

d t« ~ At'
• a' -^

By combining these with the equations in x, x' and with the two

x' + y« = a«,

(x'— x)«+(y'— y)=^ = a'«;

we should, by eliminating p, p' find the motion. But when the oscilla-

tions are small, we may approximate in a mor« simple manner.

Let jS, jS' be the initial values of y, y'. Then manifestly, p, p' will de-

pend on the initial position of the bodies, and on their position at the time

t : and hence we may suppose

p = M + P/3 + Q/3' + R y + S y' + &c.

and similarly for p'.

Now, in the equations of motion above, p, p' are multiplied by y, y'— y
which, since the oscillations are very small are also very small quantities,

(viz. of the order /3). Hence their products with /3 will be of the order

6\ and may be neglected, and we may suppose p reduced to its first

term M.
M is the tension of A P, when /3, /3' &c. are all = 0. Hence it is the

tension when P, Q, hang at rest from A, and consequently

M = /tt + ^'.

Similarly, the first tenn of p', which may be put for it is m'. Substi-

tuting these values and dividing by g, equations (1) become

d t^ V^a' ^ fia J^ ^ /!,&'
y

d'y' _ Z.__ y^

gdt* a' af

Multiply the second of these equations by X and add it to the first, and

we have

d

}

gdt^ ~ V^a'**" fia a' ) ^ \a'' (j.a')^

and manifestly this can be solved if the second member can be put in

the form

— k.(yH-XyO
that is, if

fia' lia a' *
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or

k X = -,
a
—

fjb a'

+
a'_^/.'a'

a fi a

_-:=(a' k -l)x 1
(3)

Eliminating X we have

(a'k-l)a'k—^' = (a'k-l)(-^'+- + ^')

Hence

(^'•=)=-(i+^)(i+:-)»'k=-3^-^....(4)

From this equation we obtain two values of k. Let these be de-

noted by

and let the corresponding values of x, be

'X,2X.

Then, we have these equations.

and it is easily seen that the integrals of these equations are

y + ^Xy' = »Ccos. t V (^kg) + 'D sin. t V ('kg)

y + ^Xy' = ^Ccos. t V fkg) + ''D sin. t V (%g)
'C, 'D, ^C, *D being arbitrary constants. But we may suppose

'C = 'E cos. 'e

'D = 'E sin. 'e

^C = ^E cos. «e

D« = ^E sin. 2e

By introducing these values we find

y + 'x
x'
= 'E cos. Jt v' ('k g) + 'e} i ,^.

y + 8X y' = 2E COS. {t V ^k g) + ^e] }

From these we easily find

(6)

The arbitrary quantities 'E, *e, &c. depend on the initial position and

i.^^-cos. [t V {'kg)+'e] + ^^^cos. [t V (^kg)+^ejI
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velocity of the points. If the velocities of P, Q = 0, when t = 0, we
shall have

'E, ^e, each z=

as appears by taking the Differentials of y, y'.

If either of the two ^E, -E be = 0, we shall have (supposing the latter

case and omitting ^e)

'^ 'E , , „\
y = ;^_,^ COS. t V ( Ik g)

*E
y' = j^^—-^cos.t V^kg).

Hence it appears that the oscillations in this case are si/mmetrical : that

is, tlie bodies P, Q come to the vertical line at the same time, have similar

and equal motions on the two sides of it, and reach their greatest dis-

tances from it at the same time. It is easy to see that in this case, the

motion has the same law of time and velocity as in a cycloidal pendulum;

and the time of an oscillation, in this case, extends from when t = to

when t V ('k g) = v. Also if /3, /S' be the greatest horizontal deviation

of P, Q, we shall have

y = /3 . cos. t V ( *k g)

f = jS'.cos. t V (%g).
In order to find the original relation of /3, /3', (the oscillations will be

symmetrical if the forces which urge P, Q to the vertical be as P M, Q N,

as is easily seen. Hence the conditions for symmetrical oscillation might

be determined by finding the position of P, Q that this might originally

be the relation of the forces) that the oscillations may be of this kind, the

original velocities being 0, we must have by equation (5) since *E = 0.

/3 + ^X i8' = 0.

Similarly, if we had

i8 + 'X /3' =
we should have 'E = 0, and the oscillations would be symmetrical, and

would employ a time

V(^kg)-

"When neither of these relations obtains, the oscillations may be consi-

dered as compounded of two in the following manner : Suppose that we

put

y = H cos. t V ( ^k g) + k cos. t V ( *k g) . . . (7)

omitting 'e, *e, and altering the constants in equation (6) ; and suppose

that we take

M p = H . cos. t V ( »k g)

;
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Then p will oscillate about M according to the law of a cycloidal pen-

dulum (neglecting the vertical motion). Also

p P will = K . COS. t V ( % g).

Hence, P oscillates about p according to a similar law, while p oscil-

lates about M. And in the same way, we may have a point q so moved,

that Q shall oscillate about q in a time

V(^kg)

while q oscillates about N in a time

V('kg)

And hence, the motion of the pendulum A P Q is compounded of the

motion A p q oscillating symmetrically about a vertical line, and of A P Q
oscillating symmetrically about A p q, as if that were a fixed vertical line»

When a pendulum oscillates in this manner it will never return exactly

to its original position if V % V °k are incommensurable.

If */ 'k, V % are commensurable so that we have

m V 'k = n V == k

m and n being whole numbers, the pendulum will at certain intervals, re-

turn to its original position. For let

t V ( ^k g) = 2 n T

then

t >/ ( «k g) = 2 ra ^

and by (7)

y = H cos. 2 n ff -}- K . cos. 2 m ?r

= H + K,

which is the same as when
t = 0.

And similarly, after an interval such that

t -• ( *k g) = 4 n ff, 6 n cr, &c.

the pendulum will return to its original position, having described in the

intermediate times, similar cycles of oscillations.

408. Ex. Let (j! = (j^

a' = a

to determine the oscillations.

Here equation (4) becomes

a^k* — 4 ak = — 2

and

a k = 2 + V 2.
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Also, by equation (3)

[Sect. X

ak = 3 — X

.'.'X = 1 + V 2, 'X = I — V 2.

Hence, in order that the oscillations may be symmetrical, we must

either have

/3 + (I + V 2) i8' = 0, whence /3' = — ( V 2 —1) /3

or

/3— ( V 2— 1) iS' = 0, whence ^' = ( V 2 + 1) iS.

The two arrangements indicated by these equations are thus repre-

sented.

Q' N Q QNQ'

The first corresponds to

/3' = (V2 + l)/3

or

QN = (V 2 + 1)PM.
In this case, the pendulum will oscillate into the position A P' Q', simi-

larly situated on the other side of the line ; and the time of this complete

oscillation will be

In the other case, corresponding to

/3' = — (V 2- 1)^

Q is on the other side of the vertical line, and

QN = ('/2 — 1)PM.
The pendulum oscillates into the position A P' Q', the point O remain

-

ing always in the vertical line ; and the time of an oscillation is

<r /a
V(2 + V2)^J'

The lengths of simple pendulums which would oscillate respectively in

these times would be

2— V 2
and 2+^2
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or

1 .707 a and .293 a.

If neither of these arrangements exist originally, let ^, ^' be the origi.

nal values of y, f when t is 0. Then making t = in equation (5), we

have

»E = /3+ (V 2 + l)/3'

and

*E = /3— (\^ 2— l)j8'.

And these being known, we have the motion by equation (6).

409. Any number of material points Px, P2J P3. . . Q,

hang by means ofa string without weight, from a 'point

A ; it is required to determine their small oscillations in

a vertical plane.

Let A N be a vertical abscissa, and Pi Mi, P2 M2,

&c. horizontal ordinates ; so that

A Ml = Xi, A M2 = X2, &c.

Pi Ml = yi, P2 M2 = yg, &c.

A Pi = a„ Pi P2 = a2, &c.

tension of A Pi = pi, of PiPgr: p^, &c.

mass of Pi = ^1, of Pg = Aaj &c.

Hence, we have three equations, by resolving the forces parallel to the

horizon.

d yi _
dt-

d

Pig yi
.|

P2g 72 — yi

y2 _ P2g
dt^ . ^

ya— yi

dt^
~ Psg y3— y2

/*3

P3g 73— ya

Pig y^— y3

f^3 a*

(1)

^lln = Eaj yn — yn-i
d 1

2

A^n ' an

And as in the last, it will appear that pi, p2, &c. may, for these small

oscillations, be considered constant, and the same as in the state of rest.

Hence if

fJ^l+ f^+ . . . . A*n = M,
then

Pi = M, P2 = M — ^1, p3 = M ~ /(ij -- ;t2j &c.

Also, dividing by g, and arranging, the above equations may be put in

this form

:
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g d t^ Vj ai
"*

fLi a.J ^'
*"

TSect. X.

f^i %

gdt^ ~
A^ Eg

g d t * /«3 ag ^/^ 83
"^

/i3 a*-/ ^^ "^ ^ a^

K (1)

d'yn _. Pnyn-1 _ Pn Jn
gdt* /A„a„ ./!ina„

The first and last of these equations become symmetrical with the rest

if we observe that

yo =
and

Pn + l = 0.

Now if we multiply these equations respectively by

1, X, X', X'', &c.

and add them, we have

d'^yi + Xd' yg + X^d' y3 + &c. _
gdt*

P2r Pi P2_ . iPlXy

I /*i aa ^^^2 ag f^ ag/ /^s^jj

It^as ^^^3 a3 f^ 34/ fii a^ )
ys

I ^n-1 a„ /(in a„ i^"
and this will be integrable, if the right-hand side of the equation be redu-

cible to this form

— k (yi + X y2 + X' y3 + &c.).

That is, if

_ Pi ^-Pz

/i-i ai /»! aj (Wa ag

kX = —

kX' =

P2 + x( Pa .|. P3

-"2 aa i<A2 as

?^'P3> _ri_P3
/ A3 a/*! 3.2 ' ^-"a aa i<a2 ag/ /is

_ >-P3 , ^ / /' Pa . P4 \ ,
^'' P4

~
/*2 33

X'(n-S) p
k X^">-2) = ^ +

/*n - 1 an

+ ?/
(_P3_ + ^) + ^-B

An an

(3)
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If we now eliminate

X, X', X", &c.

from these n equations, it is easily seen that we shall have an equation of

n dimensions in k.

Let

% % % "k

be the n values of k ; then for each of these there is a value of

X', X'', X'"

easily deducible from equations (3), which we may represent by

^X, IX', 'X", &C.

«X', «X", V, &C.

Hence we have these equations by taking corresponding values X and k,

d*yi + *Xd2y2+2X"d2y3+ &c. ,, , ,2^ ,2^, , e \—ii-?= -^|-^2 ^^^-^-—=— k (ya + '>^y2+'?^' y3+ &c.)

and so on, making n equations.

Integrating each of these equations we get, as in the last problem

Ji + '^ y2 + '^' ya + &c. = IE cosjt V ('k g) + »e^
| .^.

yi + ''^y2 + '^'y3 + &c. = 2Ecos4t Vfkg) + 2ei/
* \'

^
'

*E, *E, &c. 'e, % &c. being arbitrary constants.

From these n simple equations, we can, without difficulty, obtain the n

quantities yj, yg, &c. And it is manifest that the results will be of this

form

yi='HiCos.{t V (»kg) + »e}+'^HiCOs.{tVfkg) + «e} + &c.-j

y2=iH2Cos.{t V Ckg) + 'e] +^H2Cos.Jt V^kg) + «e] + &c. V . . . (6)

&c.= &c. J

where ^Hi,'H2, &c. must be deduced from /Sj, jSg, &c. the original values

of yi, y2j &c.

If the points have no initial velocities (i. e. when t = 0) we shall have

»E = 0, ^E = 0, &c.

We may have symmetrical oscillations in the following manner. If,

of the quantities 'E, ^E, ^E, &c. all vanish except one, for instance "E ; we

have

yi + 'Xy2 + 'X'y3 + &c. = -^.

yi + '^y2 + '^'y3 + &c. = o

yi + '^y2 + '^'y3 + &c. = |> . . . . (7)

yi+"?^y2+°?^'y3+&c.=°Ecos.tv^("kg).

omitting "E.
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From the n — 1 of these equations, it appears that yg, ya, &c. are in a

given ratio to yi ; and hence

yi + ">^y2 + ''>^'y3 + &c.

is a given multiple of yj and = m yi suppose. Hence, we have

m yi = "E cos. -v^ ("k g)

;

or, omitting the index n, which is now unnecessary,

m yi = E cos. t V (k g).

Also if y2 = 62 yi,

m ya = E e2 cos. t V (k g)

and similarly for y^ &c.

Hence, it appears that in this case the oscillations are symmetrical. All

the points come into the vertical line at the same time, and move similar-

ly, and contemporaneously on the two sides of it. The relation among

the original ordinates (Sj, /S^, /Sg, &c. which must subsist in order that the

oscillations may be of this kind, is given by the n — 1 equations (7),

5i + '?^/32 + iX'i83+&c. =
i8l+'X^2 + V/33 + &C. =
^l+'?^^2 + '?^'/33 + &C. =

&c. = &c.

These give the proportion of /3i /Sg, &c ; the arbitrary constant "E, in

the remaining equation, gives the actual quantity of the original displace-

ment
Also, we may take any one of the quarttities *E, *E, ^E, &c. for that

which does not vanish ; and hence obtain, in a different way, such a sys-

tem of n — 1 equations as has just been described. Hence, there are n

different relations among /Sj /S^, &c. or n different modes of arrangement,

in which the points may be placed, so as to oscillate symmetrically.

( We might here also find these positions, which give symmetrical oscil-

lations, by requiring the force in each of the ordinates Pi Mi, P2 M2 to

be as the distance; in which case the points Pi, P2, &c. would all come

to the vertical at the same time.

If the quantities V 'k, V ^k have one common measure, there will be

a time after which the pendulum will come into its original position. And
it will describe similar successive cycles of vibrations. If these quantities

be not commensurable, no portion of its motion will be similar to any

preceding portion.)

The time of oscillation in each of these arrangements is easily known

;

the equation

m yi = "E cos. t V (°k g)
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shows that an oscillation employs a time

And hence, if all the roots 'k, *k, ^k, &c. be different, the time is dif-

ferent for each different arrangement.

If the initial arrangement of the points be different from all those thus

obtained, the oscillations of the pendulum may always be considered as

compounded of n symmetrical oscillations. That is, if an imaginary pen-

dulum oscillate symmetrically about the vertical line in ^ time

vckg)'
and a second imaginary pendulum oscillate about the place of the first,

considered as a fixed line, in the time

vekg)'
and a third about the second, in the same manner, in the tiiac

Vfkg)'
and so on; the n'^'' pendulum may always be made to coincide per-

petually with the real pendulum, by properly adjusting the amplitudes of

the imaginary oscillations. This appears by considering the equations

(6), viz.

yi = 'Hi cos. t V Qk g) + ^Hi cos. t V {'k g) + &c.

&c. = &c.

This principle of the coexistence of vibrations is applicable in all cases

where the vibrations are indefinitely small. In all such cases each set of

symmetrical vibrations takes place, and affects the system as if that were

the only motion which it experienced.

A familiar instance of this principle is seen in the manner in which the

circular vibrations, produced by dropping stones into still water, spread

from their respective centers, and cross without disfiguring each other.

If the oscillations be not all made in one vertical plane, we may take a

horizontal ordinate 2 perpendicular to y. The oscillations in the direc-

tion of y will be the same as before, and there will be similar results ob-

tained with respect to the oscillations in the direction of z.

We have supposed that the motion in the direction of x, the vertical

axis, may be neglected, which is true when the oscillations are very

small.

410. Ex. Let there be three bodies all equal (each = /t), and also their

distances aj, aj, s.^ all equal (each =: a).

Vol. I. X
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Here

p = 3 /(A, p2 = 2 ^, P3 = a

and equations (3) become

a k = 5 — 2 X

akX=r — 2 + 3X — X'

a k X' =— X + \'.

Eliminating k, we have

5X — 2X* = — 2 + 3X — X',

5 X'— 2 X X' = — X + X',

or

X' = 2 X^ — 2X — 2,

4. X'— 2 X X' = — X

.'. X' =

or

2 X —

4

.-. (2X2_2X— 2)(2X— 4) = X

X3— 3X2+ 3 ^ + 2=0,
4

which may be solved by Trigonometrical Tables. We shall find three

values of X.

Hence, we have a value of X' corresponding to each value of X ; and

then by equations (7)

P +^X/3, + Vi83=0J ^
'

whence we find /Sgj ^3 in terms of /3,.

We shall thus find

^2 = 2. 295 /3i

or

^2 = 1.348/3,

or

j82=— .643/3,

according as we take the different values of X.

And the times of oscillation in each case will be found by taking tlie

value of

a k = 5 — 2 X;

tliat value of \ being taken which is not used in equation (7'). For the

time of oscillation will be given by making

t V (k g) = cr.

If the values of /Sj, /S^, ^3 have not this initial relation, the oscillations
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will be compounded in a manner similar to that described in the example

for two bodies only.

411. A Jlexihle cham, of uniform thickness, hangs f^om a fxed point

:

to find its initial for-m, that its small oscillations may be symmetrical.

Let A Mj the vertical abscissa = x ; M P the hori-

zontal ordinate = y; A P = s, and the whole length

A C = a;

.-. A P = a — s.

And as before, the tension at P, when the oscillations

are small, will be the weight of P C, and may be represent-

ed by a— s. This tension will act in the direction of a

tangent at P, and hence the part of it in the direction

P M will be

. • dy
tension X -7-^

d s

or

(a-s)iy.
d s

Now, if we take any portion P Q = h, we shall find the horizontal

force at Q in the same manner. For the point Q, supposing d s constant

-r^ becomes -^-^ + ,d s d s d s

d^y h . d^y h^ „

1 d S3S3 1.2
(see 32).

Also, the tension will be a — s + J^' Hence the horizontal force in

the direction N Q, is

. Subtracting from this the force in P M, we have the force on P Q
horizontally.

-^^ 'Hds^- 1 +ds^-1.2 + ^''V

^ Vds + ds^' 1 +^7
and the mass of P Q being represented by h, the accelerating force

( =z
" —5^ is found. But since the different points of P Q move

V. mass /
^

with different velocities, this expression is only applicable when h is inde-

finitely small. Hence, supposing Q to approach to and coincide with P,

we have, when h vanishes

d * V d v
accelerating force on P = (a— s) ^—^— t-=- .

X 2
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But since the oscillations are indefinitely small, x coincides with s and

we have

d * V d V
accelerating force on P = (a— x) -3—^— -3-^.

Now, in order that the oscillations may be symmetrical, this force must

be in the direction P M, and proportional to P M, in which case all the

points of A C, will come to the vertical A B at once. Hence, we must

have

(''-'')a^»-^x=-"y (')

k being some constant quantity to be determined.

This equation cannot be integrated in finite terms. To obtain a

series let

y = A+ B.(a— x)+C(a— x)2 + &c.

.-.^ =_B — 2C(a— x)— 3D(a— x)'
d x ^ ' ^

.-. —?, = 1. 2. C + 2. 3 D (a— x) + &c
dx* ^

Hence

= (a-x)^.-^ + ky
d X* dx

gives.

= 1.2. C (a— x) + 2.3D(a— x)« + &c.

+ B + 2 C (a— x) + 3 D (a— x) * 4- &c.

+kA + kB(a— x) + kC(a— x)* + &c.

Equating coefficients ; we have

B = — kA,
22 C= — k B
S^D = — k C
&c. = &c.

.-. B = k A

r _k^A
^ - -gT-

2^32

&c. = &c.

and

v = A|l-k(a-x)+|-](a-x)^-^^.(a-x) + &c.} ..(2)
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Here

A is B C, the value of y when x = a. When x = 0, y = ;

.•.l-ka + -^^ __ + &c. = ..... (3)

From this equation (k) may be found. The equation has an infinite

number of dimensions, and hence k will have an infinite number of values,

which we may call

% % .. .°k... 1,

and these give an infinite number of initial forms, for which the chain

may perform symmetrical oscillations.

The time of oscillation for each of these forms will be found thus. At

the distance y, the force is k g y : hence by what has preceded, the time

to the vertical is

2v'(kg)
and the time of oscillation is

v^ (k g)
•

(The greatest value of k a is about 1.44 (Euler Com. Acad. Petrop.

tom. viii. p. 43). And the time of oscillation for this value is the same as

2
that of a simple pendulum, whose length is —a nearly.)

The points where the curve cuts the axis will be found by putting y = 0.

Hence taking the value °k of k, we have

= l_»k(a-.) + °Jil(^^' + "Jiy2^+ &c.

which will manifestly be verified, if

° k (a— x) = 'k a

or
« k (a— x) = % a

or
° k (a— x) = % a

&c. = &c.

because ^k a, *k a, &c. are roots of equation (3).

That is if

X = a (l — 5^) or = a (l —^) or = &c.

Suppose 'k, %, ^k, &c. to be the roots in the order of their magnitude

k being the least.

Then if for "k, we take 'k, all these values of x will be negative, and

the curve will never cut the vertical axis below A.

X3
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If for "k, we take *k, all the values of x will be negative except the

first ; therefore, the curve will cut A B In one point. If we take ^k, all

the values will be negative except the two first, and the curve cuts A B
in two points ; and so on.

Hence, the forms for which the oscillations will be

symmetrical, are of the kind thus represented.

And there are an infinite number of them, each

cutting the axis in a different number of points.

If we represent equation (2) in this manner

y = A p (k, x)

it is evident that

y = 'A p ('k, X)

y = 'A<p {% X)

- &c. = &c.

will each satisfy equation (1). Hence as before, if we put

y = ^A p ('k, x) + ^A p ('k, x) + &c.

and if 'A, *A, &c. can be so assumed that this shall represent a given

initial form of the chain, its oscillations shall be compounded of as many

coexisting symmetrical ones, as there are terms 'A, '^A, &c.

We shall now terminate this long digression upon constrained mo-

tion. The reader who wishes for more complete information may con-

sult Whewell's Dynamics, one of the most useful and elegant treatises

ever written, the various speculations of Euler in the work above quoted,

or rather the comprehensive methods of Lagrange in his Mecanique

Analytique.

We now proceed to simplify the text of this Xth Section.

412. Prop. L. First, S R Q is formed by an entire revolution of the

generating circle or wheel, whose diameter ie O R, upon the globe

SOQ.
413. Secondly, by taking

C A : C O : : C O : C R
we have

CA:CO::CA — CO-.CO — CR
: : A O : O R

and therefore if C S be joined and produced to meet the exterior globe

in D, we have also

AD : SO(:: C A: CO):: AO: OR.
But

S O = the semi-circumference of the wheel O R = ——^—

.
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..AD = -^-^— =h the circumference of the wheel whose diameter is
2 ^

A O. That is S is the vertex of the Hypoc}xloid A S, and A S is per-

pendicular in S to C S. But O S is also perpendicular to C S. There-

fore A S touches O S in S, &c.

414. The similai- Jigures A S, S R.]

By 39 it readily appears that Hypocycloids are similar when

R : r : : R' : r'

R and r being the radii of the globe and wheel ; that is when

C A: AO :;CO : O R
or when

C A : C O : : C O : C R
.*. A S, S R are similar

415. V B, V W are equal to O A, O R.] .

If B be not in the circumference AD let C V meet it in B'. Then
V P being a tangent at P, and since the element of the curve A P is the

same as would be generated by the revolution of B' P around B' as a

center, and .*. B' P is perpendicular both to the curve and its tangent

P V, therefore P B, P B' and .-. B, B' coincide. That is

V B := O A.

Also if the wheel O R describes O V whilst A O describes A B, the

angular velocity B P in each must be the same, although at first, viz. at

O and A, they are at right angles to each other. Hence when they shall

have arrived at V and B their distances from C B must be complements

of each other. But

z.TVW = BVP=^— PBV
.*. T V is a chord in the wheel O R, and

.-. V W = O R.

See also the Jesuits' note.

• OTHERWISE.

416. Construct the curve S P, to which the radius of curvature to every

point of S R Q is a tangent ; or which is the same, find S A the Locus of

the Centers of Curvature to S R Q.

Hence is suggested the following generalization of the Problem, viz.

417. To make a body oscillate in any given curve.

Let S R Q (Newton's fig.) the given curve be symmetrical on both sides

X4
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of R. Theu if X, y be the rectangular coordinates referred to the vertex

R, and ot, j8 those of the centers of curvature (P) we have

r 2 _ p X 2 = (y — ^)
s 4. (X — a) 2.

Hence, the contact being of the second order (74)

x-a+ iy-^)^ = . (1)

and

d V* d^v
i + f^. + (y-^)^/. = o (2)

These two equations by means of that of the given curve, will give us

3 in terms of a, or the equation to the Locus of the centers of curvature.

Let S A be the Locus corresponding to S R, and A Q the other half.

Then suspending a body from A attached to a string whose length is R A,

when this string shall be stretched into any position APT, it is evident

that P being the point where the string quits the locus is a tangent to it,

and that T is a point in S R Q.

Ex. 1. Let S R Q &<? the common parabola.

Here

y^ =: 2 a X

"dx ~
a

d*y
dx«

~ a dy
dx =

a"

.*. substituting we get

X — a + (y- ^).
a

v
=

and

^^k- (y-/3)
• 2

a

xy
=

.'. X -« + tO n-^)
2 xy

a
=

2xy

zz 3 x — a 4- a

or

and

But

a = 3 X + a-v

.-.13* =

= 2 ax
4 x^y^ _ 8 X 3

a
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^ 8_^(«-ar^ 8
^

a 27 27 a ^
' • \^)

Now when /3 = 0, a = a ; which shows that A R the length of the

string must equal a. Also making A the origin of abscissas, that is, aug-

menting a by a, we have

^' = i^ X »"

the equation to the semicubical parabola A S, A Q, which may be traced

by the ordinaiy rules (35, &c.); and thereby the body be made to oscillate

in the common parabola S Q R.

Ex. 2. JLet S R Q 5e an ellipse.

Then, referring to its center, instead of the vertex,

b^

or

and

a^y^ + b^x* = a^b'

.\ a^y^ + b^x =
•^ d X

•^ d X dx*
These give

and

Hence

and

d y _ b* X

dx ""
a* y

d*y _ b

dx*^ ~ a^y'*

_ (a^ — b')

(a'-b'')y-

Hence substituting the values of y and x in

a^y'' + b*x2 = a*b'

we get

/3 b xfc-&r + (iT^.r = ' w
the equation to tlie Locus of the centers of curvature.
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In the annexed figure let

SC = b, CR = a

C M = X, T M = y.

Then

P N = ^, C N = a.

And to construct A S' by points, first put

^ =
whence by equation (a)

. a«— b«
a = +— a

the value of A C. Let

a =
then

a* — b«
/3 = +

b

the value of S' C or C Q'.

Hence to make a body oscillate in the semi-ellipse S R Q we must

take a pendulum of the length A R, (part = A P S' flexible, and part

= S S' rigid ; because S S' is horizontal, and no string however stretched

can be horizontal—see Whewell's Mechanics,) and suspend it at A.

Then A P being in contact with the Locus AS', P T will also touch

A S in P, &c. &c.

Ex. 3. Lei S K Q be the common cycloid ,•

The equation to the cycloid is

^^ = >v/^^ = V(t-')
• ill — — L
*• dx* "^ y^

whence it is found that

Hence

and

a = x4-2V(2ry— y2)|

/3 = -y i

da _ 2 r— y
dx ~ y

d5__dv__ /2r—

y

dx ~ dx~ V y

"da" >\2r— y~ 'S2r-f)8

which is also the equation of a cycloid, of which the generating circle is
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precisely the same as the former, the only difference consisting in a change

of sign of the ordinate, and of the origin of the abscissae.

The rest of this section is rendered sufficiently intelligible by the

Notes of P. P. Le Seur and Jacquier ; and by the ample supplementary

matter we have inserted.

SECTION XI.

417. Prop. LVII. Two bodies attracting one another, describe round

each other and round the center of gravity similar figures.

Q

Since the mutual actions will not affect the center of gravity, the bodies

will always lie in a straight line passing through C, and their distances

from C will always be in the same proportion.

.-. S G : T C : : P C : Q C
and

z.SCT = QCP.
.% the figures described round each other are similar.

Also if T t be taken = S P, the figure which P seems to describe

round S will be t Q, and

Tt: TQ:: SP: TQ
::CP:CQ

and

z. t T Q = P C Q.
.•. the figures t Q, P Q, are similar ; and the figure which S seems to

describe round P is similar, and equal to the figure which P seems to

describe round S.

418. Prop. LVIII. If S remained at rest, a figure might be de-

scribed by P round S, similar and equal to the figures which P and S

seem to describe round each other, and by an equal force.
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Curves are supposed similar and Q R, q r indefinitely small. Let P and

p be projected in directions P R, p r (making equal angles C P R, s p r)

with such velocities that

V

V S VCP
-• sp

= 1
/PQ

V S + P Vpq

Then f since d t
ds\

~ V J

T
*
t

_PQ Vpq
pq VPQ

_ VPQ _ -/QR
V qr

But in the beginning of the motion f =
pt I

2

.
F _ Q R jL*" _ ±

•*•

f ~ qr • QR ~
1

•

The same thing takes place if the center ofgravity and the whole system

move uniformly forward in a straight line in fixed space.

419. CoE. 1. If F Qc D, the bodies will describe round the common
center of gi'avity, and round each other, concentric ellipses, for such would

be described by P round S at rest with the same force.

Conversely, if the figures be ellipses concentric, F « D.

420. CoR. 2. If F a ,-t— the figures will be conic sections, the foci in

the centers of force, and the converse.

421. CoR. 3. Equal areas are described round the center of gravity,

and round each other, in equal times.

V

422. CoR. 3. Otherwise. Since the curves are similar, the areas, bounded

by similar parts of the curves, are similar or proportional.

.-. spq : C P Q : : sp*^ : C P^ : : (S+P)'' : s^ in a given ratio;
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and T. through s p q : T. through CPQ::VS+P:VS, ina given ratio

and .-. : : T. through spv: T.through CPV
.-. T. through C P Q : T. through CPV:: T. throughspq : T. through spv

: : s p q : s p V (by Sect. II.)

::CPQ:CPV
.*. the areas described round C are proportional to the times, and the

areas described round each other in the same times, which are similar to

the areas round C, are also proportional to the times.

423. Prop. LIX. The period in the figure described in last Prop.

: the period round C : : v' S + P : V~S ; for the tunes through shnilar

arcs p q, P Q, are in that proportion.

424. Prop. LX. The major axis of an ellipse which P seems to de-

scribe round S in motion ^^Force a Yil) • niajor axis of an ellipse which

would be described by P in the same time roimd S at rest : : S + P • first

of two mean proportionals between S + P and S.

Let A =r major axis of an ellipse described (or seemed to be described)

roimd S in motion, and which is similar and equal to the ellipse de-

scribed in Prop. LVIII.

Let X = major axis of an ellipse which would be described round S at

rest in the same time.

period in ellipse round S in motion V S ,t» t t-v-\
.'. -—:

—

T-- 11- m = — (Prop. LIX)
period m same ellipse round bat rest V S + P

and by Sect. Ill,

period in ellipse round S at rest _ -^

period in required ellipse round S at rest ~ yrl

5

period in ellipse round S in motion _ A ^ V S
period in required ellipse round S at rest

~~
« I ^ o . p

but these periods are to be equal,

.-. A^ s = x^s"TP
A:x::VS-fP: v'S::S+P: first of two mean proportionals

(for if a, a r, a r % a r % be proportionals, V a.: V a r ' : : a : a r.)

425. At what mean distance from the earth would the moon revolve

round the earth at rest, in the same time as she now revolves round the

earth in motion ? This is easily resolved.

426. Prop. LXI. The bodies will move as if acted upon by bodies at

the center of gravity with the same force, and the law of force with re-
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spect to the distances from the center of gravity will be the same as with

respect to the distances from each other.

For the force is always in the line of the center of gravity, and .*. the

bodies will be acted upon as if it came from the center of gravity.

And the distance from the center of gravity is in a given ratio to the

distance from each other, .•. the forces which are the same functions of

these distances will be proportional -

427. Prop. LXII. Problem oftwo bodies with no initial Velocities.

F oc —— . Two bodies are let fall towards each other. Determine the

motions.

The center of gravity will remain at rest, and the bodies wiU move as

if acted on by bodies placed at the center of gravity, (and exerting the

same force at any given distance that the real bodies exert),

.-. the motions may be determined by the 7th Sect.

428. Prop. LXIII. Problem of two bodies with given initial Velo-

cities.

F a
Y\l ' Two bodies are projected in given directions, with given

velocities. Determine the motions.

The motion of the center of gravity is known from the velocities and

directions of projection. Subtract the velocity of the center of gravity

from each of the given velocities, and the remainders will be the velocities

with which the bodies will move in respect of each other, and of the cen-

ter of gravity, as if the center of gravity were at rest. Hence since they

are acted upon as if by bodies at the center of gravity, (whose magnitudes

are determined by the equality of the forces), the motions may be deter-

mined by Prop. XVII, Sect. Ill, (velocities being supposed to be acquired

down the finite distance), if the directions of projection do not tend to the

center, or by Prop. XXXVII, Sect. VII, if they tend to or directly from

the center. Thus the motions of the bodies with respect to the center of

gravity will be determined, and these motions compounded with the uni-

form motion of the center of gravity will determine the motions of the

bodies in absolute space.

429. Prop. LXIV. F a D, determine the motions of any number of

bodies attracting each other.
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T and L will describe concentric

ellipses round D.

Now add a third body S.

Attraction of S on T riiay be re-

presented by the distance T S, and

on L by L S, (attraction at distance

being 1) resolve T S, L S, into

T D, D S ; L D, D S, whereof the

parts T D, L D, being in given

ratios to the whole, T L, L T, v/ill

only increase the forces with which

L and T act on each other, and

the bodies L and T will continue to describe ellipses (as far as respects

these new forces) but with accelerated velocities, (for in similar parts of

similar figures V^ « F.R Prop. IV. Cor. 1 and 8.) The remaining

forces D S, and D S, being equal and parallel, will not alter the relative

motions of the bodies L and T, .*. they will continue to describe ellipses

round D, which will move towards the line I K, but will be impeded in

its approach by making the bodies S and D (D being T + L) describe

concentric ellipses round the center of gravity C, being projected with

proper velocities, in opposite and parallel directions. Now add a fourth

body V, and all the previous motions will continue the same, only accel-

erated, and C and V will describe ellipses round B, being projected with

proper velocities.

And so on, for any number of bodies.

Also the periods in all the ellipses will be the same, for the accelerating

forceonT = L.TL-|- S . TD= (T+L). TD+ S. TD= (T+L +S).

T D, i. e. when a third body S is added, T is acted on as if by the sum

of the three bodies at the distance T D, and the accelerating force on D
towards C = S.SD = S.C S+ S.D C = (T + L).DC+ S. D C
= (T + L + S). D C.

.-. accelerating force on T towards D : do. on D towards C : : TD : D C

.'. the absolute accelerating forces on T and D are equal, or T and D
move as if they revolved round a common center, the absolute force the

same, and varying as the distance from the center, i. e. they describe el-

lipses, in the same periods.

Similarly when a fourth body V is added, T, L, D, S, C, and V, move

as if the four bodies were placed at D, C, B, L e. as if the absolute forces

were the same, and with forces proportional to their respective distances

from the centers of gravity, and .*. in equal periods.
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And so on, for any number of bodies.

430. Prop. LXVI. S and P revolve round T, S in the exterior orbit,

P in the interior,

F oc —^ , find when P will describe round T an orbit nearest to the

ellipse, and areas most nearly proportional to the times.

(1st) Let S, P, revolve round the greatest body T in the same plane.

Take K S for the force of S on P at the mean distance S K,

and

LS = SK.
SK = force at P,SP^

resolve L S into L M, M S,

L M is parallel to P T, and .-. tends to the center T, .*. P will con-

tinue to describe areas round T proportional to the times, as when acted

on only by P T, but since L M does not a pPjr^ j the sum of L M and

P T will not a ^^ , .*. the form of the elhptic orbit P A B will be

disturbed by this force, L M, M S neither tends from P to the center

T, nor « p-rrTj , .*. from the force M S both the proportionality of areas

to times, and the elliptic form of the orbit, will be disturbed, and the

elliptic form on two accounts, because M S does not tend to C, and be-

cause it does not « "pfpi •

.'. the areas will be most proportional to the times, when the force

M S is least, and the elliptic form will be most complete, when the forces

M S, L M, but particularly L M, are least

Now^ let the force of S on T = N S, then this first part of the force

M S being common to P and T wiU not affect their mutual motions, .•. the
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disturbing forces will be least when L M, M N, are least, or L M remain-

ing, when M N is least, i. e. when the forces of S on P and T are nearly

equal, or S N nearly = S K.

(2dly) Let S and P revolve round T in different planes.

Then L M will act as before.

But M N acting parallel to T S, when S is not in the line of the Nodes,

(and M N does not pass through T), will cause a disturbance not only

in the longitude as before, but also in the latitude, by deflecting P from

the plane of its orbit. And this disturbance will be least, when M N is

least, or S N nearly = S K.

431. Cor. 1. If more bodies revolve round the greatest body T, the

motion of the inmost body P will be least disturbed when T is attracted

by the others equally, according to the distances, as they are attracted by

each other.

432. Cor. 2. In the system of T, if the attractions of any two on the

third be as yp j P will describe areas round T with greater velocity near

conjunction and opposition, than near the quadratures.

433. To prove this, the following investigation is necessary.

. A
, 1 , ^/^ -V.

si—-

—

,_^7-^"YX \
n m . B\

1 T
j

D

Take 1 S to represent the attraction of S on P,

nS T,

Then the disturbing forces are 1 m (parallel to P T) and m n.

Now

S 1 = g^2 (force a ~^^

S

.•.Sm = Sl.S^=

R*— 2Rrcos. A + r*'

S.R

(R = ST,r = PT)A = ^STP

SP~ (R*— SRrcos. A + r=')

S.R

V R'^— 2Rrcos. A + r«

= R»(l — 2 V cos. A
R RW 2 r COS. A T*_

R R
Vol. I.
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- S /, ,
3/2r . r*v ^ 3.5 /2rcos.A r«N« x

- S /- 3r . /3 3.5 . ^\r' \
= E^C^ + R-*^^'-

^-b - 1:^
COS.* A)g-,&c.)

- R«v*+ R >
where R is indefinitely great with respect to r.

Also

S /, . 3 r COS. A\ S S.Srcos.r„„_e^ c!„ ^ ^1 ,
^^ COS. A\ ft>

ultimately

andlm = SI. ~ = —^ (R«— 2Rrcos. A + r«)

= ^.(R« — 2Rrcos. A + r«)-»

_ S^ .
S.2r* _

~
R^*

"*" R* »^*^
. .

= -n^ ultimately. •

434. Call 1 m the addititious force

and m n the ablatitious force

and m n = 1 ra 3 cos. A.

Resolve m n into m q, q n.

The part of the ablatitious force which acts in the direction m q
= m n . cos. A

*— = central ablatitious force.

3 S r
The tangential part = m n . sin. A = "WT" • ^^^' ^ • cos. A

=r - . r^-g- . sin. 2 A = tangential ablatitious force

'*. the whole force in the direction PT = lm—mq =
R3 R

R
S r= -^ (1 — 3 COS.* A) and the

3 S . r
whole force in the direction of the Tangent = q n = -o" • ~^^ • s^"* ^ A.

435. Hence Cor. 2. is manifest, for of the four forces acting on P, the
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three first, namely, attraction of T, addititious force, and central ablatiti-

ous force, do not disturb the equable description of areas, but the fourth

or tangential ablatitious force does, and this is + from A to B,—from B
to C, + from C to D, — from D to A. .*. the velocity is accelerated from A
to B, and retarded from B to C, .*. it is greatest at B. Similarly it is a

maximum at D. And it is a minimum at A and C. This is Cor. 3.

436. To otheriaise calculate the central and tangefitial ablititiousforces.

On account of the great distance of S, S M, P L may be considered

parallel, and

.-. P T = L M, and S P = S K = ST.

.*. the ablatitious force = 3 P T. sin. <) = 3 P K.

Take P m = 3 P K, and resolve it into P n, n m.

P n = P m . sin. ^ = 3 P T. sin. * ^ = central ablatitious force

= 3 P T. ^ — ^Qs- ^ ^

n m = Pm . cosv 5 = 3 P T. sin. 8 cos. ^ = -^ . P T. sin. 2 ^ = tangential

ablatitious force.

The same conclusions may be got in terms of 1 m from the fig. in Art

433, which would be better.

437. Find the disturbingforce on P in the direction P T.

This = (addititious + central ablatitious) force = 1 m + 3 1 m . sin. ' 6

1 o 1 f^ — cos. 2 ^ \= lm-3lm(
)

438. To Jind the mean disturbing force of S during a lohole revolution

in the direction P T.

Let P T at the mean distance = m, then — 1 m T

Y2

1 — 3 cos. 2 ey
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2

1 m in . ^ . . , II- 1 ,

=r — = — ~ since COS. 2 ^ is destroyed during a whole revo-

lution.

439. The disturbing forces on P are

S r
(1) addititious = -^3- = A.

(2) ablatitious = 3 . A . sin. 6

3

8

3 . A
which is (1) tangential ablatitious force

—
'^ . cos. 2

and (2) central ablatitious force = 3 A . 5—

^

3 A 3 A
.*. whole disturbing force in the direction P T= A —f- -—-

. cos. 2 6

=--2 +-2-. COS. 2^.

But in a whole revolution cos. 2 6 will destroy itself, .*. the whole dis-

turbing force in the direction P T in a complete revolution is ablatitious

and = ^ addititious force.

S r
The whole force in the direction P T = ~- (1— 3 sm.^6) (Art. 433)

= It('-t(i-™^-2»))
S r / 3 3

multiply this by d.^, and the integral = -.|^ \^$
— ^ ^ + — . sin. 2 ^)

S r v=sum of the disturbing forces; and this when^=ff becomes :^-j- . —

.

This must be divided by t, and it gives the mean disturbing force act-

S r
ing on P in the direction of radius vector = — ^ -^y ,

440. The 2d Cor. will appear from Art. 433 and 434.

3
For the tangential ablatitious force = — . sin 2 ^ . x addititious force,

.*. this force will accelerate the description of the areas from the quadra'

tures to the syzygies and retard it from the syzygies to the quadratures,

since in the former case sin. 2 is +, and in the latter —

.

441. Cor. 3 is contained in Cor. 2. (Hence the Variation in as-

tronomy.)
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442. P V is equivalent to P T, T V, and accelerates the motion

;

p V is equivalent to p T, T V, and retards the motion.

443. CoR. 4. Cast, par., the curve is of greater curvature in the quadra-

tures than in the syzygies.

For since the velocity is greatest in the syzygies, (and the central abla-

titious force being the greatest, the remaining force of P to T is the least)

the body will be less deflected from a right line, and the orbit will be less

curved. The contrary takes place in the quadratures.

444. The whole force from Sin the direction P T=^^ (1 — 3 sin. 2^)

T
(see 433) and the force from T in the direction P T = ~ .

.*. the whole force in the direction P T =

T S r
and at A this becomes —5- + -^-r

r^ R^

„2 ~ R^ ^
3 sin. = 6)

at B

at C

atD

2.S.r

T_
J.

2

R'
S.r
R3
2 S.r
R^

(for though sin. 270 is —, yet its syzygy is +).

Thus it appears that on two accounts the orbit is more curved in the

quadratures than in the syzygies, and assumes the form of an ellipse at

the major axis A C.

Y3
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.'. the body is at a greater distance from the center in the quadratures

than in the syzygies, which is Cor. 5.

44-5. Cor. 5. Hence the body P, caet. par., will recede farther fi-om

T in the quadratures than in the syzygies ; for since the orbit is less

curved in the syzygies than in the quadratures, it is evident that the body

must be farther from the center in the quadratures than in the syzygies.

446. CoR. 6. The addititious central force is greater than the ablati-

tious from Q' to P, and from P' to Q, but less from P to P', and from

Q to Q', .'. on the whole, the central attraction is diminished. But it

may be said, that the areas are accelerated towards B and D, and .*. the

time through P P' may not exceed the time through P' Q, or the time

through Q Q' exceed that through Q' P. But in all the corollories, since

the errors are very small, when we are seeking the quantity of an error,

and have ascertained it without taking into account some other error,

there will be an error in our error, but this error in the error will be an

error of the second order, and may .*. be neglected.

The attraction of P to T being diminished in the course of a revolution,

the absolute force towards T is diminished, (being diminished by the

S r . . r ^

mean disturbing force — ^ |y^ , 439,) .•. the period which « —— , is

increased, supposing r constant.

But as T approaches S (which it will do from its higher apse to the

lower) R is diminished, the disturbing force Twhich involves ^j will be

increased, and the gravity of P to T still more diminished, and .*. r will

be increased; .•. on both accounts (the diminution of f and increase of r)

the period will be increased.

(Thus the period of the moon round the earth is shorter in summer

than in winter. Hence the Annual equation in astronomy.)

When T recedes from S, R is increased, and the disturbing force di-

minished and r diminished. .*. the period will be diminished (not in com-

parison with the period round T if there were no body S, but in compari-

son with what the period was before, from the actual disturbance.)
rp Q

447. Cor. 6. The whole force of P to T in the quadratures=—5-+-^

, . T 2Sr
the syzygies =^, ^

. . on the whole the attraction of P to T is diminished in a revolution.

For the ablatitious force in the syzygies equals twice the addititious force

in the quadratures.
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At a certain point the ablatitious force = the addititious ; when

1 = 3 sin. * S

or

^"••^=V3
and

A = 55°, &c.

P
(the whole force being then = -77

•)

Up to this point from the quadratures the addititious force is greater

than the ablatitious force, and from this point to one equally distant from

the syzygies on the other side, the ablatitious is greater than the addititious ;

.•. in a whole revolution P's gravity to T is diminished.

Again since T alternately approaches to and recedes from S, the radius

r^
P T is increased when T approaches S, and the period a— ^^:r=.

V absolute force

and since f is diminished, and .*. r increased, .\ the periodic time is in-

creased on both accounts, (for f is diminished by the increase of the dis-

r \
turbing forces which involve -^A If the distance of S be diminished, the

absolute force ofS onP will be increased, .'.the disturbing forces which gctyj

from S are increased, and P's gravity to T diminished, and .*. the periodic

time is increased in a greater ratio than r * (because of the diminution of

r^x
fin the expression —7-?) and when the distance of S is increased, the dis-

turbing force will be diminished, (but still the attraction of P to T will be

diminished by the disturbance of S) and r will be decreased, .•. the
5

period will be diminished in a less ratio than r ^.

448. CoR. 7. To find the effect of the disturbing force on the motion

of the apsides of P's orbit during one whole revolution.

T S . r
Whole force in the direction P T = ^ + V^" ^^ — ^ ^°^* ^ "^^

= , + T.c.r, (if T.c =^3(1— 3 cos."- A) = :^:3 ,

1 4- c
.*. the Z- between the apsides =180 "| by the IXth Sect, which

is less than 180 when c is positive, i. e. from Q' to P and from P' to P^
Y4.
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(fig. (446,)) and greater than 180 when c is negative, i. e. from P to F
and from Q to Q',

.*. upon the whole the apsides are progressive, (regressive in the quadra-

tures and progressive in the syzygies)

;

T 3 S r
force = —

^

^-3- = force in conjunction

Now
r'^ R

R'T~-3Sr3
r^R'

3 . Sr'
y— = force in opposition

and
R'T— 3Sr^^

r'^^R'

differ most from —5 and -.^

when r is least with respect to r',

which is the case when the Apsides are in the syzygies.

But

R^T+ Sr^ R^T+ Sr^»

r«R' r'^R^

differ least from —̂ and -jj when r is most nearly equal to r',

449. CoR. 7. Ex. Find the angle from the quadratures, when the apses

are stationary.

Draw P m parallel to T S, and = 3 P K, m n perpendicular to T P,

resolve P m into P n, n m, whereof n m neither increases nor diminishes

the accelerating force of P to T, but P n lessens that force, .'. when P n

= P T, the accelerating force of P is neither increased nor diminished,

and the apses are quiescent,

by the triangles PT: PK::PM = 3PK: Pn = PT
.*. in the required position 3 P K^ = P T'

or

P TPK=^^=PT.sin.tf,
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or

6 = 35° 26'.

The addititious force P T — P n is a maximum in quadratures.

ForPT:PK::3PK:Pn = ^p^'

3 P K*
.'.FT — Pn = PT p „ , which is a maximum when P K = 0,

or the body is in syzygy.

450. Cor. 8. Since the progression or regression of the Apsides de-

pends on the decrement of the force in a greater or less ratio than D % from

the lower apse to the upper, and on a similar increment from the upper

to the lower, (by the IXth Sect.), and is .*. greatest when the proportion

of the force in the upper apse to that in the lower, recedes the most from the

inverse square of D, it is manifest that the Apsides progress the fastest from

the ablatitious force, when they are in the syzygies, (because the whole forces

in conjunction and opposition, i. e. at the upper and lower apses being

—^ 5-3- , when the apsides are in the syzygies and when r is greatest

T
at the upper apse, — being least, and the negative part of the expression

2 S r

^ 3
being greatest, the whole expression is .*. least, and when r is least,

T
at the lower apse, —5 being greatest, and the negative part least, .*. the

whole expression is greatest, and .•. the disproportion between the forces at

the upper and lower apse is greatest), and that they regress the slowest

T S r
in that case from the addititious force, (for ~„ -}- ^j-^ , which is the whole

force in the quadratures, both before and after conjunction, r being the

semi minor axis in each case, differs least from the inverse square) ; there-

fore, on the whole the progression in the course of a revolution is greatest

when the apsides are in the syzygies.

Similarly the regression is greatest when the apsides are in the quadra-

tures, but still it is not equal to the progression in the course of the re-

volution.

451. CoR. 8. Let the apsides be in the syzygies, and let the force

at the upper apse : that at the lower, : : D E : A B, DA'
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being the curve whose ordinate is inversely

as the distance * from C, .*. these forces being

diminished, the force D E at the upper apse

2 r S
by the greatest quantity - ^ 3 , and tlie force

A B at the lower apse by the least quantity

p 3 ; the curve a d which is the new force

curve has its ordinates decreasing in a

greater ratio than w^

.

Let the apsides be in the quadratures, then the force E D will be increased

S r
by the greatest quantity rrji and the force A B by the least quantity

S r'
p-j- , .*. the curve a' d' which is the new force curve will have its

ordinates decreasing in a less ratio than ^p— .

451. Cor. 9. Suppose the line ofapsides to be in quadratures, then while the

body moves from a higher to a lower apse, it is acted on by a force which

1 R^T+Sr^
does not increase so fast as r=r-^ (for the force = ^tt-^ » •*• thejjz \

r ^ R^

numerator decreases as the denominator increases), .*. the orbit will be

exterior to the elliptic orbit and the excentricity will be decreased. Also as

Sr
the descent is caused by the force R (1 — 3^ cos. ^ A), the less this

force is with respect to —^ , the less will the excentricity be diminished.

Now while the line of the apsides moves from the line of quadratures, the

S r
force t> 3 ( 1 — 3 cos. ^ A) is diminished, and when it is inclined at z. 35"

16' the disturbing force = 0, and .*. at those four points the excentricity

is unaltered. After this, it may be shown in the same manner that the

excentricity will be continually increased until the line of apsides coin-

cides with the line of syzygies. Here it is a maximum, since the disturb-

ing force is negative. Afterwards it will decrease as before it increased

until the line of apsides again coincides with the quadrature, and then the

excentricity = maximum.

(Hence Evection in Astron.)
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452. Lemma. To calculate that part of the ablatitious force which is

employed in drawing P from the plane of its orbit.

Let A = angular distance from syzygy.

Q = angular distance of nodes from syzygy.

I = inclination of orbit to orbit of S and T.

3 S r
Then the force required = „

3
• . cos. A . sin. Q . sin. L (not quite

accurately.)

When P is in quadratures, this force vanishes, since 00s. A = 0.

When nodes are in syzygy, since sin. Q = 0,

quadratures, this force (cast, par.) = maxi-

mum, since sin. Q = sin. 90 = rad.

453. CoR. 12. The effects produced by the disturbing forces are all

greater when P is in conjunction than when in opposition.

For they involve „-^, .•. when R is least, they are greatest.

454. CoR. 13. Let S be supposed so great that the system Pand T re-

volve round S fixed. Then the disturbing forces will be of the same kind

as before, when we supposed S to revolve round Tat rest.

The only difference will be in the magnitude of these forces, which will

be increased in the same ratio as S is increased.

455. Cor. 14. If we suppose the different systems in which S and S T
a, but P T and P and T remain the same, and the period (p) of P round

T remains the same, all the errors « ^^ ex -^ , if a = density of S,

and d its diameter,

a 3 3, if A given, and B= apparent diam.

also

1 S
pi ^ R^ if P = period ofT round S,

.*. the errors <^ p-^

.

*

These are the linear errors, and angular errors oc in the same ratio,

since P T is given.

456. Cor. 15. If S and T be varied in the same ratio,

S T
Accelerating force of S : that of T : : ^r^ : —, the same ratio as before.° K* r ^

.*. the disturbances remain the same as before.

(The same will hold if R and r be also varied proportionally.)

.*. the linear errors described in P's orbit oc P T, (since they involve r),

if P T a,the rest remaining constant.
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also the angular errors of P as seen from T oc — oc __ « i,

and are .*. the same in the two systems.

The sunilar linear errors oc f . T % .*. P T oc f . T ^ and f «

P T P T
-Tpv , but f a accelerating force of T on P oc —~

, (p = period of P

round T,)
.'.Tap and .*. « P

(forP^a^aflJ- ap2)

Cor. 14. In the systems

S, T, P, Radii R, r Periods P, p
S', T, P R',r PVp.

Linear errors dato t. in 1st. : do. in second

.*. angular errors in the period of P -

Cor. 15. In the systems

S, T, P, R, r

S', Ty P R', r'

1

p2

1

p/ i

1

p/2*

- S' T' , R'
so that -^v = rp- and ^ =

• • p/ - p/
•

Linear errors in a revolution of P in 1 st. :

angular errors

CoR. 16. In the systems

S, T, P, R, r

S, T', P, R, I''

-F,P'

r

do. in second : r : r

: 1 : 1.

— P,P— P,P'.

Linear errors in a revolution of P in 1st. : do in second

angular errors in a revolution of P :

To compare the systems

(1) S, T, P R, r P, p
(2) S', T', P' R', r' P', p'.

Assume the system

(3) S', T, P R', r P', p

r p

P'

r' p'

•p
2
p/«.*. by (14) angular errors in P S revolution in (1) : in (3) : ;^ : p;-

by (16) angular errors in (3) : in (2) : : p^ : p"^

P^ P'*
therefore errors in (1) : in (2) :

". ^j * pTS*
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Or assume the system (3) 2, T, P — ^, r— II, p

so that g, = ^, R>
= 7>

1 1 S
. 1 . . S^ . R

'

R3 •

e3
•• 2 • p3

/. the errors in (1) ; errors in (3) : : p^ :
—

(3)

:

(2) : : 1 : 1

.S^S^. R3 R;^^.^ T' R' r^3

••S' 2 • R''* s' '*S' • T • R'3* r^

" R 3 T R' 3 * T * * P 2 • P' 2
•

457. CoR. 16. In the different systems the mean angular errors of

P a — whether we consider the motion of apses or of nodes (or- errors

in latitude and longitude.)

For first, suppose every thing in the two different systems to be the same

except P T, .*. p will vary. Divide the whole times p, p', into the same

number of indefinitely small portions proportional to the wholes. Then if

the position of P be given, the disturbing forces all a each other a P T

;

and the space a f . T ^ .*. the Linear errors generated in any two corre-

sponding portions of time oc P T . p ^.

.*. the angular errors generated in these portions, as seen from T, « p *.

.•• Comp°. the periodic angular errors as seen from T x p ^

Now by Cor. 14, if in two different systems P T and .*. p be the same,

every thing else varying, the angular errors generated in a given time, as in

1

.*. neutris datis, in different systems the angular errors generated in the

tune p oc SI •

Now
n/f . Iff .

.

pa- p
_/, . p, . . e: . i

.*. the angular errors generated in V (or the mean angular errors) or p-^.

Hence the mean motion of the nodes as seen from T oc mean motion

of the apses, for each oc ^ •

458. CoR. 17.

Mean addititious force : mean force ofP on T : : p *
: P*.

For

mean addititious force : force of S on T : : P T : S T,
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Sr
\" R

force of S on T : mean force ofT on P:

:

ST

S

PT

R
)

(force a ^)
.*. mean addititious force : mean force ofT on P: : p '^

: P '^

.*. ablatitious force : mean force ofT on P: :3 cos. tf * p ^
: P.

Similarly, the tangential and central ablatitious and all the forces may

be found in terms of the mean force of T on P.

459. Prop. LXVII. Things behig as in Prop. LXVI, S describes

the areas more nearly proportional to the times, and the orbit more ellipti-

cal round the center of gravity of P and T than round T.

P , T
For the forces on S are

PS'
and TS

.*. the direction of the compound force lies between S P, ST; and T
attracts S more than P.

.*. it lies nearer T than P, and .*. nearer C the center of gravity of T
and P.

.*. the areas round C are more proportional to the times, than when

round T.

Also as S P increases or decreases, S C increases or decreases, but S T
remains the same ; .*. the compoimd force is more nearly proportional to

the inverse square of S C than of S T ; .*. also the orbit round C is more

nearly elliptic (having C in the focus) than the orbit round T.
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460. To find the axis major of an ellipse, whose periodic time round

S at rest would equal the periodic time of P round S in motion.

Let A equal the axis major of an ellipse described round P at rest

equal the axis major of P Q v.

Let X equal the axis major required,

P. T. of P round S in motion : p S at rest : : V S : \^ S + P

P. T. of p in the elliptic axis A : P. T. in the elliptic axis x : : A « : x *

.-. p. T. of P round S in motion : P.T. in the elax. x : : VATS : Vx'(«+P).

By hyp. the 1st term equals the 2d,

.-. A»S = x'. S + P

.-. A:x::(S+P)*: si
461. Prop. LXIII. Having given the velocity, places, and directions

of two bodies attracted to their common center of gravity, the forces vary-

ing inversely as the distance % to determine the actual motions of bodies in

fixed space.

Since the initial motions of the bodies are given, the motions ofthe center

of gravity are given. And the bodies describe the same moveable curve

round the center of gravity as if the center were at rest, while the center

moves uniformly in a right line.

Take therefore the motion of the center proportional to the time,

i. e. proportional to the area described in moveable orbits.

* Since a body describes some cunre in fixed space, it describes areas in proportion to the times

in this curve, and since the center moves umformly forward, the spaca described by it is is pro-

portion to the time, therefore, &c.
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462. Ex. 1. Let the body P describe a circle round C, while the center C
moves uniformly forward. Take C G : C P : : v of C : v of P, and with the

center C and rad. C G describe a circle G C N, and suppose it to move

round along G H, then P will describe the trochoid P L T, and when P
has described the semicircle PA B, P will be at the summit of the trochoid

.*. every point of the semicircumference G F N will have touched G H,

.•. G H equals the semicircumference G F N,

.-. V of P : V of C : : P A B semicircumference : C ll=G F N semicircle

*
: : C P : C G Q. e. d,

463. Ex. 2. Let the moveable curve ^^-^P
be a parabola, and let the centerofgravity

move in the direction of its primitive

axis. When the body is at the vertex

A', let S' be the position of the center

of gravity, and while S' has described

uniformly S' S, let A have described the

arc of the parabola A P.

Let A' N = X, N P = y, be the ab-A' S'

scissa and ordinate of the curve A P in fixed space.

Let 4 p equal the parameter of the parabola A P.

.-. A N = ^, A' S = S'S = X _y- = iEil3!
4p 4p 4p

SN = AN — AS=- AN xL^w- y*"~^p*
4 p ^ .4 p

AreaASP=ANP—SNP=|ANx N P— i N S X NP
^ "»— 4p'y __ y^+ 12p«y
4p

.9 y:
"3

ly
4 p 24 p

By Prop. S' S cd A S P ; therefore they are in some given ratio.

y^ + i2p'y 4 px — y«

24 p * 4 p
Let A S P : S' S : : a : b

• If C P = C G the curve in fixed space becomes the common cycloid.

If C P >. C G the ollongated trochoid.
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y'-f- 12p*y = 4pax — ay'

353

.-. y'+ ay2+ 12 p^ y— 4 pa x = C.

Equation to the curve in fixed space.

464. Ex. 3. * Let B B' be the orbit of the earth round the sun, M A

that of the moon round the earth, then the moon will, during a revolution,

trace out a contracted or protracted epicycloid according as A L has a

greater or less circumference than A M, and the orbit of the moon round

tlie sun will consist of twelve epicycloids, and it will be always concave to

the sun. For

F of the earth to the sun : F of the mdbn to the earth : : -rr^

400 1

"•(365) 2* (27)^

in a greater ratio than 2 : 1. But the force of the earth to the sun is

nearly equal to the force of the moon to the sun, .*. the force of the moon
to the earth, .-. the deflection to the sun will always be within the tan-

gential or the curve is always concave towards the sun.

465. Prop. LXVI. If three bodies attract each other with forces

varying inversely as the square of the distance, but the two least revolve

• To determine the nature of the curve described by the moon with respect to the sun.
Tot. I. Z
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about the greatest, the innermost of the two will more nearly describe the

areas proportional to the time, and a figure more nearly similar to an el-

lipse, if the greatest body be attracted by the others, than if it were at rest,

or than if it were attracted much more or much less than the other bodies.

(L M : P T : : S L : S P,

PT
.'. L M Qc SP 3 »

T M - PT X SL _ SK^xPTv

.-. SK' : SP» :: SL : SP).

Let P and S revolve in the same plane about the greatest body T, and

P describe the orbit P A B, and S, E S E. Take S K the mean distance

of P from S, and let S K represent the attraction of P to S at that dis-

tance. Take SL : SK :: SR* : SPS and SL will represent the

attraction of S on P at the distance S P. Resolve it into two S M, and

L M parallel to P T, and P will be acted upon by three forces P T, L M,

S M. The first force P T tends to T', and varies inversely as the dis-

tance % .*. P ought by this force to describe an ellipse, whose focus is T.

The second, L M, being parallel to P T may be made to coincide with it

in this direction, and .*. the body P will still, being acted upon by a centri-

petal force to T, describe areas proportional to the time. But since L M
does not vary inversely as P T, it will make P describe a curve different

from an ellipse, and .*. the longer L M is compared with P T, the more

will the curves differ from an ellipse. The third force S M, being neither

in the direction P T, nor varying in the inverse square of the distance, will

make the body no longer describe areas in proportion to the times, and the

curve differ more from the form of an ellipse. The body P will .*. describe

areas most nearly proportional to the times, when this third force is a

minimum, and P A B will approach nearest to the form of an ellipse, when

both second and third forces are minima. Now let S N represent the

attraction of S on T towards S, and if S N and S M were equal, P and

T being equally attracted in parallel directions would have relatively the

same situation, and if S N be greater or less then S M, their difference

M 'N is the disturbing force, and the body P will approach most nearly

the equable description of areas, and P A B to the form of an ellipse,

when M N is either nothing or a minimum.

Case 2. If the bodies P and S revolve about T in different planes, L M
being parallel to P S will have the same effect as before, and will not
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tend to move P from its plane. But N M acting in a different plane,

will tend to draw P out of its plane, besides disturbing the equable des-

cription of areas, &c. and as before this disturbing force is a minimum,

when M N is a minimum, or when S N = nearly S K.

466. To estimate the magnitude of the disturbing forces on P, when P
moves in a circular orbit, and in the same plane with S and T.

Let the angle from the quadratures P C T = ^,

P C

S T = d, P T = r, F at the distance (a) = M,
t;, t3 Ma*

.*. From P in the direction S P : P T : : S P

.*. F in the direction P T = ^^' v £5^

ButSP* = d^ + r*— 2drsin. ^,

.-. F m the direction P T = M a*r

PT,

(d^ + r'— Sdrsin. Of
Ma^rf, -r« — 2drsin. rf{i-i^

}
"

d^ I
« d

_ Ma' r .
, .— 3-3 = A nearly, smce d bemg indefinitely great compared with r

in the expansion, all the terms may be neglected except two. First -i
d

vanishes when compared with ^3, .-. the addititious force in the direction

F T = A. By proportion as before, force in the direction S T
__M^ST___ Ma ^d f-SP'SP d^ (1 + rr*_2dr sin. ^,

--)

Ma^ / 1 _ 1 r« — 2drsin. 6y

d^ \ 2 d^ J

Ma
d«

3 M a * r 2 3 Ma'r sin. <?

2d
22
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f *u r . en. Ma«3Ma«r. ^ , .

.-. torce in the direction b 1 = —y^—j
j-j— sin. t nearly, since

T-j- vanishes when compared with -r , and the force of S on T = —~
,

,, . . ^ Ma' , 3Ma r . ^ Ma*
.*. ablatitious F = —rj 1 rj— • ""• ^ TT"

= 3 A . sin. 6.

If P T equal the addititious force, then the ablatitious force equals 3 P K,

for PK: PT::sin. ^: (1 = r),

.-. 3 P K = 3 P T . sin. ^ = 3 A . sin. 6.

To resolve the ablatitious force. Take

P m : P n : : P T : T K : : 1 : cos. 6,

3 A
.-. P n = P m X cos. ^ = 3 A X sin. 6 cos. 9 = -— . sin. 2 &

mn = PmX PK = 3A. sin. « = 3 A .
^ — ^Q^. 2 6

^

.*. the disturbing forces of S on P are

M a ' r
1. The addititious force=—p— = A.

2. The ablatitious force which is resolved into the tangential part

= —^ . sin. 2 6f and that in the direction T P = 3 A . ^

—

-—

,

.*. whole disturbing force in the direction P T = A — 3 A . —-—

= A Q—I—5— . cos. 2 6 = — ]——- . COS. 2 ^, and in the whole

revolution the positive cosine destroys the negative, therefore the whole

disturbing force in a complete revolution is ablatitious, and equal to one

half of the mean addititious force.

467. To compare N M and L M.

L M : P T : : (S L = |^') : S P,

.-. L M =
g p, X P T
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MN = |^3XST-ST = ^^g~3^^' xST
__SK^—(SK— KP)^

SP X ST

_ SK^— SK' + 3SR'xK P^^^^
,=

q p3 X o 1 nearly

3SK«xPK^^„ - 3SK3^„^— X S r nearly = ^ ^, X P KSP^
3SK3 „^= -g^3- X P T X sm. 6,

.-. M N : L M : : 1 : 3 sin. 6.

SP =

468. Next let S and P revolve about T in different planes, and let

N P N' be P's orbit, N N' the line of the nodes. Take T K in T S =
3 A . sin. 6. Pass a plane through T K and turn it round till it is per-

pendicular to P's orbit. Let T e be the intersection of it with P's orbit.

Produce T E and draw K F perpendicular to it, .*. K F is perpendicular

to the plane of P's orbit, and therefore perpendicular to every line meet-

ing it in that orbit, T in the plane of S's orbit ; draw K H perpendicular

to N' N produced ;
join H F, then F H K equals the inclination of the

planes of the two orbits. For KHT, KFT, KFH being all right angles,

KT« = KH* + HT»
K F*+ H« = K F« + FH« + HT^

*.% FT* = F H» + HT*,
.*. F H is peipendicular to H T.

Since PT=A, TK = Ax sin. i

• Let the angle KHT=T, HTKc=^ = angular distance of the line cf the ncdt«

from S y z.

Z3
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P T : T K : : 1 : 3 sin. d

T K : K H : : 1 : sin. <p

K H : K F : : 1 : sin. T,
.*. P T : K F : : 1 : 3 sin. ^. sin. f . sin. T,

.% ablatitious force perpendicular to P's orbit = K F
= 3 P T X sin. 6. sin. (p x i^in. T = 3 A X sin. (J. sin. <p X sin. T.

2d. Hence it appears that there are four forces acting on P.

C

m

\-f\
"~^

Nyp/// m'"\
V^„/

-^

^
D^

V
^.^ T

T-^
m' -v yp" m"

D

1. Attraction of P to T a

2. Addititious F in the direction P T =:
M a' r

3. Ablatitious F in the direction P T = 3 Ma^r
sin. * L

4. Tangential part of the ablatitious force = Ma'
sm.

Of these the three first acting in the direction of the radius-vector do

not disturb the equable description of areas, the fourth acting in the di-

rection of a tangent at P does interrupt it.

Since the tangential part of F is formed by the revolution of PM= 3 A X
sin. ^ at C, tf = 0, therefore P m = 0, and consequently the tangential

F = ; from C to A, P n is in consequentia, and therefore accelerates

the body P at A, it again equals 0, and from A to D is in antecedentia,

and therefore retards P; from D to B it accelerates; from B to C it re-

tards.

Therefore the velocity of P is greatest at A and B, because these are

the points at which the accelerations cease and retardations begin, and

the velocity is least at D and C. To find the velocity gained by the ac-

tion of the tangential force.*

dZ= Fdx = fA. sin. 2 ^ d ^

* F in the direction P T is a maxunum at the quadratare, because the ablatitious F in the

quadrature Is 0, and at every other point it is something.
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sin. 2 ^ X 2 f)' = — (cos. 2 6)',

V
.*. Z = -— = Cor. — x A. COS. 2 ^.

2g ^

But when ^ = 0, the tangential F = 0, and no velocity is produced,

.*. COS. 2 <i = R = ],

V 3 A
.-. ^— =—r- (1 — COS. 2 6) = I A. 2 sin. ^ ^,

2 g 4 ^ ' *

.'. V* = 3 g A, sin.* 6,

.*. V = V 3 g A. sin. &,

.'. v' oc (sin. dy,

.*. whole f on the moon at the mean distance : f of S on T 1 A

and the force of S on T : add. f at the mean distance (m) : : -^ : -^^

,

.*. whole f at the mean distance : m : : P *
: p * and —-^ x whole f &c. = m.

f ci r
Now f on the moon at any distance (r) = —^ — ^^-rj and at the mean

distance (1) = f— ^^3 = f— ^ ,

p2f mp2
. . Ill — p J .J p 2

'

.*. m ==

ps 2 P'

2p^f
2 P^ + p

2»

and therefore nearly =
2P~* '

.'. m r

f p2 2 p*

1

(which equals the addititious force) = f. r.
| p-^ W*'\ '

469. To compare the ablatitious and addititious forces upon the moon,

with the force of gravity upon the earth's surface. (Newton, Vol. III.

Prop. XXV.)
add. f : fofSonT : : P T : S T

f of S on T : f of the earth on the moon : : -^rr • -^--r- — —ir »P* p" p-

.'. add. f : f of the earth on the moon : : p'^ : P*
f of the earth on the moon : force of gravity : : 1 : 60 ^,

.-. add. f : force of gravity : : p« : P^ 60» . . . (I)

Also ablat. f : addititious force : : 3 P K : P T,

.-. ablat. f : addititious force : : 3 P K . p « : 60 ^ P T. P *
. (2)

470. Cor. 2. In a system of three bodies S, P, T, force oc^ ^, the

Z4
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body P will describe greater areas in a given time at the syzygies than at

the quadrature.

The tangent ablatitious f = f . P T . sin. 2 6 ; therefore this force will

accelerate the description of areas from quadratures to syzygies and retard

it from syzygies to quadratures, since in the former case sin. 2 ^is positive,

and in the latter negative.

CoR. 3. is contained in Cor. 2.

The first quadrant d. sin. being positive the velocity increases,

in the second d. sin. negative the velocity decreases, &c. for the 1st Cor.

2d Cor. &c.

Also V is a maximum when sin. 6 is a maximum, i. e. at A and B.

471. Cor. 4. The curvature of P*s orbit is greater in quadratures than

in the syzygy. .

mi. 1 1 T1 T^ Ma^ , Ma^r 3Ma«r,, _ ,. ^The whole F on P = -^ + —^ g-jj- (1— cos. 2 0) X

/3 M a ^ r . sin. 2 ^\

V 2"d^ )'

In quadratures sin. 3^=0,

••• ^ - r« + d^

And in syz. 2 9= 180,

.*. sin. 2^ = 0, cos. 2 ^= 1

SMa^r ,, ^,, 3Ma2r

*u u 1 T? T» • xu Ma* 2Ma*r
.'. the whole 1? on P in the syz. =—^ ?

.'. F is greater in the quadratures than in the syzygies; and the velocity

is greater in the syzygies than in the quadratures.

1 F
But the curvature a p-^ a ^ ^ , .*. is greatest in the quadratures and

least in the syzygies.

472. CoR. 5- Since the curvature of P's orbit is greatest in the quadra-

ture and least in the syzygy, the circular orbit must assume the form of an

ellipse whose major axis is C D and minor A B-

.*. P recedes farther from T in the quadrature than in the syzygy.

473. Cor. 6.

MflS Ma'r SMa'r
The whole F on P in thelinePT=:^+^^^— • ^3

'Sin.»^

, M a*^ . Ma*r= m quad. —5- + —js—
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M a « 2 M a * r
and m syz. = ~^^ jj—

let the ablatitious force on P equal the addititious, and

Ma«r 3 M a^r

.*. sin. 6 = 1

V 3

. sin. * 6

sin. aS". 16.

Therefore up to this point from quadrature the ablatitious force is less

than the addititious, and from this to one equally distant from the other

point of quadrature, the ablatitious is greater than the addititious, therefore

in a whole revolution the gravity of P to T is diminutive from what it

Ri
would be if the orbit were circular or if S did not act, and P a , . ,—

^

V abl. F
and since the action of S is alternately increased or diminished, therefore

P a from what it would be were P T constant, both on account of the

variation, and of the absolute force.

474. CoR. 7. Let P revolve round T in an elliptic orbit, the force on

„., , Ma=Ma*r.b.
P in the quad. = -^j- H jj— + jjtj + c r.

' b 4- c
•'• G + 180 / . and since the number is greater than the de-

nomination G is less than 180. .. the apsides are regressive if the same
effect is produced as long as the addititious force is greater than the abla-

titious, i. e. through 35°. 16'.

The force on P in the syz. = M^'- ^ ^ f " = J^- -2 cr

• Since P a rI — and in winter the sun is nearer the earth than in summer.
y' ablatitious force

R is Increased in winter, and A is diminished, therefore the lunar months are shoi-ter in winter

than in summer.
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.-. G = 180 . 1,1'' > 1800

.•. in the sjz. the apsides are progressive, and since ^ r- will be

ah improper fraction as long as the ablatitious force is greater than the

addititious, and when the disturbing fdrces are equal, m c =r n c, therefore

G = 180°, i. e. the hue of apsides is at rest (or it lies in V C produced

9th.) .*. since they are regressive through 141°. 4' and progressive

218°. 56' they are on the whole progressive.

To find the effect produced by the tangential ablatitious force, on the

velocity of P in its orbit. Assume u = velocity of a body at the mean

distance 1, then—- = velocity at any other distance r nearly, the orbit

being nearly circular.

Let V be the true velocity of P at any distance (r), vdv = gFdx

(I = 16 -jg . For the tangent ablatitious f = f . P T . 2 ^, and x' = r ^')

= 3 P T.mr.sin. 2 6.6',

.-. v=' = — 3PTmr cos. 2 ^ + C,

and

C = 2
r
2»

v''=^ — &c.
r.2

Hence it appears that the velocity is greatest in syzygy and least in

quadrature, since in the former case, cos. 2 6 is greatest and negative, and

in the latter, greatest and positive.

To find the increment of the moon's velocity by the tangential force

while she moves from quadrature to syzygy.

v2 = —3 PT.m.r. cos. 2 ^ + C,

but (v) the increment = 0, when ^ = 0,

.-. C = 3 P T . m . r,

.'. v« = 3 P T . m . r (1—cos. 2 0)= 6 P T. m. r. sin.«^,

and when 6 = 90°, or the body is in syzygy v ' = 6 P T m . r.

475. Cob. 6. Since the gravity of P to T is twice as much diminished

in syzygy as it is increased in quadrature, by the action of the disturbing

force S, the gravity of P to T during a whole revolution is diminished.

Now the disturbing forces depend on the proportion between P T and

T S, and therefore they become less or greater as T S becomes greater
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or less. If therefore T approach S, the gravity of P to T will be still

more diminished, and therefore P T will be the increment.

5

R^
Now P . T a ; since, therefore, when S T is di-

V absolute force

minished, R is increased and the absolute force diminished (for the ab-

solute force to T is diminished by the increase of the disturbing force) the

P . T is increased. In the same way when S T is increased the P . T is

diminished, therefore P . T is increased or diminished according as S T
is diminished or increased. Hence per. t of the moon is shorter in winter

than in summer.

OTHERWISE.

476. CoH. 7. To find the effect of the disturbing force on the motion

of the apsides of P's orbit during a whole revolution.

Let f = gravity of P to T at the mean distance (1), then — = gravity

of P at any other distance r.

f f
Now in quadrature the whole force of P to T = — + add. f = —j + r

f r + r *
. . . . /'f+i

4
and with this force the distance of the apsides = 180° / w—

which is less than 180°, therefore the apsides are regressive when the

f
body is in quadrature. Now in syz. the whole force of P to T = ——

f J. 2 r"*
2 r =r 3 , therefore the distance between the apsides = 180°

^ Ti which is greater than 180°, therefore the apsides are progressive

when the body is in syzygy.

But as the force (2 r) which causes the progression in syzygy is double

the force (r) which causes the regression in quadrature, the progressive

motion in syzygy is greater than the regressive motion in the quadrature.

Hence, upon the whole, the motion of the apsides will be progressive

during a whole revolution.

At any other point, the motion of the apsides will be progressive or

P T 3 P T
retrograde, according as the whole central force 5—| 5— . cos. 2 6

is negative or positive.
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477. Cor. 8. To calculate the disturbing force when P*s orbit is ex-

centric

P T 3 P T
The whole central disturbing force = \- cos. 2 ^ =

+ —rt— • COS. 2 ^ (ra IS the mean add. f). Now r =
^2 ' 2

z= by div. 1 — e ^ + e . cos. u + e *. cos.

e* e
volving e^, &c. = 1 ~ + e. cos. u + — . cos. 2 u; therefore the

e cos. u

u, &c. neglecting terms in-

m
whole central disturbing force = — -^ +

2
m e' m COS. u

me* COS. 2 u m COS. 2 d
3 m e'

. COS. 26 •\- -—m e. cos. u . cos. 2 6
4 • 2

+ f m e -. COS. 2 u . cos. 2 6.

478. Cor. 8. It has been shown that the upsides are progressive in

syzygy in consequence of the ablatitious force, and that they are regres-

sive in quadrature from the effect of the ablatitious force, and also, that

they are upon the whole progressive. It follows, therefore, that the

greater the excess of the ablatitious over the addititious force, the more will

the apsides be progressive in the course of a revolution. Now in any

position m M of the line of the apsides, the excess of the ablatitious in

conjunction =^ 2 A T in opposition = T B, therefore the whole excess

= 2 A B. Again, the excess of the addititious above the ablatitious force

in quadrature = C D. Therefore the apsides in a whole revolution will

be retrograde if 2 A B be less than C D, and progressive if 2 A B be

greater than C D. Also their progression will be greater, the greater the

excess of 2 A B above C D ; but the excess is the greatest when M m is

in syzygy, for then A B is greatest and C D the least. Also, when M m
is in syzygy the apsides being progressive are moving in the same direc-

tion with S, and therefore will remain for some length of time in syzygy.

Again, when the apsides are in quadrature A B = P p, and C D = M ni,
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but if the orbit be nearly circular, 2 A B is greater than C D ; therefore

the apsides are still in a whole revolution progressive, though not so

much as in the former case.

F
In orbits nearly circular it follows from G = —7= when F a A p - ^,

V r

that if the force vary in a greater ratio than the inverse square, the

apsides are progressive. If therefore in the inverse square they are sta-

tionary,—if in a less ratio they are regressive. Now from quadrature to

35° a force which oc the distance is added to one varying inversely as

the square, therefore the compound varies in a less ratio than the inverse

square, therefore the apsides are regressive up to this point. At this point

F a -r. ^ , therefore they are stationary. From this to 35*> from
Qistance

another D a quantity varying as the distance is subtracted from one

varying inversely as the square, therefore the resulting quantity varies

in a greater ratio than the inverse square, therefore the apsides axe

progressive through 218°.

OTHERWISE.

4T9. CoR. 8. It has been shown that the apsides are progressive m
syzygy in consequence of the ablatitious force, and that they are regressive

in the quadratures on account of the addititious force, and they are on the

whole progressive, because the ablatitious force is on the whole greater

than the addititious. .-. the greater the excess of the ablatitious force

above the addititious the more will be the apsides progressive.

In any position of the line A B in conjunction the excess of the ablati-

tious force above the addititious is 2 FT, in opposition 2 p t. .*. the whole

excess in the syzygies = 2 P p. In the quadratures at C the ablatitious

force vanishes. .*. the excess of the addititious = additions = C T.

.*. the whole addititious in the quadratures = C D.

Now the apsides will, in the whole revolution, be progressive or regres-

sive, according as 2 P p is greater or less than C D, and then the progres-

sion will be greatest in that position of the hne of the apses when 2 P p

—

C D is the greatest, i. e. when A B is in the syzygy, for then 2 P p =
2 A B, the greatest line in the ellipse, and C D = R r = ordinate =
least through the focus. .*. 2 P p — CD is a maximum. Also when

A B is in the syzygy, the line of apsides being progressive, will move the

same way as S. .*. it will remain in the syzygy longer, and on this account

the apsides will be more progressive. But when the apsides are in the

quadratures S P = R r and C D = A B, and the orbit being nearly

circular, R r nearly equals A B. .'. 2 P p — C D is positive, and the
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apsides are progressive on the whole, though not so much as in the last

case ; and the apsides being regressive in tlje quadratures move in the op-

posite direction to S, .*. are sooner out of the quadratures, .*. the regres-

sion in the quadrature is less than the progression in the syzygy.

480. Cor. 9. Lemma. If from a quantity which gc -t-j any quantity

be subtracted which oc A the remainder will vary in a higher ratio than

the inverse square of A, but if to a quantity varying, as ^-^ another be

added which oc A, the sum will vary in a lower ratio than ^

.

J ... 1 c A*
If , . be diminished C A = j-; . If A increases 1 — c A '

A* A'' .

decreases, and -r-j increases. .*. the quantity decreases, I — c A increases

1
and -T-r increases. .-. increases from both these accounts. .*. the whole^ .... 1
quantity varies in a higher ratio than -^

.

1 4- c A *

If C A be added -^— , as A is increased the numerator increases,

and -^ decreases. .*. the quantity does not decrease so fast as ^-^ , and

if A be diminished 1 + c A * is diminished, and -^ increased. .'. the

quantity is not increased as fast as -^^ . .•. &c. Q. e. d.

OTHERWISE.

481. Cor. 9. To find the effect of the disturbing force on the excen-

tricity of P's orbit. If P were acted on by a force a -p , the excentricity

of its orbit would not be altered. But since P is acted on by a force vary-

ing partly as r^ and partly as the distance, the excentricity will continual-

ly vary.

Suppose the line of the apsides to coincide with the quadrature, then

while the body moves from the higher to the lower apse, it is acted upon

by a force which does not increase so fast as -r, , for the force at the quad-

f
rature = — + m r, and .*. the body veill describe an orbit exterior to the

elliptic which would be described by the force a -r-j . Hence the body
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will be farther from the focus at the lower apse than it would have been

had it moved in an elliptic orbit, or the excentricity is diminished. Also

as the decrease in excentricity is caused by the force (m r), the less this

f
force is with respect to —^ , the less will be the diminution of excentricity.

Now while the line of apsides moves from the line of quadratures, the force

(m r) is diminished, and when it is inclined at an angle of 35° 16' the

disturbing force is nothing, and .*. at those four points the excentricity

remains unaltered. After this it may be shown in the same manner that

the excentricity will be continually increased, until the line of apsides

coincides with the syzygies. Hence it is a maximum, since the disturbing

force in these is negative. Afterwards it will decrease as before it in-

creased, until the line of apsides again coincides with the line of quadra-

ture, and the excentricity is a minimum.

CoR. 14. Let P T = r, S T = d, f = force of T on P at the distance

1, g = force of S on T at the distance, then the ablatitious force

3 ff r sin. d .^ . , . /. t^ i • -. i . i , , .= —^^—

p

; II .'. the position ot P be given, and d vanes, the ablati-

tious force a Vg . But when the position of P is given, the ablatitious

: addititious : : in a given ratio, .*. addititious force a -^ , or the dis-

turbing force a t^ . Hence if the absolute force of S should oc the dis-

turbing force cc ^r~ . Let P = the periodical time of T about S,

1 1 1 -P

•*• pT ^—A3 • ^^^ ^ ~ density, d = diameter of the sun, then the

A ^ 3 1

absolute force a A ^ ', then the disturbing force a —j-^cc p-^ a A (ap-

parent diameter)^ of the sun. Or since P T is constant, the linear as well

as the angular errors a in the same ratio.

483. Cor. 15. If the bodies S and T either remain unchanged, or their

absolute forces are changed in any given ratio, and the magnitude of the

orbits described by S and P be so changed that they remain similar to

what they were before, and their inclination be unaltered, since the accel-

erating force of P to T : accelerating force of S : : p~T"2
'

c~*T''2
> ^^^ *^^ numerators and denominators of the last

terms are changed in the same given ratio, the accelerating forces remain

in the same ratio as before, and the linear or angular errors a as before.
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i e. ns the diameter of the orbits, and the times of those errors oc P T's

of the bodies.

Cor. 1 6. Hence if the forms and inclinations of the orbits remain, and

the magnitude of the foixes and the distances of the bodies be changed ; to

find the variation of the errors and the times of the errors. In Cor. 14.

it was shown, how that when P T remained constant, tiie errors a ^Ti •

sr

Now let P T also a , then since the addititious force in a given position

of P (X P T, and in a given position of P the addititious : ablatitious in

a ffiven ratio.

CoK. If a body in an ellipse be acted u}x>n bv a force which varies

in a ratio greater than the inverse

square of the distance, it will in de-

scending from the higher apseB to the

lower apse A, be drawn nearer to the

center. .*. as S is fixed, the excen-

tricity is increased, and from A to B
the excentricity will be increased

also, because the force decreases the faster the distance* increases.

484. (CoR. 10.) Let the plane of P's orbit be inclined to the plane of T's

orbit remaining fixed. Then the addititious force being parallel to P T,

is in the same plane with it, and .'. does not alter the inclination of the

plane. But the ablatitious force acting from P to S may be resolved into

two, one parallel, and one perpendicular to the plane of P's orbit. The
force perpendicular to P's orbit = 3 A X sin. 6 X sin. Q x sin. T
when d = perpendicular distance of P from the quadratures, Q = angular

distance of the line of the nodes from the syzygy, T = first inclination of

the planes.

Hence when the line of the nodes is in the syzygy, ^ = 0,

.*. no force acts perpendicular to the plane,

tmd the inclination b not changed. When
the line of the nodes is in the quadratures,

= 90", .*. sin. is a maximum, .*. force per-

pendicular produces the greatest change

in the inclination, and sin. being posi-

tive from C to D, the force to change the

inclination continually acts from C to D
pulling the plane down from D to C. Sin. d

is negative, .*. force which before was posi-

sin. =
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tive pulling down to the plane of S's orbit (or to the plane of the paper)

now is negative, and .*. pulls up to the plane of the paper. But P's orbit is

now below the plane of the paper, .•. force still acts to change the inclina-

tion. "Now since the force from C to D 'continually draws P towards the

plane of S's orbit, P will arrive at that plane before it gets to D.

If the nodes be in the octants past the quadrature, that is between C
and A. Then from N to D, sin. 6 being positive, the inclination is di-

minished, and from D to N' increased, .•. inclination is diminished through

270°, and increased through 90", .*. in this, as in the former case, it is

more diminished than increased. When the nodes are in the octants be-

fore the quadratures, i. e. in G H, inclination is decreased from H to C,

diminished from C to N, (and at N the body having got to the highest

point) increased from N to D, diminished from D' to N', and increased

from 2 N' to H, .*. inclination is increased through 270°, and diminished

through 90°, .*. it is increased upon the whole. Now the inclination of

P's orbit is a maximum when the force perpendicular to it is a minimum,

i. e. when (by expression) the line of the nodes is in the syzygies. When
is the quadratures, and the body is in the syzygies, the least it is increased

when the apsides move from the syzygies to the quadratures ; it is dimin-

ished and again increased as they return to the syzygies.

485. (Cor. 11.) While P moves from the quadrature in C, the nodes

being in the quadrature it is drawn towards S, and .*. comes to the plane

of S's orbit at a point nearer S than N or D, i. e. cuts the plane before it

arrives at the node. .•. in this case the line of the nodes is regressive. In

the syzygies the nodes rest, and in the points between the syzygies and

quadratures, they are sometimes progressive and sometimes regressive,

but on the whole regressive; .*. they are either retrograde or stationary.

486. (CoR. 12.) All the errors mentioned in the preceding corollaries are

greater in the syzygies than in any other points, because the disturbing

force is greater at the conjunction and opposition.

487. (CoR. 13.) And since in deducing the preceding corollaries, no re-

gard was had to the magnitude of S, the principles are true if S be so

great that P and T revolve about it, and since S is increased, the disturbing

force is increased ; .*. irregularities will be greater than they were before.

488. (CoR. 14.) L M = ^^^ = N N M = ^
^^^f

""

sin. 6, .-. in

a given position of P, if P T remain unaltered, the forces N M and L M
Voi„ I. A a
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1 1 ^3
« j-3 X absolute force oc

^^^^^-^,
of T for (sect. 3 . P* oc

absolute f. )

whether the absolute force vary or be constant. Let D = diameter of S,

d =z density of S, and attractive force of S a magnitude or quantity of

matter oc D ^ 3,

.*. forces L M and N M a
d

But—r = apparent diameter of S,

.'. forces Qc (apparent diameter) ' d another expression.

489. (Cor. 15.) Let another body as P' revolve round T' in an orbit

similar to the orbit of P round T, while T' is carried round S' in an orbit

similar to that of T round S, and let the orbit of P' be equally inclined to

that of T' with the orbit P to that of T. Let A, a, be the absolute forces

of S, T, A', a', of S', T',

A a
accelerating force of P by S : that of P by T : : c^pi : p-Fpa

,

and the orbits being similar

A' a
accelerating force of P' by S' : that of P' by T' : : -^-pm • prrpTi

»

.•. if A' : a' : : A : a, and the orbits being similar,

SP : PT* :: S' F : FT^
accelerating force of P' by S' : that of P' by T'

: : force on P by S : force on P' by T',

and the errors due to the disturbing forces in the case of P are as

A . A'
^rjTs X r, in the case of P' and S' are as ^7-1^7-3 X R,

.•. linear errors in the first case : that in the second : : r : R.

. , sin. errors
Angular errors oc ^5 ,

angular errors in the first case : that in the second : : 1 : L

XT /-. o T V ^ s
linear errors

Now Cor. 2. Lem. X. T* a 7^-^

angular errors „a-^

—

^ X R,

.-. T * QC angular errors,

.-. angular errors : 360 : : T ^ : P *,

.'. T ' a P * X angular errors,

.'.Tec P for = angular errors. •
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490. (Cor. 16.) Suppose the forces of S, P T, ST to vary in any man-
ner, it is required to compare the angular errors that P describes in simi-

lar, and similarly situated orbits. Suppose the force of S and T to be

constant, .\ addititious force oc P T, .*. if two bodies describe in similar

orbits = evanescent arcs. Linear errors oc p * X P T.
.-. angular errors cc p ^ (p = per. time of P round T, P = that of T

round S). But by Cor. 14. if P T be given, the absolute force of A and
SToc.

Angular errors cc -pv

.'. if P T, ST and the absolute force alternately vary,

angular errors a -^- ,

•P = per. time of P round T) ^ M a= r/ r = per. time ot P round T "> ^
Vp = per. time of T round S J

1
linear errors

angular errors x
radius

M a^ r
.-. lin. errors oc force T» *—

^l
— X P* by last Cor.

I
rP« P\

.-. angular errors oc
^ ,-^^cc^j

.

Now the errors d t X p = whole angular errors x -~

.

.'. error d t x ^-^ thence the mean motion of the apsides x mean motion

of the nodes, for each x -p^ , for each error is formed by forces varying as

proof of the preceding corollaries, both the disturbing forces, and .•. the

errors produced by them in a given time will a P T. Let P describe an

indefinite small angle about T (in a given position of P), then the linear

errors generated in that time x force T P time % but the time of describ-

ing = angles about T x whole periodic time (p), .*. linear errors x
P T p ^ and as the same is true for every small portion, similar; the

linear errors during a whole revolution x P T p ^ Angular errors

x j

'-

.'. oc p * .'. when S T, P T, and the absolute force vary, the

angular errors x ^-j a —
^^ r.. 3

a q 'Ps (^'^^" ^^^ absolute force is

Aa8
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given.) Now the error in any given timexp varies the whole errors during

a revolution a^ • .*. the errors in any given time a ^^ . Hence the

mean motion of the apsides of P's orbit varies the mean motion of the

nodes, and each will a -^ the excentricities and inclination being small

and remaining the same.

491. (CoR. 17.) To compare the disturbing forces with the force of

PtoT.

F of S on T : F of P on T absolute F

a

ST' • T P'

absolute F .. A. S T . aT P
axis major ' * * S S ' ' T P '

.. ST .
TP .. A . JL

• p* • p, =: pg ' p.

mean add. F : F of S on T : : ~^ : ^^ : : r : d

.-. mean add. F : F P on T : : p «
: P «.

492. To compare the densities of different planets.

Let P and P' be the periodic times of A and B, r and r' their distances

from the body round which they revolve.

F of A to S : F of B to S : : ^, :
~

quantity of matter in A do. in B D
distance *

!r in A do. in B D 3 ofAx density ^
D ^ ofBx density

* distance ^
'

distance' ' distance'

r r'
•

• p 2 • p/ a

D'Xd D''xd' 1 1

r' • r" '
• p « • p/ 2

.-. d : d'

:

r' r'*
•

J)3 pS- J)/3p/2

1 1

§3 p2- S'jp/t

where S and S' represent the apparent diameters of the two planets.

493. In what part of the moon's orbit is her gravity towards the earth

unaffected by the action of the sun.

„ Ma'' . Ma'r 3Ma*r U— cos.'^ . 3Ma'r . ,.

^=-r + -d' d^-—2—+^-^^'"-^
M a'

and when it is acted upon only by the force of gravity = for die

other forces then have no effect.
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M a» r 3 M a^r 1 — cos. 2 6 3 M a' r . =

1 — 3. i COS. 26,2.^^
-g + — sm. 2^ =

3 3 3
1 — - + -S COS. 26 + ~ sin. 2 () =

3.31 — sin.'C . 8 . „
8 + 2- 2 + 2«''-2«=0

Let X = sin. 6,

(.-. 1

and

+ I sin. * ^ + I X 2 sin. 6 x cos. 6 = 0)

3x + 3xVl — x* = 0.

An equation from which x may be found.

494. Lemma. If a body moving towards a plane given in position, be

acted upon by a force perpendicular to its motion tending towards that plane,

the inclination of the orbit to the plane will be increased. Again, if the body

be moving from the plane, and the force acts from the plane, the inclina-

tion is also increased. But if the body be moving towards the plane, and

the force tends from the plane, or if the body be moving from the plane,

and the force tends towards the plane, the inclination of the orbit to the

plane is diminished.

495. To calculate that part of the ablatitious tangential force which is

employed in drawing P from the plane of its orbit.

Let the dotted line upon the ecliptic N A P N' be that part of P's orbit

which lies above it. Let C D be the intersection of a plane drawn per-

\)endicular to the ecliptic ; P K perpendicular to this plane, and there-

Aa3
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fore parallel to the ecliptic. Take T F = 3 P K ; join P F and it will

represent the disturbing force of the sun. Draw P i a tangent to, and

F i perpendicular to the plane of the orbit. Complete the rectangle i m,

and P F may be resolved into P m, P i, of which P m is the effective force

to alter the inclination. Draw the plane F G i perpendicular to N N'

;

then F G is perpendicular to N N'. Also F i G is a right angle. As-

sume P T tabular rad. Then

::R:3g^.-.
: : R : s >

.

: : R : i J
'*

PT: Pm :: R3 : 3g. s. i

_ PT.3g. s. i

R'
Pm =

PT : TF:: R:3g•
T F : F G
FG : Pm

g = sin. 6 = sin. a dist. from quad.

s = sin. p = sin. l. dist. of nodes from syz.

i = sin. F T i = sin. F G i = sin. inclination of orbit to ecliptic.

Hence the force to draw P from its orbit = P.

3

R when P is in

the quadratures. Since g vanishes this force vanishes. "When the nodes

are in the syzygies s vanishes, and when in the quadratures this force is a

maximum. Since s = rad. cotan. parte.

496. To calculate the quantity of the forces.

Let S T = d, P T = r, the mean distance from T = 1. The force

of T on P at the mean distance = f; the force of S on P at the mean

distance = g.

Then the force S T = ^,, and the force S T : f P T : : d : r,

.-. force P T = ||, hence the add. f = |^; ablat. f = -^ sin. 6, the

mean add. force at distance J = ^s> the central ablat. = -jg- sin. * d, the

tangential ablat. f = 5-^^ . sin. 2 6.
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The whole disturbing force of S on P = -K-p- + orfT • <^os. 2 6; the

s r , . ^ . • 1 V ni

— g r 3 g r

~2dJ' "^ 2 d '

mean disturbing f = ^3
- (since cos. 2 ^ vanishes) = — — by supposi-

tion.

Hence we have the whole gravitation of P to T = —5— ^-71 + q^t ^

COS. 2 ^, and the mean = —1 — #-r; (since cos. 2 tf vanishes).
r' 2 d* ^

PROBLEM.
497. Required the whole effect, and also the mean effect of the sun to

diminish the lunar gravity; and show that if P and p be the periodic

times of the earth and moon, f the earth's attraction at the mean

distance of the moon, r the radius-vector of the moon's orbit ; the additi-

tious force will be nearly represented by the formula
j p-^ — 2P*J

^^*

Pn=3PT. sin.«^,andPT — 3PT.sin.M = —^ +-|.PT x

cos. 2 d = whole diminution of gravity of the moon, and the mean di-

= ^l

Again,

T) rip

minution = -*- —^ -|— ^3 by supposition.

P* a d'

ab. f d ,,, J

••"d^ « pi • V)d. seq.

498. To find the central and ablatitious tangential forces.

Take Pm = 3PK = 3PT. sin. = ablatitious force.

Then P n = P m . sin. ^ = 3 P T . sin. * 6 = central force

m n = P m . cos. 6 =z 3 P T . sin. 6 . cos. 6

= I . P T sin. 2 6 = tangential ablatitious force.

To find what is the disturbing force of S on P.
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'— l + 3cos.2 0\The disturbing force = P T — 3 P T . sin. '6 = Q
P T ^PT = — ig^ + I^P T. COS. 2 6.

To find the mean disturbing force of S during a whole revolution.

P T 3
Let P T at the mean distance = m, then — + — . P T cos. 2 &

= —- = —-— since cos. 2 6 is destroyed during a whole revolution.

499. To find the disturbing force in syzygy.

SAT— AT = 2AT = disturbing force in syzygy

;

the force in quadrature is wholly effective and equal P T,

.*. force in quadrature : f in syzygy : : P T : 2 P T : : 1 : 2.

To find that point in P's orbit when the force of P to T is neither

increased nor diminished by the force of S to T.

In this point Pn= PTor3PT sin. « tf = P T,

.•. sm. 6 = -—
V 3

and

6 = 35° 16'.

To find when the central ablatitious force is a maximum.

P n = 3 P T . sin. * 5 = maximum,
.*. d . (sin. * ^) or 2 sin. 6 . cos. & — d ^ = 0,

.*. sin. d . cos. ^ = 0,

or

sm. 6. V I — sin. * ^ = 0,

and

sin. 6 =z ly

or the body is in opposition.

Then (Prop. LVIII, LIX,)

T « : t « : : S P : C P : : S + P : S

and

and

T' : f^ :: A' : x'

A' : x' :: S+ P : S

A : X ::(S+P)^ : si

500. Prob. Hence to correct for the axis major of the moon's orbit.

Let S be the earth, P the moon, and let per. t of a body moving in a

secondary at the earth's surface be found, and also the periodic time of
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the moon. Then we may find the axis major of the moon's orbit round

the earth supposed at rest = x, by supposition. Then the corrected axis

or axis major round the earth in motion : x : : ( S + P) ^ : S ^

1

(S + P) ^
.•. axis major round the earth in motion = x .

^ = y.

S^
Hence to compare the quantity of matter in the earth and moon,

y : x : : V S + F : V S

.•.y ^ — X" : : P : S.

501. To define the addititious and ablatitious forces. Let S T repre-

sent the attractive force of T to S. Take

1 1
S L : S T ST*: SP*

S P^ S T^
and S L will represent the attractive force of P to S. Resolve this into

S M, and L M ; then L M, that part of the force in the direction P T
is called the addititious force, and S M — S T = N M is the ablatitious

force.

502. To compare these forces.

Since S L : S T : : S T« : S P^ .-. S L = |^^ = attractive force of

P to S in the direction S P, and S P : S T ST' ST
JS
p2- g p3 = attractive

force of P to S in the direction TS=ST*(ST — PK)"' =ST
+ 3 P K = S M nearly,

.\3PK = TM = PL = ablatitious force = 3 P T . sin. 6.

O 'T>3 Q TS
Also SP:PT::|~: 1^3.

P T = attractive force of P to S in the direction L M = P T nearly.

Hence the addititious force : ablatitious force : : P T : 3 P T . sin. 6 : 1

: 3 sin. $. Q. e. d.





BOOK III.

1. Prop. I. All secondaries are found to describe areas round the

primary proportional to the time, and these periodic times to be to each

other in the sesquiplicate ratio of their radii. Therefore the center of

force is in the primary, and the force a i'

2. Prop. II. In the same way, it may be proved, that the sun is the

center of force to the primaries, and that the forces a -r-— » . Also the
dist. *

Aphelion points are nearly at rest, which would not be the case if the

force varied in a greater or less ratio than the inverse square of the dis-

tance, by principles of the 9th Section, Book 1st.

3. Prop. III. The foregoing applies to the moon. The motion of the

moon's apogee is very slow—about 3° 3' in a revolution, whence the force

will X j^-p2 2irs • It was proved in the 9th Section, that if the ablatitious

force of the sun were to the centripetal force of the earth : : I : 357.45,

that the motion of the moon's apogee would be ^ the real motion.

.*. the ablatitious force of the sun : centripetal force : : 2 : 357.45

: : 1 : 178 f^.

This being very small may be neglected, the remainder oc yyi •

4. CoR. The mean force of the earth on the moon : force of attraction

::177|^: 178|§.

The centripetal force at the distance of the moon : centripetal force at

the earth : : I : D *.

5. Prop. IV. By the best observations, the distance of the moon from

the earth equals about 60 semidiameters of the earth in syzygies. If the

moon or any heavy body at the same distance were deprived of motion in

the space ofone minute, it would fall through a space = 16 ,V f^et. For the
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deflexion from the tangent in the same time = ^^ rs feet. Therefore the

space fallen through at the surface of the earth in I" =: 16 ^^ feet.

For 60" : t : : D : 1,

60'' _ ,
.— * t

.: t =
60

thence the moon is retained in its orbit by the force of the earth's gravity

like heavy bodies on the earth's surface.

6. Piiop. XIX. By the figure of the earth, the force of gravity at

the pole : force of gravity at the equator : ; 289 : 288. Suppose A B Q q
a spheroid revolving, the lesser diameter P Q, and A C Q q c a a canal

filled with water. Then the weight of the arm Q q c C : ditto of

A a c C : : 288 : 289. The centrifugal force at the equator, therefore 1

suppose 2^^ of the weight.

Again, supposing the ratio of the diameters to be 100 : 101. By com-

putation, the attraction to the earth at Q : attraction to a sphere whose

radius = Q C : : 126 : 125. And the attraction to a sphere whose ra-

dius A C : attraction of a spheroid at A formed by the revolution of an

ellipse about its major axis : ; 126 : 125.

The attraction to the earth at A is a mean proportional between the at-

tractions to the sphere whose radius = A C, and the oblong spheroid,

since the attraction varies as the quantity of matter, and the quantity of

matter in the oblate spheroid is a mean to the quantities of matter in the

oblong spheroid and the circumscribing sphere.

Hence the attraction to the sphere whose radius = A C : attraction to

the earth at A : : 126 : 125 |.

.*. attraction to the earth at the pole : attraction to the earth at the equa-

tor : : 501 : 500.

Now the weights in the canals a whole weights oc magnitudes X gra-
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vity, therefore the weight of the equatorial arm : weight of the polar

: : 500 X 101 : 501 X 100

: : 505 : 501.

4
Therefore the centrifugal force at the equator supports ^^r^ to make an

equilibrium.

But the centrifugal force of the earth supports —^ ,

= the excess of the equatorial over the polar

Hence the equatorial radius : polar : : 1 + ^^ : 1

: : 230 ; 229.

Again, since when the times of rotation and density are diflPerent the

V*
difference of the diameter a j , and that the time of the earth's rota-

dens.

tion = 23h. 56'.

The time of Jupiter's rotation = 9h. 56'.

The ratio of the squares of the velocity are as 29 : 5, and the density

of the earth : density of Jupiter : : 400 : 94.5.

d the difference of Jupiter's diameter is as — X ^t-= X 5^

,

4 1
•

' 505 • 289
'

1

• 100

1

229

radius.

.*. d : Jupiter's least diameter : : — X ^^-r X qHq

The polar diameter : equatorial diameter

29 X 80 : 94.5 X 229

2320 : 21640

232 : 2164

I : n
H : 10^

ON THE TIDES.

7. THE PHENOMENA OF THE TIDES.

1. The interval between two succeeding high waters is 12 hours 25

minutes. The diminution varies nearly as the squares of the times from

high water.

2. Twenty-four hours 50 minutes may be called the lunar day. The

interval between two complete tides, the tide day. The first may be call-
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O

ed the snperior, the other inferior, and at the time of new moon, the

morning and evening.

3. Tlie high water is when the moon is in S.W. to us. The highest tide

at Brest is a day and a half after full or change. The third full sea after

the high water at the full moon is the highest ; the third after quadrature

is the lowest or neap tide.

4. Also the highest spring tide is when the moon is in perigee, the next

spring tide is the lowest, since the moon is nearly in the apogee.

5. In winter the spring tides are greater than in summer, and from the

same reasoning the neap tides are lower.

6. In north latitude, when the moon's declination is north, that tide in

which the moon is above the horizon is greater than the other of the same

day in which the moon is below the horizon. The contrary will take

place if either the observer be in south latitude or the moon's declination

south.

7. Prop. I. Suppose P to be any

particle attracted towards a center E,

and let the gravity of E to S be repre-

sented by E S. Draw B A perpendi-

cular to E S, which will therefore re-

present the diameter of the plane of il- B
lumination. Draw Q P N perpendicu-

lar to B A, P M perpendicular to E C.

Then take E I = 3 P N, and join P I,

P I will represent the disturbing force

of P. PI may be resolved into the

two P E, P Q, of which P E is counter-

balanced by an equal and opposite force,

P Q acts in the direction N P.

Hence if the whole body be supposed

to be fluid, the fluid in the canal N P

will lose its equilibrium, and therefore

cannot remain at rest. Now, the equi-

librium may be restored by adding a

small portion P p to the canal, or by

supposing the water to subside round

the circle B A, and to be collected to-

wards O and C, so that the earth may put on the form of a prolate sphe-

roid, whose axis is in the line O C, and poles in O and C, which may be

(
N E

P\/ iVi
y^^

P

Q

c

I

s
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the case since the forces which are superadded a N P, or the distance

from B A, so that this mass may acquire such a protuberancy at O and C,

that the force at O shall be to the force at B : : E A : E C ; and by the

above formula

x^ _ 5C _ EC — E A
r ~ 4g

"
E A

8. Prop. II. Let W equal the terrestrial gravitation of C; G equal its

gravitation to the sun; F the disturbing force of a particle acting at O and

C ; S and E the quantities of matter in the sun and earth.

3 S C
.-. F : W

• CS* X CGCE^
1

Since the gravitation to the sun « ,. —

,

° dist.
'

CS^rES^:: ES: CG
.-. CG X CS^ = ES'.

3 S E
.-. F : W :

ES^* CE^
and

E : S : : 1 : 338343

E C:ES: : 1 : 23668

3 S E~: : 1 : 12773541 : : F : W."ES^" CE =

.-. 4W: 5F ::CE:EC — EA.
4 d 3d

Attraction to the pole : attraction to the equator : : 1
k • ^ k~

Quantity of matter at the pole : do. at equator : : 1 : 1 — d.

Weight of the polar arm : weight of the equatorial arm : : 1 ^ ^ 1 k^

.'. Excess of the polar = attractive force : weight of the equator or

A
5

4 d
mean weight W : : —^ : 1

. . _ 5F
* 4W *

9. Prop. III. Let A E a Q be the spheroid, B E b Q the inscribed
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sphere, A G a g the circumscribed sphere, and D F d f the sphere equal

(in capacity) to the spheroid.

Then since spheres and spheroids are equal to f of their circumscribing

cylinder, and that the spheroid = sphere D F d f.

CF^xCD = CE2xCA
CE'':CF«:: CD:CA,

and make

but

Also

CE:CF::CF:Cx
.-.CE'^: CF^: : C E : Cx
.. CD:CA::CE:Cx
.-. C D : C E : : C A : C X

C D = C E nearly

... C A = C X.

E X = 2 E F nearly

.-. A D = 2 E F.*

LetCE = a,CF = a + x,

.-. Cx= a*4-2ax-f-x» __ a*4-2 x

a a

= a + 2 X neaily

. •. E X = 2 X nearly.
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Prop. IV. By the triangles p I L, C I N,

A B: IL::r': (cos.)«z.TC A
.-. I L = A B X (cos.) '^ ^. I C A = S X (cos.) ' x

(if S = A B and x = angular distance from the sun's place.)

Again,

G E : K I : : r « : (sin.) « ^ T C A
.-. K I = S X (sin.) ^^K.

Cor. 1. The elevation of a spheroid above the level of the undisturbed

g
ocean = 11 — 1 m = S X (cos.) ^ x — - = S X (cos.) ^ x — ^.

The depression of the same = S X (sin.) * x — S = S X (sin.) '^ x— |.

Cor. 2. The spheroid cuts the sphere equal in capacity to itself in a

S
point where S X (cos.) * x = — = 0, or (cos.) ^ x = ^.

.-. cos. X = .57734, &c.

= COS. 54°. 44'.

10. Prop. V. The unequal gravitation of the earth to the moon is

(4000) ^ times greater than towards the sun.

Let M equal the elevation above the inscribed sphere at the pole of

the spheroid, 7 equal the angular distance from the pole.

.'. the elevation above the equally capacious sphere=Mx (cos.) ^7— ^

the depression = M X (sin.) '-^

7— |.

Hence the effect of the joint action of the sun and moon is equal to the

sum or difference of their separate actions.

.-. the elevation at any place= S X (cos.) ' x4-M X (cos.) ^7— ^ S+M
the depression = S X (sin.) ^ x +M X (sin.) ^ 7— | S+M.

1. Suppose the sun and moon in the same place in the heavens.

Then the elevation at the pole = S + M — i S + M = | S + M, and

the depression at the equator = S + M — | S + M = J S + M,
,'. the elevation above the inscribed sphere = S + M.

2. Suppose the moon to be in the quadratures.

The elevation at S = S — J S+M = I S — -| M.

the depression at M = S — f S+M = i S — § M,

the elevation at S above the inscribed sphere = S — M,
the elevation at M (by the same reasoning) = M — S.

But (by observation) it is found that it is high water under the moon

when it is in the quadratures, also that the depression at S is below the

natural level of the ocean ; hence M is more than twice S, and although

Vol. I. B b
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the high water is never directly under the sun or moon, when the moon is

in the quadratures high water is always 6 hours after the high water at

full or change.

Suppose the moon to be m neither of the former positions.

Then the place of high water is where the elevation = maximurn,

or when S X cos. ' x + M X cos. * y = maximum,

and since

cos. * X = ^ + ^ cos. 2 X,

and

COS. y = ^ + ^ cos. 2 y,

elevation = maximum, when S X cos. 2 x + M X cos. 2 y = max-

imum.

Therefore, let A B S D be a great circle of the earth passing through

S and M, (those places on its surface which have the sun and moon in the

zenith). Join C M, cutting the circle described on C S in (m). Make
S d : d a : : force of the moon : force of the sun (which force is supposed
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kuown). Join m a, m d, and let H be any point on the surface of the

ocean. Join C H cutting the circle C m S in (h) ; draw the diameter

h d h', and draw m t, a x perpendicular to h h', and a y parallel to it.

Then

M = Sd, 8= ad
and

and

AMCH = y, aSCH = x,

.-. ^mdh = 2z-MCH = 2y

^adx = /^SdH = 2x.

.-. d t = M X COS. 2 y, d X = ^ X cos. 2 x,

.. elevation = maximum when t x = a y =: maximum,

or wlien a y = a m, i. e. when h h' is parallel to a m, hence

CONSTRUCTION.

Make
S d : d a : : M : S,

and join m a, draw h h' parallel to a m, and from C draw C h H cutting

the surface of the ocean in H, which is the point of high water.

Again, through h' draw L C h', meeting the circle in L, U; these are

the points of low water. For let

LCS = u, LCM = z.

COS. Z. a dx = COS. a S d h' = cos. 2 z:. S C h' = cos. 2 u =r d x

and

cos. 2 z = COS. 2 L C M = d t.

.. S X COS. 2 u + M X COS. 2 z = max.

Cor. If d f be drawn perpendicular to a m, a m represents the whole

difference between high and low water, a f equals the point effected by the

sun, m f that by the moon.

For

sin. ^ u = cos. * X,

sin. * y = cos. * x.

*. elevation + depression = S X : cos. ^ x — ^ + M X : cos. * y

+ S X COS. ^ X— §

+ M X : COS. * y— f = S X : 2 cos. * x— 1 + M X : 2 cos. ^ y
= S X cos. 2 X + M X cos. 2 y

and

d t = M X COS. 2 y
d X = S X COS. 2 X.

Bb2
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12. Conclusions deduced from the above (supposing that both the sun

and moon are in the equator.)

1. At new and full moon, high water will be at noon and midnight.

For in this case C M, a m, C S, d h, C H, all coincide.

2. When the moon is in the quadrature at B, the place of high water is

also at B under the moon, when the moon is on the meridian, for C M is

perpendicular to C S, (m) coincides with C, (a m) with (a C), d h with

dC.
3. While the moon passes from the syzygy to the quadrature the place

of high water follows the moon's place, and is to the westward of it, over-

takes the moon at the quadratures, and is again overtaken at the next

syzygy. Hence in the first and third quadrants high water is after noon

or midnight, but before the moon's southing, and in second and fourth vice

versa.

4. iL M C H = max. when S C H = 45o. S d h' = 90°. and m' a

perpendicular to S C, and /I a m' d rr max., and a m' d — m' d h'rr 2 y'.
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Hence in the octants, the motion of the high water = moon's easterly

motion; in syzygy it is slower; in quadratures faster. Therefore the tide

day in the octants = 24h. 50' = the lunar day ; in syzygy it is less = 24h.

35'; in quadratures = 25h. 25'.

For take any point (u) near (m), draw u a, u d, and d i parallel to a u

and with the center (a) and radius a u, describe an arc (u v) which may

be considered as a straight line' perpendicular to am; u m and i h are

respectively equal to the motions of M and H, and by triangles u m v,

d m f.

um:ih::ma:mf.
Therefore the synodic motion of the moon's place : synodic motion ot

high water : : m a : m f.

Cor. 1. At new or full moon, m a coincides with S a, and m f with S d

;

at the quadratures, m a coincides with C a, and m f with C d ; therefore

the retardation of the tides at new or full moon : retardation at quadra-

tures ::Sa:Ca::M + S:M — S.

Cor. 2. In the octants, m a is perpendicular to S a, therefore m a, m f

coincide. Therefore the synodic motion of high water equals the synodic

motion of the moon.

CoR. 3. The variation of the tide during a lunation is represented by

(m a) ; at S, m a = S a, at C = C a.

Therefore the spring tide : neap tide : : M + S : M — S.

CoR. 4. The sun contributes to the elevation, till the high water is in

the octants, after which (a f) is — v e, therefore the sun diminishes the

elevation.

CoR. 5. Let m u be a given arc of the moon's synodic motion, m v is

the difference between the tides m a, u a corresponding to it.

Therefore by the triangles m u v, m d f.

mu:mv::md:df.
.*. m v Qc d f

;

and since

m d : d f : : r : sin. d m f : : r : sin. m d h : : r : sin. 2 M C H
m v a sifi. 2 arc M H.

13. Prop. VI. In the triangle m d a, m d, d a and ^ m d a arc known

when the proportion M : S is known and the moon's elongation.

Let the angle m d a = a,

and make

M + S : M — S : : tan. a : tan. b
Bb3
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then

__ a — b __ a + b
y - —2—' ^ - ""F"*

For

M + S : M — S : : m d + d a : m d — d a

mad+amd mad — amd
: : tan. -^ : tan. —

2

2x + 2y 2x — 2y
: : tan. = i ^ : tan. ^

: : tan. x + y : tan. x — y
: : tan. a : tan. b,

x+y:x— y::a:b,
2x=ra + b, 2y = a — b,

a + b

and

a—-b
y = -2--

14. Prop. VII. To find the proportion between the accelerating forces

of the moon and sun. 1st. By comparing the tide day at new and full

moon with the tide day at quadratures.

35 : 85 : : M : S,

nr lix 35 + 85 85 — 85 ^ „ .

... M : M : : -^ : ^ : : 5 : 2^2.

Also, at the time of the greatest separation of high water from the moon

in the triangle m' d a, m d : d a : : r : sin. 2 y : : M : S,

.•.jj = sm.2y,

at the octants y is found =12° 30',

... 2 = sin. 25°,M
.*. M : S : : 5 : 2^ nearly.

) Hence taking this as the mean proportion at the mean distances of the

moon and sun (if the earth =1) the moon = «77 •

Cor. 1. If the disturbing forces were equal there would be no high or

low water at quadratures, but there would be an elevation above the in-

scribed spheroid all round the circle, passing through the sun and moon

=: f M + S.
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Cor. The gravitation of the sun produces an elevation of 24 inches,

the gravitation of the moon produces an elevation of 58 inches.

.'. the spring tide = 82 inches, and the neap tide = 33| inches.

15. CoR. 3. Though M : S : : 5 : 2, this ratio varies nearly from (6 : 2)

to 4 : 2, for supposing the sun and moon's distance each = 1000.

In January, the distance of the sun = 983, perigee distance of the

moon = 945.

In July, the distance of the sun = 1017, apogee distance of the moon

= 1055.

1
Disturbing force oc j^,; hence

,S M
apogee 1.901 4.258

mean 2 5

perigee 2.105 5.925.*

5 a' d'
The general expression isM= — 8x^7-3X7^.

To find the general expression above.

Disturbing force of different bodies (See Newton, Sect. 11th, p. 66,

Cor. 14.) a i,

.*. disturbing force S : disturbing force at mean distance : : D^ : A'

disturbing force M : disturbing force at mean distance : : d ^
: 3 ^

.
M 5 d^ d'

.-. g .

2 '"j).
' A

M 5 A3 d^

S ~ 2 ^ D^ ^ 63'

T%/r
5 ^ A^ d'

.-. M = 2^ X S X ^3 X p
(or supposing that the absolute force of the sun and moon are the same).

16. Prop. VIII. Let N Q S E be the earth, N S its axis, E Q its equa-

tor, O its center ; let the moon be in the direction O M having the de-

clination B Q.

* The solar force may be neglected, but the variation of the moon's distance, and proportion-

ally the variation of its action, produces as eifect on the times, and a much greater on the heighta

of the tides.

Bb4
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Let D be any point on the surface of the earth, D C L its parallel of

latitude, N D S its meridian ; and let B' F b' f be the elliptical spheroid

of the ocean, having its poles in O M, and its equator F O f.

As the point D is carried along its parallel of latitude, it will pass

through all the states of the tide, having high water at C and L, and low

water when it comes to (d) the intersection of its parallel of latitude with

the equator of the watery spheroid.

Draw the meridian N d G cutting the terrestrial equator in G. Then

the arc Q G (converted into lunar hours) will give the duration of the

ebb of the superior tide, G E in the same way the flood of the inferior.

N. B., the whole tide G Q C, consisting of the ebb Q G, and the flood

G Q is more than four times G O greater than the inferior tide.

Cor. If the spheroid touch the sphere in F and f, C C is the height

at C, L L' the height at L, hence if L' q be a concentric circle C q will

be the difference of superior and inferior tides.

CONCLUSIONS DRAWN FROM PROP. VIII.

1. If the moon has no declination, the duration of the inferior and su-

perior tides is equal for one day over all the earth.

2. If the moon has declination, the duration of the superior will be

longer or shorter than the duration of the inferior according as the

moon's declination and the latitude of the place are of the same or differ-

ent denominations.

3. When the moon's declination equals the colatitude or exceeds it,
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there will only be a superior or inferior tide in the same day, (the paral-

lel of latitude passing through f or between N and f.)

4. The sin. of arc G O = tan. of latitude X tan. declination.

For

rad. : cot. d O G : : tan. d G : sin. G O,

.'. sin. G O =r cot. d O G X tan. G d

= tan. declination X tan. latitude.

17. Prop. IX. With the center C and radius C Q (representing the

P

whole elevation of the lunar tide) describe a circle which may represent

the terrestrial meridian of any place, whose poles are P, p, and equator

E Q. Bisect P C in O, and round O describe a circle P B C D ; let M
be the place on the earth's surface which has the moon in its zenith, Z
the place of the observer. Draw M C m, cutting the small circle in A,

and Z C N cutting the small circle in B ; draw the diameter BOD and

A I parallel to E Q, draw A F, G H, IK perpendicular to B D, and

join I D, A B, A D, and through I draw C M' cutting the meridian in

M'. Then after J a diurnal revolution the moon will come into the

situation M', and the angle M' C N (= the nadir distance) = supplement

the angle ICB = zlIDB.
Also the ^ADB = BCA = zenith distance of the moon.
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Hence D F, D K a cos. * of the zenith and nadir distances to rad. D B.

a elevation of the superior and inferior tides.

CONCLUSIONS FROM PROP. IX.

1. The greatest tides are when the moon is in the zenith or nadir of the

observer. For in this case (when M approaches to Z) A and I move to-

wards D, B, and F coincides with B ; but in this case, the medium tide

which is represented by D H (an arithmetic mean to D K, D F) is di-

minished.

If Z approach to M, D and I separate ; and hence, the superior and

iriferior and the medium tides all increase.

2. If the moon be in the equator, the inferior and superior tides are

equal, and equal M X (cos) * latitude. For since A and I coincide with

C, and F and K with (i) D i = D B X (cos.) « B D C = M X (cos.) *

latitude.

3. If the observer be in the equator, the superior and inferior tides are

equal every where, and =r M X (cos.) ^ of the declination of the moon.

For B coincides with C, and F and K with G ; P G = P C X cos. * of

the moon's declination = M x (cos.) * of the moon's declination.

4. The superior tides are greater or less than the inferior, according as

the moon and place of the observer are on the same or different sides of

the equator.

5. If the colatitude of the place equal the moon's declination or is less

than it, there will be no superior or inferior tide, according as the latitude

and the declination have the same or different denominations. For when

PZ=M Q, D coincides with I, and if it be less than M Q, D falls between

I and C, so that Z will not pass through the equator of the watery spheroid.

6. At the pole there are no diurnal tides, but a rise and subsidence

of the water twice in the month, owing to the moon's declining to both

sides of the equator.

18. Prop. X. To find the value of the mean tide.

A G = sin. 2 declination (to rad. = O C.)

and
O G = cos. 2 declination (to the same radius).

M
.'.OH = cos. 2 declination X cos. 2 lat. X -g-,

.•.DH= OD + OH
1 4- COS. 2 lat. X COS. 2 declination

= M X -—^
7i

—

,
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Now as the moon's declination never exceeds 30°, the cos. 2 declination

is always + v ^ and never greater than | ; if the latitude be less than 45°,

the cos. 2 lat. is + v e, after which it becomes — v e.

Hence

1. The mean tide is equally affected by north and south declination of

the moon.

2. If the latitude = 45°, the mean tide ^ M.
3. If the lat. be less than 45°, the mean tide decreases as the declina-

tion increases.

4. If the latitude be greater than 45°, the mean tide decreases as the

declination diminishes.

^ Tr.i 1 .-. J r^ .i_ .-J TVfl- 1 + cos. 2 declination
5. If the latitude = 0, the mean tide = M X —' 5
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SECTION XII.

503. Prop. LXX. To find the attraction on a particle placed within

a spherical surface, force <x^. -^r~ .,
'^ distance *

Let P be a particle, and through P draw H P K,

I P L making a very small angle, and let them j

revolve and generate conical surfaces I P H, H
L P K. Now since the angles at P are equal

and the angles at H and L are also equal (for

both are on the same segment of the circle),

therefore the triangles H I P, P L K, are similar.

.-. H I : K L : : H P : P L

Now since the surface of a cone a (slant side) \
.'. surface intercepted by revolution of I P H : that ofL P K :

and attractions of each particle in I P H : that ofL P K

:

* Hpin?
but the whole attraction of P oc the number of particles X attraction of

each,

HI' K r *

• .*, the whole attraction on P from H I : from K L : : tt~t\ 'Kit
:: J :1;

and the same may be proved of any other part of the spherical surface

;

.*. P is at rest.

504. Prop. LXXL To find the attraction on a particle placed mthout

a spherical surface, force a^- -p— ,.^ distance

'

PH*:;PL«
HI«;:KL»

I 1

HP^' PL^
1 1
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Let A B, a b, be two equal spherical surfaces, and let P, p be two

particles at any distances P S, p s from their centers; draw P H K,

P I L very near each other, and S F D, S E perpendicular upon them, and

from (p) draw p h k, p i 1, so that h k, i 1 may equal H K, I L respective-

ly, and s f d, s e, i r perpendiculars upon them may equal S F D, S E,

I R respectively ; then ultimately PE = PF = pe = pf, and D ¥
= d f. Draw I Q, i q perpendicular upon P S, p s.

Now
PI:PF::IR:DF

and J-.-.PI pf:pi.PF::IR:ir::IH:ih
I:PF::IR:DF"J

f:p i :: df :ir )"

: SF"J

:iq J

PI:PS::IQ: SF
and

J-.-.
Pl.psrpi. P S: :IQ:iq

p s : p i : : s f

.-. P I*, p f . p s : (p i) ^ P F . P S : : I Q. I H : i q. i h

: : circumfer. of circle rad. I Q X I H : circumfer. of circle rad i q X i h

: : annulus described by revolution of 1 Q : that by revolution of i q.

Now

attraction on 1st annulus : attraction on 2d

And

1st annulus 2d annulus

distance ? * distance *

PP.pf.ps fpi)».PF.PS
Pl^

•

(pi)*

pf.ps :PF.PS.

attraction on the annulus : attraction in the direction P S : : P I : P Q
: : P S : P F

P F
.'. attraction in direction PS = p f. p s. p-^

PF ^„ „„ pf
ps

. . p S . r k5 . . p-g-j . ;;-^

.-. whole aU". of P to S : whole att°. of (p) to s : : p f . p s . p^ : P F . P S •
^

p s
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and the same may be proved of all the annul! of which the surfaces are

composed, and therefore the attraction of P oc -p-^ cc -r-r ^ from

the center.

Cor. The attraction of the particles within the surface on P equals the

attraction of the particles without the surface.

For K L : I H :*: P L : P I : : L N : I Q.

.*. annulus described by I H : annulus described by K L
::IQ.IH: K L. L N : : P I^ : P L«

.*. attraction on the annulus I H : attraction on the annulus K L
PP PL '

*
• P 1*' PL«* '

and so on for every other annulus, and one set of annuli equals the part

within the surface, and the other set equals the part without.

506. Prop. LXXII. To find the attraction on a particle placed with"

out a solid sphei'e, force oc^. --r. 5.

Let the sphere be supposed to be made up of spherical surfaces, and

the attraction of these surfaces upon P will oc -yv ;, and therefore^ distance *

the whole attractions

number of surfaces content of sphere diameter ^

^
P"S^

*
P"S^ " PS*^

and if P S bear a given ratio to the diameter, then

the whole attraction on P cc -r-
7—; a diameter.

diameter ^

507. Prop. LXXIIL To find the attraction on the particle placed

toithin-

Let P be the particle ; with rad. S P describe

the interior sphere P Q ; then by Prop. LXX.
(considering the sphere to be made of spherical

surfaces,) the attraction of all the particles con-

tained between the circumferences of the two

circles on P will be nothing, inasmuch as they

are equal on each side of P, and the attraction

p g3
of the other part by the last Prop, oc p-^ a P S.
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508. Prop. LXXIV. If the attractions of the particles of a spliere

(X rr——5—5 , and two similar spheres attract each other, then the spheres

will attract with a force «« as
distance ^

of their centers.

For the attraction of each, particle a -v= 5 from the center of the
'

*^ distance*

attracting sphere (A), and therefore with respect to the attracted particle

the attracting sphere is the same as if all its particles were concentrated

in its center. Hence the attraction of each particle in (A) upon the

whole of (B) will a -j.—
^ of each particle in B from the center of P,

and if all the particles in B were concentrated in the center, the attraction

would be the same ; and hence the attractions of A and B upon each other

will be the same as if each of them were concentrated in its center, and

therefore a
distance t

'

509. Prop. LXXVI. Let the spheres attract each other, and let

them not be homogeneous, but let them be homogeneous at correspond-

ing distances from the center, then they attract each other with forces

I
aB.

distance

'

Suppose any number of spheres C D and E F, I K and L M, &c, to

be concentric with the spheres A B, G H, respectively; and let C D and
I K, E F and L M be homogeneous respectively ; then each of these

spheres will attract each other with forces a^. -7: . Now suppase
distance * '^^

the original spheres to be made up by the addition and subtraction of
similar and homogeneous spheres, each of these spheres attracting each
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- ; then the sum or diiFerences will attract
distance ^

each other in the same ratio.

510. Prop. LXXVII. Let the force oc distance, to find the attraction

of a sphere on a particle placed without or within it.

Let P be the particle, S the center, draw two planes E F, e f, equally

distant from S ; let H be a particle in the plane E F, then the attraction

of H on P a HP, and therefore the attraction in the direction S P a
P G, and the attraction of the sum of the particles in E F on P towards

S oc circle E F . P G, and the attraction of the sum of the particles in

(e f) on P towards S cc circle e f . P g, therefore the whole attraction of

E F, e f, a circle EF(PG+Pg) cc circle E F . 2 P S, therefore the

whole attraction of the sphere a sphere X P S.

When P is within the sphere, the attraction of the circle E F on P to-

wards S oc circle E F . P G, and the attraction of the circle (e f) towards

S oc circle e f . P g, and the difference of these attractions on the whole

attraction to S a circle EF(Pg— PG) oc circle E F . 2 P S. There-

fore the whole attraction of the sphere on P a sphere X P S.

511. Lemma XXIX. If any arc be described with the center S, rad.

S B, and with the center P, two circles be described very near each other

Vol. I. C c
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cutting, first, the circle in E, e, and P S in F, f; and E D, e d, be drawn
perpendicular to P S, then ultimately,

Dd: Ff::PE: PS.
For

and

Dd:Ee::DT:ET::DE:ES

E eEe: Ff
Dd: Ff

e r ::SE :SG
— ::DE: SO: P E : P S.

612. Prop. LXXIX. Let a solid be generated by the revolutions of a«.

evanescent lamina E F f e round the axis P S, then the force with which

the solid attracts Pa DE'. Ffx force of each particle.

Draw E D, e d perpendiculars upon P S ; let e d intersect E F in r

;

draw r n perpendicular upon E D. Then E r : n r : : P E : ED, .*.

Er.ED = nr.PS = Dd.PE, .-. the annular surface generated by

the revolution of Era Er.EDa Dd.PE, and (P E remaining the

same) a D d. But the attraction of this annular surface on P a D d

.

P E, and the attraction in the direction P E : the attraction in the direc-

tion P S : : P E : P D,

PD
.*. the attraction in the direction P S a PE .Dd.PE a PD.Dd

and the whole attraction on P of the surface described by E F a sum of

the PD.Dd.
Let P E = r, D F = X,

.. P D = r — X,

•. PD.Dd=rdx — xdx.

.'. sum ofPD.DdS=yrdx— xdx =2rx— x» D E'
a DE%

2. 2

and therefore the attraction of lamina a D E '. F f X force of each particle.
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513. Prop. LXXX. Take D N proportional to p^p— X force

of each particle at the distance P E, or if^^ represent that force, let D N
"T) fr 2 PS

a '

, then the area traced out by D N will be proportional to
JL ill. V

the whole attraction of the sphere.

a

For the attraction of lamina EFfeaDE*. F fx force of each parti-

i a (Lemm;

DE'^. PS

J) ]g2 p g
cle a (Lemma XXIII) ^^^ . D d x force of each particle, orPE

p ^ ^ D d, .*. D N . D d a attraction of lamina E F f e, and the

sum of these areas or area A N B will represent the whole attraction of

the sphere on P.

514. Prop. LXXXI. To find the area A N B.

Draw the tangent P H and H I perpendicular on P S, and bisect P I

in L ; then
Cc2
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PE«= PS' + SE« + 2PS.SD
But

SE* = SH' = PS. SI,

PE'^rrPS^ + PS.SI + 2PS.SD
= PSJPS + SI + 2SD}
= P S J{P I + I S) + S I + 2 S D}
= PS^2LI + 2SI + 2SD|
= 2PSJLI + SI + SDJ = 2PS.LD

DE«=SE= — SD'zrSE'^ — (LD — LS)«
= SE2 — LD« — LS2 + 2LD.LS
= 2LD.LS— LD^— (LS+ SE)(LS— SE)
= 2LD.LS — LD* — LB.LA,

^., DE^.PS 2LD.LS.PS
PE.V V2SD.PS.V

LD^PS LB. LA. PS
V2LD.PS.V V2LD.PS.V

and hence if V be given, D N may be represented in terms of L D and

known quantities.

515. Ex. 1. Let the force a -j-. : to find the area A N B.
distance

si"^^^.«di;^*v'-"-^'"P^'

2LS.LD.PS LD^PS AL.LB.PS
..DJNa 2LD.PS 2LD.PS 2LD.PS

Tc LD AL.LB
a LS--g WTTDT*

^XTT^^ A T c rk 1
LD.Dd AL.LB.Dd

.. D N . D d, or d . area a L S . D d
2 I Ti

'

.'. area AND between the values of L A and L B

= LS.(LB-LA)- LB'-LA'_ALJLB ^LB

Now
LB*— LA« = (LB + LA).(LB— LA)

= (LS + AS + LS—AS)AB = 2LS.AB,
Avrn Tc AR 2LS.AB AL. LB ,LB

.'. area AND = LS.AB -. ^ 1 =1

—

a~4 2 L A

_ LS.AB AL.LB ,LB"2 2 UA'
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516. To construct this area.

To the points L, A, B erect L 1, A a, B b,

perpendiculars, and let A a = L B, and B b
i

= L A, through the points (a), (b), de-

scribe an hyperbola to which L 1, L B are

asymptotes. Then by property of the hy-

perbola, AL.Aa = LD.DF,
^^ AL.Aa AL.LB

.-. D F =

.-.DF.Dd =

LD ~ LD
A L.LB.Dd

LD '

.-.areaAaFD =/DF.Dd = AL.LB/LD,
T B

..hyperboUcarea AafbB= Ah.liBfj—^.

The area AaBb = Bb.AB + ^ ^^ ^ "

Bb.AB , an+Bb .^ Aa+Bb.^= 2 + §
-^^- 2 ^^

LB + L A
. A B = L S . A B,

.*. area a f b a = area A a B b — area A a f b B

= LS.AB — AL.LB/i^.

517. Ex. 2. Let the force a ,._ . ; to find the area A N B.
distance ^

"

but

LetV =

.-. D N =

V.PE =

.-. D N =

PE^
2 A S^'

2LS.LD.PS LD^PS
PE.V PE.V

AL.LB. PS
PE.V

PE- _ 4PS^LD' _ PS j^,

2AS*~ 2AS^ _4ro^gj. A.1^ ,

SI.LS SI AL.LB. SI
LD 2

.-./DN.x' = Si.LS/LD SI.LD AL.LB. SI
2 ' 2LD

.*. area between the values of L A and L B
c.TTc/'LB SI. (LB— LA) /LB. SI AL.SL

= SI.LSy j-^ 2 \~-2 -2
.

LBizSI.LS/^— SLAB.
Cc3
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To construct this area.

1 a

S Dd

Take S I= S s, and describe a hyperbola passing through a, s, b, to which

L 1, L B are asymptotes ; then as in the former case, the area A a n b B
•LB .LB= AL.SB./^ = LS.Ss/^ = SI.LS/^

.-. the area A N B = S I . L S/]^ — SLAB.
518. Prop. LXXXII. Let I be a particle within the sphere, and P

the same particle without the sphere, and take

S P : S A : : S A : S I,

then will the attracting power of the sphere on I : attracting power of the

sphere on P
: : V S I. V force on I : V S P. V force on P.

D N force on the point P : D' N' force on the point I

DE' PS D E' IS
PE.V '' lE.V
PS.IE.V'rIS.PE.V.

I^t
V : V :: PE" : IE",
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then

but

DN:D'N':: PS.IE.IE°:IS.PE.:eE°,

P S : S E : : S E : S I,

and the angle at S is common,

.'. triangles P S E, I S E are similar,

.-. P E : 1 E
.-. D N : D' N'

P S : S E ; : S E : S I,

PS.SE.IE- : PS.SI.PE-,
SE.IE" : SI.PE"
VS P.IE" : VSI.PE*
VSP : SI^ VS I.PS2.

519. Prop. LXXXIII. To find the attraction of a segment of aspheie

upon a corpuscle placed within its centre.

Draw the circle F E G with the

center P, let R B S be the segment of

the sphere, and let the attraction of the

spherical lamina E F G upon P be

proportional to F N, then the area de-

scribed by F N a whole attraction of """"

the segment to P.

Now the surface of the segment

E F G a P F D F, and the content

of the lamina whose thickness is O x
PF DF O.

Let F (X jv- and the attraction on P of the particle in that
distance "

1~) F * O
spherical lamina, oc ( Prop. LXXIII.) -p-^^-

a
r2PF FD — FD^) O

2FDO FD^ O
PF'-i

2 F D F D *

.-. if F N be taken proportional to
p ^ „_j — p-^^ , the area traced

out by F N will be the whole attraction on P.

520. Prop. LXXXIV. To find the attraction when the body is placed

ia the axis of the segment, but not in the center of the sphere.

Pel
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Describe a circle with the radius P E, and the segment cut ofF by the
revolution of this circle E F K round P B, will have P in its center, and

the attraction on P of this part may be found by the preceding Proposi-
tion, and of the other part by Prop. LXXXI. and the sum of these at-

tractions will be the whole attraction on P.

SECTION XIII.

621. Prop. LXXXV. If the attraction of a body on a particle placed

iu contact with it, be much greater than if the particle were removed at

any the least distance from contact, the force of the attraction of the par-

ticles a in a higher ratio than that of -p -,

.

° distance *

For if the force a -tt— ^ , and the particle be placed at any distance

from the sphere, then the attraction a t: •„ from the center of the^ distance*

sphere, and .*. is not sensibly increased by being placed in contact with

the sphere, and it is still less increased when the force a in a less ratio

than that of -r^ r» and it is indifferent whether the sphere be homo-
distance ^

geneous or not ; if it be homogeneous at equal distances, or whether the

body be placed within or without the sphere, the attraction still varying in

the same ratio, or whether any parts of this orbit remote from the point of

contact be taken away, and be supplied by other parts, whether attractive

or not, .*. so far as attraction is concerned, the attracting power of this

sphere, and of any other body will not sensibly differ ; .*. if the pheno-
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mena stated in the Proposition be observed, the force must vary in a higher

ratio than that of -p •„

.

distance*

522. Prop. LXXXVI. If the attraction of the particles a in a higher

ratio than t- -. » or a -r. , then the attraction of a body placed
distance ^ distance "

in contact with any body, is much greater than if they were separated

even by an evanescent distance.

For if the force of each particle of the sphere oc in a higher ratio than

that of T 5 , the attraction of the sphere on the particle is indefinitely
CllS l3.llX^C

increased by their being placed in contact, and the same is the case for

any meniscus of a sphere ; and by the addition and subtraction of attrac-

tive particles to a sphere, the body may assume any given figure, and

.*. the increase or decrease of the attraction of this body will not be sensi-

bly different from the attraction of a sphere, if the body be placed in con-

tact with it.

523. Prop. LXXXVII. Let two similar bodies, composed of particles

equally attractive, be placed at proportional distances from two particles

which are also proportional to the bodies themselves, then the accelerat-

ing attractions of corpuscles to the attracting bodies will be proportional

to the whole bodies of which they are a part, and in which they are simi-

larly situated.

For if the bodies be supposed to consist of particles which are propor-

tional to the bodies themselves, then the attraction of each particle in one

body : the attraction of each particle in the other body, : : the attraction

of all the particles in the first body : the attraction of all the particles in

the second body, which is the Proposition.

CoR. Let the attracting forces a -tt— , then the attraction of a° distance °

particle in a body whose side is A : — B
A^ B^

distance ^ from A ' distance " from R
A^ 21
A° • B-^

1 1

' • A°-3 ' B°-3'
if the distances oc as A and B.
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524. Prop. LXXXVIII. If the particles of any body attract with a
force a distance, then the whole body will be acted upon by a particle

without it, in the same manner as if all the particles of which the body is

composed, were concentrated in its center of gravity.

Let R S T V be the body, Z the par-

ticle without it, let A and B be any

two particles of the body, G their cen-

ter of gravity, then A A G = B B G,

and then the forces of Z of these parti-

cles Qc A A Z, B B Z, and these

forces may be resolved into A A G +
A G Z, B B G + B G Z, and A A G
being = B B G and acting in opposite

directions, they will destroy each other,

and .*. force of Z upon A and B will be

proportional to A Z G -}- B Z G, or to (A + B) Z G, .*. particles A
and B will be equally acted upon by Z, whether they be at A and B, or

collected in their center of gravity. And if there be three bodies A, B,

C, the same may be proved of the center of gravity of A and B (G) and

C, and .*. of A, B, and C, and so on for all the particles of which the

body is composed, or for the body itself.

525. Prop. LXXXIX. The same applies to any number of bodies

acting upon a particle, the force of each body being the same as if it

were collected in its center of gravity, and the force of the whole system

of bodies being the same as if the several centers of gravity were collected

in the common center of the whole.

526. Prop. XC. Let a body be placed in a perpendicular to the plane

of a given circle drawn from its center ; to find the attraction of the circu-

lar area upon the body.

With the center A, radius = A D, let

a circle be supposed to be described, to

whose plane A P is perpendicular. From

any point E in this circle draw P E, in

P A or it produced take P F = P E, and

draw F K perpendicular to P F, and let

F K oc attracting force at E on P. Let

i K L be the curve described by the point

K, and let I K L meet A D in L, take

P H = P D, and draw H I perpendicular
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to P H meeting this curve in I, then the attraction on P of the circle

a A P the area A H I L.

For take E e an evanescent part of A D, and join P e, draw e C per-

pendicular upon P E, .-. E e : E C : : P E : A E, .. E e . A E = E C x
P E a annulus described by A E, and the attraction of that annulus in

PA
the direction P A cc E C . P E . p-^ x force of each particle at E oc E C X

PA X force of each particle at E, but E C = F f, .-. F K . F f <x E C x
the force of each particle at E, .*. attraction of the annulus in the direction

PA a P A . F f . F K, and .-. P A x sum of the areas F K . Ff or P A
the area A H I L is proportional to the attraction of the whole part de-

scribed by the revolution of A E.

527. Cor. 1. Let the force of each particle a -r it at P F =r x,

let b = force at the distance a,

ba«
.*. F K the force at the distance x = —5-

,

X*

.-. FK.Ff =

X

ba-dx

528. Cor. 2. Letthe force a -j^—r , then T K = —-
,

.-.attraction = PA. FK.Ff= PAy-5^^

aPA — -Qc A — ^p,
and between the values of P A and P H, the attraction

cr PA ^ ' « 1 ^^^^ PA~"PH "* *~PH-
I ., ^.,. ba«

distance "

.^ . r. * /-b a°
,

PA 1 , /-.
.'. attraction = P A /—-—d x a r X r—r + t>or.,

•/x" n— 1 x"~*
and between the values of P A and P H,

attraction = ^^ {^^^^—FTT^}
1 PA

^ PA"-i~PH"-i •

529. CoR. 3. Let the diameter of a circle become infinite, or P H
oc cc, then the attraction gc p > .._i!

•

530. Prop. XCL To find the attraction on a particle placed in the

axis produced of a regular solid.
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Let P be a body situated in the axis A B of the curve D E C G, by

the revolution of whicli the solid is generated. Let any circle II F S
perpendicular to the axis, cut the solid, and in the semidiameter F S of

the solid, take F K proportional to the attraction of the circle on P, then

F K . F f QC attraction of the solid w^hose base = circle R F S, and depth

= F f, let I K L be the curve traced out by F K, .*. A L K F a at-

traction of the solid.

Cor. 1. Let the solid be a cylinder, the force varying as y— -„

,

Then the attraction of the circle R F S, or F K which is proportional

to that attraction a 1 — ^^ .

Let P F = X, F R = b,

.-. F K a 1 —

.-. FK. Ff ex dx —
Vx^ + b«'

X x'

Vx^ + b*'

.-. area a — x v'x '^ + b *

.
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Now if P A = X, attraction = 0,

.-. Cor. = PD— P A,

.-. whole attraction = PB — PE + PD — PA
= AB — PE + PD.

LetAB=a)=PE = PD,
.'. atraction = A B.

531. CoR. 3. Let the body P be placed

within a spheroid, let a spheroidical shell

be included between the two similar

spheroids DOG, K N I, and let the

spheroid be described round S which

will pass through P, and which is simi-

lar to the original spheroid, draw D P E,

F P G, very near each other. Now P D
= BE, PF = CG, PH = BI, PK
= CL.

.-. F K = L G, and D H = I E,

and the parts of the spheroidical shell which are intercepted between these

lines, are of equal thickness, as also the conical frustums intercepted by

the revolution of these lines, and

.*. attraction on P by the part D K : . . . . G I

number of particles in D K _ ... G*
•

• WW' '•

"Fg~«

PD^ . PG' . . I
. ,

'•• PD« ' P G^^
•• '

and the same may be proved of every other part ofa spheroidical shell, and

.•. body is not at all attracted by it; and the same may be proved of all the

other spheroidical shells which are included between the spheroids, A O G,

and C P M, and .*. P is not affected by the parts external to C P M, and

,-. (Prop. LXXIL),
attraction on P : attraction on A : : PS: AS.

532. Prop. XCIIl. To find the attraction of a body placed without an

infinite solid, the force of each particle varying as y-. ^ , where n is

greater than 3.

Let C be the body, and let G L, H M, K O, &c. be the attractions

at the several infinite planes of which a solid is composed on the
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body Cj then the area G L O K equals the whole attraction of a solid

onC.

L"^
- N O

G H I K

1 m n

Now if the force a y. „ -

distance"

Then

H M a Qi^n-2 (Cor. 3. Prop, XC)

.../HM.dx a/^, « -r^ + Cor.

a

and if H C = oo

then the area G L O K oc

C G"-3 C H»-3'

1

G C»-3*
Case 2. Let a body be placed within the solid.

6

N

C I K

1

Let C be the place of the body, and take C K = C G ; the part of

the solid between G and K will have no effect on the body C, and there-

fore it is attracted to remain as if it were placed without it at the distance

CK.
1 1

.*. attraction x QCCK^-a - CG»-3*
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SECTION XIV.

534. Prop. XCIV. Let a body move through a similar medium, ter-

minated by parallel plane surfaces, and let the body, in its passage through

this medium, be attracted by a force varying according to any law of its

distance from the plane of incidence. Then will the sine of inclination be

to the sine of refraction in a given ratio.

a\h ^—^\ K a

^^
^. o

N

\
1B v^ b

Q\
\>^K
M

Let A a, B b be the planes which terminate the medium, and G H be

the direction of the body's incidence, and I R that of its emergence.

Case 1. Let the force to the plane A a be constant, then the body will

describe a parabola, the force acting parallel to I R, which will be a diameter

of the parabola described. H M will be a tangent to the parabola, and if

K I be produced I L will also be a tangent to the parabola at I. Let K I

produced meet G M in L ^ith the center L, and distance L I describe

a circle cutting I R in N, and draw L O perpendicular to I R. Now by a

property of the parabola M I =. I v,

.-. M L = H L, .-. M O = O R, and .-. M N = I R.

The angle L M I=the angle of incidence, and the angle MIL = sup-

plement ofM I K r= supplemental angle of emergence.

Now
L.MI = MH« = 4ML^
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B 1/ b

C K/
13 R/ d

MN.MI=MI.IR=MQ.MP=ML+LQ.ML—LQ
=ML«— LQ'

.-. L : I R : : 4 M L« : M L^— L Q«
but L and I R are given

.-. 4ML« a ML« — LQ«

.-. ML'^ aLQ« a LI^
,*. M L a L I or sin. refraction : sin. inclination in a given ratio.

Case 2. Let the force vary according to ^ Gy

any law of distance from A a.

Divide the medium by parallel planes A a,

B b, C c, D d, &c. and let the planes be at

evanescent distances from each other, and

let the force in passing from A a to B b,

from B b to C c, from C c to D d, &c. be

uniform.

.*. sin. I at H : sin. R at H : : a : b

sin. R or I at I : sin. R at K : : c : d

sin. R or I at K : sin. R at R : : e : f, and so on.

.'. sm. I at H : sin. RatR::a.c.e:b.d.f and in a constant pro-

portion.

535. Prop. XCV. The velocity of a particle before incidence : velocity

after emergence : : sin. emergence : sin. incidence.

G

Take A H = I d, and draw A G, d K perpendicular upon A a, D d,

meeting the directions of incidence and emergence in G, K. Let the

motion of the body be resolved into the two G A, A H, Id, d k, the ve-
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locity perpendicular to A a cannot alter the motion in the direction A a

;

therefore the body will describe G H, I K in the same time as the spaces

A H, I d are described, that is, it will describe G H, I K in equal times

before the incidence and after the emergence.

Velocity before incidence : velocity after emergence : : G H : I K
A H . Id

sin. incidence ' sin. emergence

: : sin. emergence : sin. incidence.

536. Prop. XCVI. Let the velocity before incidence be greater than

the velocity after emergence, then, by inclining the direction of the inci-

dent particle perpetually, the ray will be refracted back again in a similar

curve, and the angle of reflection will equal the angle of incidence.

A xH h.yk

B \p P/ b

c \q ./ c

\^^R^ d

E e

Let the medium be separated by parallel planes A a, B b, C c, D d,

E e, &c. and since the velocity before incidence is greater than the

velocity after emergence. .*. sin. of emergence is greater than sin. of in-

cidence. .'. H P, P Q, Q R, &c. will continually make a less angle with

H a, P b, Q c, R d, &c. till at last it coincides with it as at R ; and after

this it will be reflected back again and describe the curve R q p h g simi-

lar to R Q P H G, and the angle of emergence at h will equal the angle

of incidence at H.

537. Prop. XCVIL Let sin. incidence : sin. refraction in a given ra-

•tio, and let the rays diverge from a given point ; to find the surface of

medium so that they may be refracted to another given point.

Let A be the focus of incident, B of refracted rays, and let C D E
be the surface which it is requued to determine. Take D E a small arc,

Vol. T. D d
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and draw E F, E G perpendiculars upon A D and D B ; then D P\ D G
are the sines of incidence and refraction ; or increment of A D : decrement

of B D : : sin. incidence : sin. refraction. Take .*. a point C in the axis

through which the curve ought to pass, and let C M : C N : : sin. inci-

dence : sin. refraction, and points where the circles described with radii

A M, B N intersect each other will trace out the curve.

538. Cor. 1. If A and B be either of them at an infinite distance or at

any assigned situation, all the curves, which are the loci ofD in different

situations of A and B with respect to C, will be traced out by t'lis

process.

AC B

539. Cor. 2. Describe circles with radii A C and C B, meeting A D,

B D in P and Q ; then P D : D Q : : sin. incidence : sin. refraction, since

P D, D Q are the increments of B C and A C.
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SECTION I.

1. Prop. I. Suppose the resistance oc velocity, and supposing the whole

time to be divided into equal portions, the motion lost will « velocity, and
oc space described. Therefore by composition, the whole decrement of the

velocity cc space described.

Cob. Hence the whole velocity at the beginning of motion : that part

which is lost : : the whole space which the velocity can describe : space

already described.

2. Prop. II. Suppose the resistance oc velocity.

Case 1. Suppose the whole time to be divided into equal portions, and

at the beginning of each portion, the force of resistance to make a single

impulse which will a velocity, and the decrement of the velocity

a resistance in a given time, a velocity. Therefore the velocities

at the beginning of the respective portions of time will be in a con-

tinued progression. Now suppose the portions of time to be diminished

sine limited and then the number increased ad infinitum, then the force of

resistance will act constantly, and the velocity at the beginning of equal

successive portions of time will be in geometric progression.

Case 2. The spaces described will be as the decrements of the velocity

oc velocity.

3. CoR. 1. Hence if the time be represented by any line and be divid-

ed into equal portions, and ordinates be drawn perpendicular to this

line in geometric progression, the ordinates will represent the velocities,

and the area of the curve which is the logarithmic curve, will be as the

spaces described.

Dd2
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Suppose L S T to be the logarithmic curve to the asymptote A Z.

A L, the velocity of the body at the beginning of the motion.

P Q

K Z

The space described in the time A H with the first velocity continued

uniform : space described in the resisting medium, in the same time : :

A H P L : area A L S H : : rect. A L X P L : rect. A L X PS*
: : P L : P S (if A L = subtan. of the curve).

Also since H S, K T representing the velocities in the times A H, A K ;

P S, Q T are the velocities lost, and therefore cc spaces described.

4. Cor. 1. Suppose the resistance as well as the velocity at the begin-

ning of the motion to be represented by the line C A, and after any time by

the line C D. The area A B G D will be as the time, and A D as the

space described.

For if A B G D increase in arithmetical progression the areas being

the hyperbolic logarithms of the abscissas, the abscissa will decrease in

geometrical progression, and therefore A D will increase in the same

proportion.

5. Prop. III. Let the force of gravity be represented by the rectangle

• Let the subtaogent = M. Then the whole area of the curve = M X A L.

.-. the area ALSH = MXAL — MXHS=MXPS=ALXPS.
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BACH, and the force of resistance at the beginning of the motion by

the rectangle B A D E on the other side of A B.

D d A I i

Describe the hyperbola G B K between the asymptotes A C and C H
cutting the perpendiculars D E, d e, in G and g.

Then if the body ascend in the time represented by the area D G g d,

the body will describe a space proportional to the area E G g e, and the

whole space through which' it can ascend will be proportional to the area

EGB.
If tlie body descend in the time A B K I, the area described is B F K.

For suppose the whole area of the parallelogram B A C H to be di-

r «Jr

I
F

k |1 m|n

A II K L M N [

H

vided into portions, which shall be as the increments of the velocity in

equal times, therefore A k, A 1, A m, A n, &c. will oc velocity, and there-

fore a resistances at the beginning of the respective times.

Let A C : A K : : force of gravity : resistance at the beginning of the

second portion of time, then the parallelograms B A C H, k K C H, &c.

will represent the absolute forces on the body, and will decrease in geome-

trical progression. Hence if the lines K k, L 1, &c. be produced to meet

Dd3
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the curve in q, r, &c. these hyperbolic areas being all equal will repre-

sent the times, and also the force of gravity which is constant. But the

area B A K q : area Bqk::Kq:4kq::AC:^AK;: force of

gravity : resistance in the middle of the first portion of time.

In the same way, the areas q K L r, r L M s, &c. are to the areas

q k 1 r, r 1 m s, &c. as the force ofgravity to the force of resistance in the mid-

dle of the second, third, &c. portions of time. And since the first term is

constant and proportional to the third, the second is proportional to the

fourth, similarly as to the velocities, and therefore to the spaces described.

.*. by composition B k q, B r 1, B s m, &c. will be as the whole spaces

described, Q. e. d.

The same may be proved of the ascent of the body in the same way.

6. Cor. 1. The greatest velocity which the body can acquire : the velo-

city acquired in any given time : : force of gravity : force of resistance

at the end of the given time.

7. Cor. 2. The times are logarithms of the velocities.

8. Cor. 4. The space described by the body is the difference of the space

representing the time, and the area representing the velocity, which at the

beginning of the motion are mutually equal to each other.

* Suppose the resistance to oc velocity.

rv
c' : v' : : r : —j- =retardingforcecorresponding with the velocity (v)

c

r v
.*. v d v = — g X —J- X d X,

J c* dv
.. d X = — X—

g V

.*. X = — b X 1 V + C,

.'. X = b X 1 —
V

__dx __ bdv
~ V ~~ v^ '

.-. t = — b X + Cor.
v

_ , J 1_
_l 1_

~~
V c v c

.*. the times being in geometiical progression, the velocities C, d, E, &c.

will be in the same inverse geometrical progression.

Also the spaces will be in arithmetical progression.
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9. Prop. IV. Let D P be the direction of the projectile, and let it

represent the initial velocity ; draw C P perpendicular to C D, and

N

let D A : A C : : resistance : gravity. Also DP: C P : : resistance :

gravity, .-. DAxDP:CPxCA::R:G. Between D C, C P de-

scribe a hyperbola cuttingD G and A B perpendicular to D C in G and B,

from R draw R V pei*pendicular cutting D P in V and the hyperbola in T,

complete the paraUelogram G K C D and make N : Q B : : C D : C P.

Take

,, G T t „ G T E I
V r = —

.i^f— or R r =N N
for ^ince

R V =

and

GTEI

N : Q B : ; C D : C P :

DR X QB
N

D R X QB — GTt

D R : R V,

= RrN ~ N
in the time represented by D R T G the body will be at (v), and the great-

est altitude = a, and the velocity ex r L.

For the motion may be resolved into two, ascending and lateral. The
lateral motion is represented by D R, and the motion in ascent by R r,

which

aDRxQB — GTt,
or

DRxAB—DG.RT
N'

Ddl
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or

D R X A B— D R X AQ
N '

D R : R r : : N : A B — A Q, or Q B

: : C D : C P,

: : lateral motion . ascending motion at the beginning,

(r) will be the place of the body required.

SECTION II.

10. Prop. V. Suppose the resistance to vary as the velocity ^

Then as before, the decrement of velocity a resistance cc velocity

A KI.M T D

Let the whole time A D be divided into a great number of equal por-

tions, and draw the ordinates A B, K k, L 1, M m, &c. to the hyperbola

described between the two rectangular asymptotes, C H, CD; then by the

property of the hyperbola,

A B : K k : : C K : C A,

.-. AB— Kk:Kk::AK:CA
::ABxAK:ABxCA.

.-. AB — KkaABxKk.
In the same way

Kk — LI a KkS &c.

or

A B S K k S L P, &c.

are proportional to their differences.

.*. velocities will decrease in the same proportion. Also the spaces de-

scribed are represented by the areas described by the ordinates ; hence in
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the time A M the space described may be represented by the whole area

A M mB.
Now suppose the lines C A, C K, &c. and similarly A K, K L, &c. in

geometrical progression, then the ordinates will decrease in the inverse

geometrical progression, and the spaces will be all equal to each other.

Q. e. d.

] 1. Cor. 1. The space described in the resisting medium : the space de-

scribed with the first velocity continued uniform for the time AD:: the

hyperbolic area A D G B : rectangle A B X AD.
12. Cor. 3. The first resistance equals the centripetal force which would

generate the first velocity in the time A C, for if the tangent B T be drawn

to the hyperbola at B, since the hyperbola is rectangular A T = A C, and

with the first resistance continued uniform for the time A C the whole

velocity A B would be destroyed, which is the time in which the same ve-

locity would be generated by a force equal the first resistance. For the

first decrement is A B— K k, and in equal times there would be equal de-

crements of velocity.

13. Cor. 4. The first resistance : force of gravity : : velocity generated

by the force equal the first resistance in the time A C : velocity generated

by the force of gravity in the same time.

14. CoR. 5. P^ice versd^ if this ratio is given, every thing else may be

found.

C Q P L K I A

15. Prop. VIII. Let C A represent the force of gravity, A K the resis-

tance, .*. C K represents the absolute force at any time (if the body de-

scend) ; A P, a mean proportional to A C and A K, represents the velo-

city ; K L, P Q are contemporaneous increments of the resistance and

the velocity.

Then since

AP^aAK, KLa2APxPQxAPxKC,



426 A COMMENTARY ON [Sect. II.

tlie increment of velocity a force when the time is given,

.-.KLxKNaAPxKCxKN,

.*. ultimately K L O N (equal the increment of the hyperbolic area)

oc A P a velocity, a space described, and the whole hyperbolic area =
the sura of all the K L O Ns which are proportional to the velocity, and

.*. space desci'ibed. .*. If the whole hyperbolic area be divided into equal

portions the absolute force C A, C I, C K, &c. are in geometrical pro-

gression. Q. e. d.

16. Cor. 1. Hence if the space described be represented by a hyper-

bolic area, the force of gravity, velocity, and resistance, may be repre-

sented by lines which are in continued proportion.

17. Cor. 2. The greatest velocity = A C.

18. Cor. 3. If the resistance is known for a given velocity, the greatest

velocity : given velocity : : V force of gravity : v^ given resistance.

1 9. Prop. IX. Let A C represent the greatest velocity, and A D be per-

pendicular and equal to it. With the center D and radius A D describe

the quadrant A t E and the hyperbola A V Z. Draw the radii D P, D p.

Then

Case 1. If the body ascend ; draw D v q near to D p, .*. since the sector

and the triangle are small,

Dvt:Dpq::Dt*:Dp^
Dqp

.'. D V t a Dp^
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^ A D X p q p q
"^ AD* + ADxAK "^ C~K
cc increment of the time.

••. by composition, the whole sector oc whole time till the whole

V= 0.'

Case 2. If the body descend; as before

D VT:DPQ::DT«: DP^
:: DX*: D A": : TX*: AP*
::DX^— TX«:DA'' — AP«
:: AD^: AD^ — AD X A K

- : : A D : C K.

By the property of the hyperbola,

TX^ = DX^ — D A*
.-. D A^ = DX^ — TX*

••^^^ «AD X CK« CTT

oc increment of the time.

,*. by composition, the whole time of descent till the body acquire its

greatest V = the whole hyperbolic sector DAT.
20. Cor. 1. If A B = i A C.

The space which the descending body describes in any time : space

which it would describe in a non-resisting medium to acquire the greatest

velocity : : area ABNK:aATD, which represents the time. For

since AC:AP::AP:AK
KL:iPQ::AP:iAC

and
KN: AC ::AB:CK

.-. KLON:DTV::AP:AC
: : vel. of the body at any time : the greatest vei.

Hence the increments of the areas oc velocity gc spaces described.

.*. by composition the whole A B N K : sector A T D : : space described

to acquire any velocity : space described in a non-resisting medium 'for

the same time.

21. Cor. 2. In the same way, if the body ascend, the space described

till the velocity = A p : space through which a body would move : :

A B n k : A D t.

22. Cor. 3. Also, the velocity of a body falling for the time A T D :

velocity which a body would acquire in a non-resisting medium in the

same time : : A A D P : sector T D A ; for since the force is constant,



428 A COMMENTARY ON [Sect. II.

the velocity in a non-resisting medium a time, and the force in a resist-

ing medium aAPaAADP.

23. Cor. 4. In the same wa)', the velocity in the ascent : velocity with which

a body should move, to lose its whole motion in the same time : : A A p D
: sector A t D : : A p : arc A t.

For let A Y be any other velocity acquired in a non-resisting medium
in the same time with A P.

.-. A P : A C : : A P D : this area

and

AP:AC::APD:AeD.
Therefore the area which represents the time of acquiring the greatest

velocity in a non-resisting medium = A C D.

In the same way, let Ay be velocity lost in a non-resisting medium in

the same time as A p in a resisting medium.

.*. Ap:Ay::AApD: area which represents the time of losing the

velocity A p.

.*. time of losing the velocity A y = A A p D.

24. Cor. 5. Hence the time in which a failing body would acquire the

velocity A P ; time in which, in a non-resisting medium, it would acquire

the greatest velocity : : sector A D T : A C A D.

Also the time in which it would lose the velocity A p : time in which,

in a non-resisting medium, it would lose the same velocity : : arc A t

:

tangent A p.

25. CoR. 6. Hence the time being given, the space described in ascent

or descent may be known, for the greatest velocity which the body can

acquire is constant, therefore the time in which a body falling in a non-

resisting medium, would acquire that velocity is also known. Then the

sector ADTorADtcAADC:: given time : time just found; there-

fore tho velocity A P is known or A p.

Then the area ABNKorABnk:ADTorADt:: space sought

for : space which the body would describe uniformly with its greatest

velocity.

26. Cor. 7. Hence vice versa, if the space be given, the time will be

known.
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27. Prop. X. Let P F Q be the curve meeting the plane P Q. Let

T

L M

B C D E Q

G, H, I, K be the points in the curve, draw the ordinates ; let B C = CD
= D E, &c.

Draw H N, G L tangents at H and G, meeting the ordinates produced

in L and N, complete the parallelogram C H M D. Then tlie times

(X. V Li hi and V N I, and the velocities cc G H and H I, and the times

G H T-T T
Qc ; let T and t = times, and the velocities cc —rp— and —— , therefore

the decrement of the velocity arising from the retardation of resistance and

G H H T
the acceleration of gravity oc —^p — , also the accelerating force of

gravity would cause a body to describe 2 I N in the same time, therefore

the increment of the velocity from G = 2NI
, again the arc is increased

M I X N I
by tlie space = HI — HN= RI=: jj-^ , therefore the de-

crement from tlie resistance alone =

HI
GH_Hl 2 M I X N I

T t "^ t X H I

GHxt uT,2MIxNI _., T
resistance : gravity : : rp W 1 + rirr — : 2 IN 1.HI

Again, let

and

A B, C D, C E, &c. be — o + o, 2o, 3o, &c.

C H = P

MI = Qo+ Ro=^+So^ + &c.

.-. D I = P — Q o + &c.

EK = P_2Qo — 4Ro« — &c.

BG=P + Qo + &c.
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(BG — CH)» + BC«(= GH*) = o^+ Q^o*+ 3QRo' + &c.

.-. G H« = 1 + Q'^ X o« + 3 Q II o^

.-. G H = ^/ 1 + Q» X o +
^^'''

V 1 4- Q*
and

H T = o V~T+~Q' + -Si2l=.

Subtract from C H ^ the sum G B and D I, and R o* and R o '^ +
3 S o ^ will be the remainder, equal to the sagittaa of the arcs, and which

are proportional to L H and N I, and therefore, in the subtracted num-

ber of the times,

t / R + 3 S o R + |So , .3So
•••T^x/ R ^ 2R °^^+TR-'

... _^_ = o V 1 + Q« + :;^-YTW
"" "^ "S-R-

Q Ro«
,
3So^ Vl + Q' ,

3So QRo*
= -^l + Q' + vT + Q^+ 2R +2RXvT+Q^

QRo«

Mix NI _ Ro' X Qo + Ro' + &c.

HT " o. V iTTQ* QRo«
vi + Q^

G H X t „ . ,
2MI X NI „ ., ,

.*. resistance ; gravity : : Fp H J H rr-|

—

— : 2 JN 1

3S0« V l+Q\ gR .

2R "^"^

: :3 S V 1 + Q=: 4 R«.

Tiie velocity is equal to that in the parabola whose diameter = H C,

H N* 1 -f- Q'
and the lat. rect. = - „ „ or n— • The resistance « density x V S

, » , J . resistance 3 S V 1 + Q« . , R
therefore the density « — a T~WT directly «

J- 1 s
directly oc

R V 1 + Q«

28. Ex. 1. Let it be a circular arc, CH = e, AQ = n, AC = a,

CD = o,

.-.DP = n»— (a+o)« = n'— a«— 2a© — o'=e*— Sao— o*,
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DT ao n^o* an'o^
e 2e' 2e' '

P = e,Q = i,R = ^,S = |^„

.'. density «
S a a n^ 2 e

R V 1 + Q^ 2e n

a a sm. ^ .a — oc — a a tangent.
n e e cos. °

3 a n^ " n* «
The resistance : gravity : : ,, , X -r = r^ J : 3 a : 2 n.

2e- e e

29. Ex. 2. Of the hyperbola.

P A CD y

P I X b = P D S

.-. put P C = a, C D = o, Q P = c,

.*. a + o X c — a — o = ac — a* — 2ao + co — o'

.-. DI 2a + c
. o

b b •" b'

and since there is no fourth term,

S = 0,

.*. draw y = 0.

30. Prop. XIII. Suppose the resistance to a V + V*.

431

I> F

Case I. Suppose the body to ascend ; with the center D and rad. D B,
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describe the quadrant B T F; draw B P an indefinite line perpendicular

to B D, and parallel to D F. Let A P represent the velocity
; join D P,

D A, and draw D Q near D P.

.*. resistance «AP* + 2BAxAP, suppose gravity « D A%

.*. decrement ofV « gravity + resistance ocAD'^+AP'^+2BAxAP.
oc D P^

D P Q (a P Q) : D T V : : D P* : D T*,

.-. D T V a D T = oc 1,

therefore the whole sector E T D, is proportional to the time.

Case 2. Suppose the force of gravity proportional to a less quantity

than DAS draw B D perpendicular to B P, and let the force of gravity

P Q

a A B «— B D 2. Draw D F parallel to P B and = D B and widi the

center D — ^ axis-major = ^ axis-minor = D B, describe a hyperbola

from the vertex F, cutting A D produced in E, and D P, D Q in T, V.

Now since the body is supposed to ascend.

The decrement of the velocity o:AP==-f-2AB x AP+AB«—
BD« a BP« — BDHB P'' = A P*-f A B*^ + 2 A B x B P).

Also, DTV:DPQ::DT'':DP2(by similar triangles)

: : T G* : B D '^ (T G perpendicular to G)

: : D F*: P B'^ — D B^.

Now D P Q a decrement of velocity a P B '^ — D B ',

.*. DTVaDF*al a increment of the time, since the time flows uni-

formly.
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Case 3. If the body descend ; let gravity oc B D * — A B *.

483

With center D and vertex B, describe the rectangular hyperbola B T V,

cutting the lines D A, D P, D Q produced in E, T, V.

The increment of V « B D

'

a BD*
DTV:DPQ(« PQ) ;

-AB'^ — 2ABxAP — AP«
:(AB + AP)*a BD- — BP«
D T*: D P*

GT':BP«::GD^— BD*:BP«
GD':BD*::BD'':BD«— BPS

.-. DT Va BD*oc 1,

.. the whole sector E D T a time.

81. CoR. With the center C and distance D A describe an arc similar

toBT.
Then the velocity A P : the velocity which in the time E D t a body

would lose or acquire in a non-resisting medium : : a D A P : sector

ADt.
For V in a non-resisting medium a time.

32. In the case of the ascent,

Let the force of gravity <x I. Resistance a 2 a v -f v *

.-. d va 1 + 2 a V + v«

d V
•'• T—r~:3 ;—^2 oc time.

l-j-2av-f-v'

.". by Demoivre's first formula,

f. or time =
when

f. -; ;r —; = —^ X cir. arc. rad. = g and
1 + 2a Y-4- V* g* ^

tangent = v -}- a

Vol. I.



434 A COIVIMENTARY ON [Sect. III.

The whole time .*. when v = = -^ x cir. arc rad. = g

and tangent = a -f C.

.. coi^ time = — x cir. arc rad. = g and tangent v + a — cir. arc rad.

= g and tangent a.

.-. the time of ascent = sector EDT — g' = l — a*.

33. In the case of descent,

dval — 2a V— v*

let

V -|- a = X

••. d V = d X

.-. v*-}-2avi-a'' = x2

.-. l+a^— x2= l_2av — v'

•••f-=ix/f^^+C,(g'= ! + >')
2g -^ g

Time = 0, V =r 0,

/. X = a,

2g ^ g—

a

.-. Cor^ time = 1 X f^-^^- f^^^ .

o o to

34. Prop. XIV. Take A C proportional to gravity, and A K to the

resistance on contrary sides if the body ascend, and vice versa.

Between the asymptotes describe a hyperbola, &c. &c.

Draw A b perpendicular to C A, and

Ab:DB::DB«:4BA X A C.

The area A b N K increases or decreases in arithmetic progression it

the forces be taken in geometric progression.

Now

A K Qc resistance a2BAP + AP*.

Let

2BAP + AP*AK =

.•.KL =

Z

2B A X PQ+2APX PQ
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B

D

A

N

KQ P B

II

Vb

\
/Qp

"" AJ^^ LK

/^T
^ /f

E

KL = 2 B P Q

Now

..KLON = iMAP«xLO.

Ab:LO::CK:CA
DB:Ab::4BAx CA:DB*

LO= ^^'

.•.KLON =

4BA X CK
2PBxPQxBD^
4BAx CK X Z •

Case 1. Suppose the body to ascend,

gravity a: AB' + BD^ = K^'-^^Ti

Ee2
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. „ AP» + 2BAPA K = 2-

.•.DP« = CKx Z.

.•.DT*:DP*::DB»:CK x Z
and in the other two cases the same result will obtain.

Make

DTV = DBx m.

.•.DBxm:iDBxPQ::DB':CKxZ

.-. BD'xPQ=:2BDxmxCKxZ.
.'.AbNK = ^^'x BDxm

A B

..AbNK-DTV= ^^'-^fS^Pxi^aAP.« velocity.AB
.*. it will represent the space.

SECTION IV.

35, Prop. XV. Lemma. The

/I. O P Q = a rectangle = ^i O Q R
and

^ S P Q = £. of the spiral = ^ S Q R
.-. ^- O P S = z. O Q S.

.'. the circle which passes through the points P, S, O, also passes

rcl

2"
Circle

through Q. Also when Q coincides with P, this —^— touches the spiral.

.'. ^ P S O z. in a —-r— whose diameter = P O.
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Also

T Q : P Q : : P Q : 2 P S.

r. PQ=^ = 2PS X TO
which also follows from the general property of every curve.

PQ"-= P V X QR.

36. Hence the resistance « density X square of the velocity.

37. Density a i^ j centripetal force « density ^ « -tt- 5

.

•^ distance ^ '' distance^

Then produce S Q to V so that S V = S P, and let P Q be an arc

described in a small time, P R described in twice that time, .. the decre

ments of the arcs from what would be described in a non-resisting me-

dium a T^
.*. decrement of the arc P Q = | decrement of the arc P R
.'. decrement of the arc PQ = |^Rr(ifQSr = area P S Q).

For let P q, q v be arcs described (in the same time as P Q, Q R) in a

non-resisting medium,

PSq— PSQ = QSq = qSv — QSr
= rSv — QSq

.-. 2QSq = rSv
.. if S T ultimately = S t be the perpendicular on the tangents

STxQqrr^StXrv
.-. 2 Q q = r v

and

R v = 4 Q q.

.-. 2 Q q = R r.

Hence

Resistance : centripetal force : : | R r : T Q,
Also

T Q X S P^ a time", (Newt. Sect. II.)

.-. P Q 2 X S P a time -

.*. time a P Q X VHP

also

VatQ a
V SQ

Ee3

P Q X V S P V/ S P

1
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P Q : Q R

PQ: Q r

V SQ: V S P
SQ: V SQ X SP
SQ: S P

since the areas are equal, and the angles at P and Q are equal.

.-. PQ: Rr::SQ:SP— V SQ x SP
: : S Q : ^ V Q

For

SQ = SP — VQ
.•.SQxSP = SP* — VQx SP

.-. v/SQxSp-=SP-iVQ-X^_&c.
.-. ^ V Q ultimately = S P — V S P x S Q

T» • ^ decrement of V R r
Resistance « _-,,_ a PQ^xSP

. hJQPQxSQxSP
^VQ:PQ::|OS:PO

and

^OS
S Q = S P oc O P X SP*

O s
.-. density X square of the velocity oc resistance a Ty-jj o~pi

• •
^^"^'^y ^ OPXSP

O S
and in the logarithmic spiral jYn ^^ constant

.-. density cc ^--g . Q. e. d.

38. Cor. 1. V in spiral = V in the circle in a non -resisting medium at

(.he same distance.

39. Cor. 3. Resistance : centripetal force : : ^ R r : T Q
..iVQx PQJPQ^

SQ • SP
::iVQ:PQ
: : ^ O S : O P.

.*. the ratio of resistance to the centripettJ force is known if the spiral be

given, and vice versa.

40. Cor. 4. If the resistance exceed I the centripetal force, the body

cannot move in this spiral. For if the resistance equal I the centripetal
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force, O S = O P, .*. the body will descend to the center in a straiglit

line PS.

V of descent in a straight line : V in a non-resisting medium of de-

scent in an evanescent parabola : : 1 : V 2; for V in the spiral = V in the

circle at the same distance, V in the parabola = V in the circle at

^ distance.

Hence since time ex -^ ,

time of descent in the 1st case : that in 2d : : V 2 : 1.

41. Cor. 5. V in the spiral P Q R = V in the line P S at the same

distance. Also

PQR: PS in a given ratio:: PS: PT:: OP: OS
.-. time of descending PQR: that of P S : : O P : O S.*

Length of the spiral = T P = sector of the /l T P S.

a:b::b:c::c:d::d:e

a + b -I- c + &c. : b + c + d + &c. : : a : b

.-. a -|- b -(- c -} &c. : a : : a : a— b.

42. Cor. 6. If with the center S and any two given radii, two

circles be described, the number of revolutions which the body makes

between the two circumferences in the different spirals oc tangent of the

P S
angle of the spiral a yt-^ .

The time of describing the revolution : time down the difference of ilie

radii : : length of the revolution : that difference.

2d a 4th,

.'. time a length of the revolution cc secant of the angle of the spinsl

OP
QC o s*

• pq: pt: : S P: Sy

d w p d X
: X : p.

Vr* — p--

.'. A w
X <1 X

.'. TV
X*

"i
'2^ r» —

p

Et 4
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43. Con. 7. Suppose a body to revolve as in the proposition, and to cut

the radius in the points A, B, C, D, the intersections by the nature of the

spiral are in continued proportion.

,,,. (. , . perimeters described
1 unes ot revohition a -^

and velocity a
1

V distance

a A S^ B S^ CS^,
5 5 5

.*. the whole time : lime of one revolution ::AS2-f-BS*+ &c. : A S

:: A S^: AS^
1

BSI

44. Prop. XVI. Suppose the centripetal force x
S P " + '

'

time a P Q X S P 2

and velocity cc ~

S P 2

PQ : Q R
Qr : PQ

Qr : QR
.-. Q r : R r

S Q<f
: SP2

SP : SQ

SQ2 SPs-

SQ2-* : SQ2-' — SP2-'

For

S Q : 1— i n . V Q.

SP = SQ+ VQ,
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.-. SP^-i = SQ^-i + | — 1. VQ X SQ^-2 + &c.

... SQ2-» — SP^'-i = i_'^ X VQ xSQ^-^.

Then as before it may be proved, if the spiral be given, that the density

CO ^p . Q. e. d.

45. Cor. 1.

Resistance : centripetal force : : 1 — g n . O S : O P,

for the resistance : centripetal force : : | II r : T Q

:: (l-l) X VQx PQ PQ'-

2 8 Q 2 S P

l-~X VQ:PQ

:: 1—|x OS: OP.

46. CoR. 2. If n + 1 = 3, 1 — ^ = 0,

.*. resistance = 0.

Cor. 3. If n + 1 be greater than 3, the resistance is propelling,

SECTION VI.

47. Prop. XXIV. The distances ofany bodies' centers of oscillation from

the axis of motion being the same, the quantities of matter oo weight

X squares of the times of oscillation in vacuo.

force X time
For the velocity jjenerated qd ~

t-
—

• Force on bodies at
•' ° quantities or matter

e(]ual distances from the lowest points go weights, times of describing

corresponding parts of the motion x whole time of oscillation,

t, ,
force X time of oscil.

.*. quantities or matter oc ,

—

-.
' velocities

00 weights X squares of the times,

since the velocities genei'ated x -: for equal spaces.° times ^ '

48. CoR. 1. Hence the times being the same, the quantities of mattei*

00 weights.

Colt. 2. If the weights be the same, the quantities of matter co tiuic^

Cor. 3. If the quantities of matter be the same, the wciglits cc -:
j ..
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49. Coil. 4. Generally the acceleratinff force oc ^.-r— of matter
quantities '

and L 00 T T*,

. J WxT«

L '

.'. if W and Q be given L oo T 2.

If T and Q be given L oo W.
-.^ ^ K 11 ^, ^.^ r ,, weightx time* ofoscillation
50. Cor. 5. generally the quantity ofmatter qd— j

—. .

51 Prop. XXV. Let A B be the arc which a body would describe in a

non-resisting medium in any time. Then the accelerating force at ajiy

point D 00 C D ; let C D represent it, and since the resistance oo time,

it may be represented by the arc C o.

.'. the accelerating force in a resisting medium of any body d, - o d.

Take
;

o d : C D : : e B : C B.

Therefore at the beginning of motion, the accelerating force will be in

this ratio, .*. the initial velocities and spaces described will be in the same

ratio, .*. the spaces to be described will also be in the same ratio, and

vanish together, .•. the bodies will arrive at the same time at the points

C and o.

In the same way when the bodies ascend, it may be proved that they

will arrive at their highest points at the same time. .'.If A B : a B in

the ratio C B : o B, the oscillations in a non-resisting and resisting me-

dium will be isochronous. Q. e. d.
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Cor. The greatest velocity in a resisting medium is at the point o.

The expression for the ^ time of an oscillation in vacuo, or time of de-

scent down to the lowest point a quadrant whose radius = 1. Now

B

\
/- R /

«\
N

y's

M\ I ^
suppose the body to move in a resisting medium when the resistance

: force of gravity : : r : 1

.

Then vdv = — gFdx + grdz = — gd^x + grdz. Now by

a property of the cycloid, if -^ be the axis, dx:dz::x:-::z:a,

.-. d x = z d

.. V d V = ~ xzdz + grdz — —
a /6

= ^ X z'' + g r z,

Now

Xz2 + 2grz+C.

z = d, V = o,

v^ = -^ X d
a

2 g r X d —

z

a X d«— 4ard + 2adrz — z*,'

.-. V =y—a— xVd''— 2ard + 2arz— zS

—dz /. a . — d z
.-.dt- ^ ~J g ^ Vd« — 2ard + 2arz— zl

Assume
z — a r = y,

.•.,z ' — 2arz+a*r^ = yS
.'. 2arz — z* = a^v' — yS

d' — 2 a r d + 2 a r z — z^ = (d — ar)^— y^ = (b' — y'.)
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aiid

(1 z = d y
a — dy

and

.*. t = /" — X circular arc, radius = 1,

z — a r
COS. = J + C and C = o.

d— a r

— X circular arc

whose COS. =
-J

, .*. time in vacuo : time in resisting medi
d— ar' *" .w...w..^

a r

mm

: : quadrant : arc whose cos. = -j .

Cor. 1. Time of descent to the point of greatest acceleration is constant,

for in that case z = a r,

••. t = /* — X quadrant, for d v = 0,

.-. V d V = 0,

.'. — gzdz + garz = 0,

.'. z = a r,

.'. z : r : : a : 1.

Cor. 2. To find the excess of arc in descent above that in ascent.

vdv= +gTc(x-fgrdz,
I

ff z d z
,

. .-. V d V = — ^
ff r d z

a o

V* mz'
, ^..-^-- grz + C,

.-. v«= ^ (d- — z») — (z — d) X 2 a r
a

= ^ X (d » — 2 a r d) — (2 a r z—

z

')

which when the body arrives to the highest point = 0,

d" — 2a rd — 2arz — z* = 0,

.-. d ' — 2 a r d = z * + 2 a r z,

.-. z + a r = d — a r,

.'. z = d — 2 a r,

.-. d — z = 2 a r,
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52. Prop. XXVI. Since V oc arc, and i-esistance a V, resistance a arc.

.'. Accelerating force in the resisting medium a arcs.

Also the increments or decrements of V a accelerating force.

.*. the V will always a arc.

But in the beginning of the motion, the forces which oo arcs will generate

velocities which are proportional to the arcs to be described. .-. the velo-

cities will always co arcs to be described.

.*. the times of oscillation will be constant.

53. Prop. XXVIII. Let C B be the arc described in the descent, C a

in the ascent.

.-. A a = the difference (if A C = C B)

Force of gravity at D : resistance : : C D : C O.

C A = CB
Oa = O B

.-. CA — OaorAa — eO = CB--OB = CO
.-. CO = i Aa

.*. Force of gravity at D : resistance : : C D : 1 A a

.\ At the beginning of the motion,

Force of gravity : resistance : •• 2 C B : A a

: : 2 length of pendulum : A a.

54. Prob. To find the resistance on a thread of a sensible thickness.

Resistance go V * X D ^ of suspended globe.

.*. resistance on the whole thread : resistance on the globe C
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2a'b*. (a—b)* : a'r«c-— r«c^ (a— 2b)\ c = a + r.

: a^b«. (a— b)* : 3 a«r*c« b— ba b*r*c» + 4 b='r»c*,

a'b . (a — b)« : 3 a'r *c»— ba b r »c' + 4b « r« c«,

.*. resistance on the thread : whole resistance

::a'b. (a-— b)« : r*c« . (3 a'— b ab + 4 b«).

Cor. If the thickness (b) be small when conipared with the length (a)

8a« — bab4 4b*=3a'— bab + 3 b ' (nearly) = 3. (a— b) ^

.*. Resistance on the whole thread : resistance on the globe

: : a^ b: 3r2c«

and

Resistance on the thread : whole resistance to the pendulum

: : a ' b : a 3 b + 3 r * c ^

Suppose, instead of a globe, a cylinder be suspended whose ax. = 2 r.

Now by differentials

die resistance on the circumference : resistance on the base : : 2 : 3.

'%
By composition the resistance to the cylinder : resistance on the square

= 2 r : : 2 : 3.

Resistance a x * x',

.*. resistance ax',
.'. resistance to the whole thread oc x\

Resistance on A E a (a — 2 b) » if 2 b = E D.

.'. Resistance on the thread : resistance of the globe

:: 16.a'b». (a — b) ^
: 3 p . a ' — (a— 2 b; ^ xr^ (a + i)'.

55. Prop. XXIX. B a is the whole arc of oscillation. In the line O Q
take four points S, P, Q, R, so that if O K, S T, P I, Q E be erected
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perpendiculars to O Q meeting a rectangular hyperbola between the

asymptotes O Q, OK in T, I, G, E, and through I, K F be drawn

O S P rRQ M

parallel to O Q, meeting Q E produced in F. The area P I E Q may
be : area P I S T : : C B : C a. Also IEF:ILT::OR:OS.
Draw M N perpendicular to O Q meeting the hyperbola in N, so that

P L M N may be proportional to C Z, and P 1 G R to C D.

Then the resistance : giavity : : ^^ xTEF — IGHiPINM.

Now since the force oc distance, the arcs and forces are as the hyper-

bolic areas. .*. D d is proportional to R r G g.

(O T?

fYn '^ ^ ^—
^ ^ ^)

= Gllgh — ?^^A4^:RrxGR::HG— ^J^:GR::0RXOQ
OR

OQ
HG — lEZ X ^:OP xPI--(ORxHG = ORxHR—
OPxPI = PIHR=PIRG+IGH)::PIRG+lGH—
^xIEF-.OPxPI.

Now ifY =^ X I E F — I G H, the increment Y a P I G R— Y.

Let V = the whole from gravity. .*. V — R = actual accelerating

force. .". Increment of the velocity a V — R X increment of the time.

As the resistance oc V ' the increment of resistance a V X increment of

,, , . J . , .^ increment of the space ^ . r
the velocity, and the velocity a -: 7^,—-. . .*. Increment 01

''
-

•' mcrement 01 the tune

resistance cc V — R if the space be given, cc P I G R — Z, if Z be the

area which represents the resistance R e.

Since the increment Y a P I G R — Y, and the increment of Z
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ooPIGR — Z. IfY and Z be equal at the beginning of the motion and

begin at the same time by the addition of equal increments, they will still

remain equal, and vanish at the same time.

Now both Z and Y begin and end when resistance = 0, i. e. when

O R .lEF — IGH =

or

OQ
ILT
OS
O R X I E F

xOR — IGH = 0.

IG H = ZOQ
O R

.-. Resistance : gravity : : ^-^ .lEF — IGH:PMNI.

SECTION VIll.

56. Prop. XLIV. The friction not being considered, suppose the mean

K M

N

altitude of the water in the two arms of the vessel to be A B, C D. Then
when the water in the arm K L has ascended to E F, the water in the arm

M N will descend to G H, and the moving force of the water equals the

excess of the water in one arm above the water in the other, equals twice

A E F B. Let V P be a pendulum, R S a cycloid = ^ length of the

canal, and P Q = A E. The accelerating force of the water : whole

weight : : A E or P Q : P R.
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Also, the accelerating force of P through the arc P Q : whole weight

of P : : P Q : P R; therefore the accelerating force of the water and P
cc the weights. Therefore if P equal the weight of the water in the canal,

the vibration of the water in the canal will be similar and cotemporaneous

with the oscillations of P in the cycloid.

Cor. 1. Hence the vibrations of the water are isochronous.

CoR. 2. If the length of the canal equal twice the length of the

pendulum which oscillates in seconds; the vibrations will also be performed

in seconds.

Cor. 3. The time of a vibration will « V L.

Let the length = L, A E = a,

then the accelerating force : whole weight : : 2 a : L,

2 a
.*. accelerating force = -y-

;

2 A
.'. when the surface is at 0, the accelerating force = —

j
— .

Put E = X,

A = a — X,

.'. accelerating force = "^
,

, g . 2 a d X—2 X d X
.-. V d V = ^2

,

_ 2g
V ^ = -y-s X 2 a X — X 2,

V = ^ -j^ X a/ 2a X — X*

dt— — = ^ ^ ^^^^
V V 2ga'' V 2ax

=J X cir. arc rad. = a, and vers. = x2ga
+ cor", and cor". = 0,

.• t = 0, X = 0,

.-. if p = 3. 14159, &c.

' = V 2li;
X

l"
Swhen (x) = i.)l= j'^ X f

.*. time of one entire vibration = p x ^ / -rr— = time of one entire vi-^ V 2g

bration of a pendulum whose length = — .

Voi- I. Ff
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D

67. Cor. 1. Since the distance (a) above the quiescent surface does
not enter into the expression. The time will be the same, wiiatevev be
the value of A E.

58. Cor. 2. The greatest velocity is at A =
/,J -^ X «> a y'~'^iJ~i

I AE»

69. Prop. XLVII. Let E, F, G be three physical points in the line

B C, which are equally distant ; E e, F f,

G g the spaces through which they move

during the time of one vibration. Let s, p, y
be their place at any time. Make P S =
E e, and bisect it in O, and with center O
and radius O P = O S, describe a circle.

Let the circumference of this circle repre-

sent the time of one vibration, so that in

the time P H or P H S h, if H L or h 1

be drawn perpendicular to P S and E £ be

taken = P L or P 1, E « may be found in

E ; suppose this the nature of the medium.

Take in the circumference PH S h, the arcs

HI, IK, hi, i k which may bear the

same ratio to the circumference of the circle as E F or F G to

B C. Draw I M, K N or i m, k n perpendicular to P S. Hence

PI, or P H S i will represent the motion of F . and P K or

P H S k that of G . E «, F<p, G y = P L, P M, P N or P 1,

P m, P n respectively.

Hence eyorEG+Gy — Ei = GE — LN = expan-

sion at £ 7 ; or = E G + 1 n.

.*. in going, expansion : mean expansion : : G E— L N : E G
In returning, : : : E G + In : E G
Now join I O, and draw K r perpendicular to H L, H K r,

I OM are similar triangles, since the iLKHr = ^KOk=^
I O i = z- I O P and A at r and M = 90°,

.-. L N : K H : : I M : I O or O P, and by supposition K H :

EG:: circumference PSLP:BC::OP:V = radius of

the circle whose circumference = B C.

.•. by composition LN:GE::IM:V.
.'. expansion : mean expansion : : V— I M : V,

G
F-
E -

--B
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.. elasticity : mean elasticity : : y j j^
: -y. In the same way, for the

points E and G, the ratio will be y _^^ ^^
: ~ a y^K N *^

: : excess of elasticity of E : mean elasticity

H L— KN 1

' • V '—H Lx V—K NxV + HLxKN'T
: : H L — K N : V.

Now J

V a 1.

.*. the excess of E's elasticity cc H L — K N, and since H L — K N
= H r : H K : : O M : O P,

.-. H L — K N a O M,
••. excess of E's elasticity oc O M.

Since E and G exert themselves in opposite directions by the arc's ten-

dency to dilate, this excess is the acceleratinsr force of e y, .•. accelerating

force 00 O M.*

ON THE HARMONIC CURVE.

Since the ordinates in the harmonic curve drawn perpendicular to the

axis are in a constant ratio, the subtenses of the angle of contact will be

in the same given ratio. Now the subtenses a —j-

—

t^ , and when° rad. oi curv.

the curve performs very small vibrations, the arcs are nearly equal.

Now the curv. oc —-,-
, .*. subtense a curvature,

rad.

Hence the accelerating force on any point of the string a curvature at

that point.

• Now bisect F f in n,

. •. O M = n ^

For

OM=OP— PM=nF— F^=:fi(p

i. e. the accelerating force a distance from il the middle point. Q. e. d.

Ff.?
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To fijid the equation to the harmonic curve.

O S

Let A C be the axis of the harmonic curve C B A, D the middle point,

draw B D pei-pendicular cutting the curve in B; draw P M perpendi-

cular to B D cutting the curve in P, and cutting the quadrant described

with the center D and radius D B in N. Draw P S perpendicular to A C.

Put

BD = a, PM = y, BM = x,

.-. D M = a — X = P S.

r = rad. of curv. at B, B P = z,

, d z cl X
.'. rad. of curv. = ,~^ (if d e be constant).

Now
B D : P S : : curvature at B : curvature at P

: : rad. of cur. at P : rad. at B
or

a : a
— d z d X
X : : —J-— : r,

d'y

Now

.*. rad*y + adzdx — xdxdz = 0,

X ' d z
.'. rady + adzx — = + C.

X = 0, d y = d X,

radz = + C = C,

X ^ d zrady + axdz ^

—

= r a d z.

Put

a X
x*

.•. r a d y = ra—b' d z,

.-. r^i*dy»= (ra— b*)« X dx* + r*a^dy*— 2rab-dy'+ b^dyS
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.•. (ra— b2)2xdx2= 2 r a b ''dy ^— b* d y 2,

.-. r« aMx*= 2 r ab^dy*

if (b) be small compared to (a j,

.•.dy* = r ad X*

2b« *

.••dy =
V r a

V 2 ax
Xdx
— x^

- >V a
X

adx
V 2 ax — X*

.. y z= ^ /— X circular arc whose rad. = a, and vers. = x
•^ 'V a

-I- C, and cor". = 0,

because when y = 0, x = 0,

.*. arc = 0.

.-. C D = J^ X quadrant B N E,

*and therefore

CD
V a

"
B N E»

B N X ,^ Z
BNE

60. Prop. XLIX. Put A = attraction of a homogeneous atmosphere

when the weight and density equal the weight and density of the medium

through which the physical line E G is supposed to vibrate. Then every

thing remaining as in Prop. XLVII. the vibration of the line E G will

be performed in the same times as the vibrations in a cycloid, whose

length = P S, since in each case they would move according to the same

law, and through the same space. Also, if A be the length of a pendulum,

since T a V L
The time of a vibration : time of oscillation of a pendulum A

: : V~FO : V^A.

Also (Prop. XLVII.), the accelerating force of EG in medium : ac-

celerating force in cycloid

:: A X HK: Vx EG;
since H K : G E : : P O : V.

:: PC X A : V«.

F f 3
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Now

T cc ^ ffT when L is given.

.*. the lime of vibration : time of oscillation of the pendulum A
: : V : A
: : B C : circumference of a circle rad. = A.

Now B C = space described in the time of one vibration, therefore

the circumference of the circle of radius A = space described in the time

of the oscillation of a pendulum whose length =r A.

Since the time of vibration : time of describing a space =r circum-

ference of the circle whose rad. = A : : B C : that circumference.

Cor. 1. The velocity equals that acquired down half the altitude of

A. For in the same time, with this velocity uniform, the body would de-

scribe A ; and since the time down half A : time of an oscillation : : r :

circumference. In the time of an oscillation the body would describe the

circumference.

Cor. 2. Since the comparative force or weight oc density X attraction

elastic forcG
of a homogeneous atmosphere, A go —^ r- , and the velocity <xi V A.

V elastic force
oc

,
.^^-^^ .

V density

SCHOLIUM.

61. Prop. XLIX. Sound is produced by the pulses of air, which

theory is confirmed, 1st, from the vibrations of solid bodies opposed to it.

2d. from the coincidence of theory with experiment, with respect to the

velocity of sound.

The specific gravity of air : that of mercury : : 1 : 11890.

Now since the alt. a —^ , .*. 1 : 11890 : : 30 inches : 29725 feet =
,

sp. gr.

altitude of the homogeneous atmosphere. Hence a pendulum whose

length = 29725, will perform an oscillation in 190'', in which time by

Prop. XLIX, sound will move over 186768 feet, therefore in 1'' sound

will describe 979 feet. This computation does not take into considera-

tion the solidity of the particles of air, through which sound is pro-

pagated instantly. Now suppose the particles of air to have the same

density as the particles of water, then the diameter of each particle : dis-



Book I.] NEWTON'S PRINCIPIA. 455

tance between their centers : : 1 : 9, or 1 : 10 nearly. (For if there are

two cubes of air and water equal to each other, 1) the diameter of the par-

ticles, S the interval between them, S + D = the side of the cube, and if

N = N°. N S + N D z= N". in the side of the cube, N". in the cube

30 N \ Also, ifM be the N°. in the cube of water, M D the side of the

cube and the N°. in the cube a M ^.

Put 1 : A : : N 3
: M ^

.-. M = A ^ N,

By Proposition

NS + ND = MD = NA^D,

.-. S = D X A*_i,

.-. S:D:: A^ — 1 : 1,

.-. S + D : D : : A^ : 1 : : 9 : 1 if A = 870

or 10 : 1 if A = 1000).

Now the space described by sound : space which the air occupies : : 9 : II,

m
9

'

979
.'. space to be added = -^ = 108 or the velocity of sound is 1088

feet per 1".

Again, also the elasticity of air is increased by vapours. • Hence since

the velocity a — . ^ ; if the density remain the same the velocity
V density

a V elasticity. Hence if the air be supposed to consist of 11 feet, 10 of

air, and I of vapour, the elasticity will be increased in the ratio of 11 : 10,

therefore the velocity will be increased in the ratio of 11| : 10| or 21 : 20,

therefore the velocity of sound will altogether be 1142 feet per 1'', which

is the same as found by experiment.

In summer the air being more elastic than in winter, sound will be

propagated with a greater velocity than in winter. The above calculation

relates to the mean elasticity of the air which is in spring and autumn.

Hence may be found the intervals of pulses of the air.

By experiment, a tube whose length is five Paris feet, was observed to

give the same sound as a chord which vibrated 100 times in 1", and in

the same time sound moves through 1070 feet, therefore the interval of

the pulses of air = 10.7 or about twice the length of the pipe.

Ff4
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62. On the vibrations of a harmonic string.

The force with which a string tends to the center of the curve : force

which stretches the string : : length : radius of curvature. Let P p be a

small portion of the string, O the center of the curve ;
join O P, O p, and

draw P t, p t, tangents at P and p meeting in t, complete the parallelo-

gram P t p r. Join t r, then P t, p t represent the stretching force of

the string, which may be resolved into P x, t x and p x, t x of which

P X, p X destroy each other, and 2 t x = force with which the string

tends to the center O. Now the AtPr= ^ /lF O p, .'. z. tV x =z-

P O p, .*. t r : P t : : P p : O P, i. e. the force with which any particle

moves towards the center of the curve : force which stretches it : : length

: radius.

63. To find the times of vibration of a harmonic string.

D
^/""^^ o\
B C A

P

Let w = weight of the string. L = length.

Dd:L weight D d : w

weight of D d = D d X w
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Also

-D d : —^

—

- = rad. of curve : : the moving force ofD d : P

. 4.U ' r £-T\ J PxDdxap*
.'. the movinff force ofD d = —-—= —

°
L, w

.*. accelerating force = ^r-^ — X .p—

^

^ L* Dd X w
- P X ap*
"" Lw.

if D O = X, D C = a, O C = a — X,

,'. the accelerating force at O = —^—4

... V d s = ^: P X a (1 X — X d X
I J-i w

... V* =-SPpl xTax— z^
L w

.. v = . / ^T
^* X V2ax — x«.

'V L w
•. C and 1 = 0,

d X / L w d X
.-. d t = - = ^V VgPp* v'2ax — X

.•.t=J —o—i X cir. arc rad. = I^ e P P*
and

X
vers, sine = —

,

a

when X = a,

t = 0.

Lw .. , / Lw ^ P
••• J apZy^ ^ quadrant = JYPp^ 4—- - V YFP" ^ 2

/ L w
V ff P«

.*. time of a vibration r= ^ /—=r- 1"
^ gP

.'. number of vibrations in 1" = ^ / -^— .V L w
CoR. Time of vibration = time of the oscillation of a pendulum whose

1 1 L w
length =-p-^.
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For this time

A COMMENTARY, &c. [Sect. IX.

=v- gp
64. Prop. LI. Let A F be a cylinder moving in a fluid round a

fixed axis in S, and suppose the fluid divided into a great number of solid

I H G

orbs of the same thickness. Then the disturbing force a translation of

parts X surfaces. Now the disturbing forces are constant. .*. Transla-

tion of parts, from the defect of lubricity a -r- • Now the diffcr-
^ distance

. On A Q draw
f.^, 1 ^. translation

ence oi the angular motions a —n— a
distance d stance*'

A a, B b, C c, &c. : : -r-: -^ j then the sum of the differences will

a hyperbolic area.

.*. periodic time x a a distance.
angular motion hyperbolic area

In the same way, if they were globes or spheres, the periodic time

would vary as the distance *.

END OF THE FIRST VOLUME.
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INTRODUCTION

VOLUME II.

'AND TO TU£

MECANIQUE CELESTE.

ANALYTICAL GEOMETRY

1. To determine the position ofa point injixed space.

Assume any point A in fixed space as known and immoveable, and let

Z' z

three fixed planes of indefinite extent, be taken at right angles to one

another and passing through A. Then shall their intersections A X',

A Y', A 7J pass through A and be at right angles to one another.
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This being premised, let P be any point in fixed space; from P draw
]* z parallel to A Z, and from z where it meets the plane X A Yi draw
z X, z y parallel to A Y, AX respectively. Make

A X = X, Ay = y, P z = z.

Then it is evident that if x, y, z are given, the point P can be found

practically by taking A x = x, A y = y, drawing x z, y z parallel to

AY, AX; lastly, from their intersection, making z P parallel to A Z
and equal to z. Hence x, y, z determine the position of the point P.

The lines x, y, z are called the rectangular coordinates of the point P

;

the point A the origin of coordinates ; the lines AX, AY, A Z the axes

of coordinates, A X being further designated the axis of x, AY the axis

of y, and A Z the axis of z; and the planes X A Y, Z A X, Z A Y co-

ordinate planes.

These coordinate planes are respectively denoted by

plane (x, y), plane (x, z), plane (y, z)

;

and in like manner, any point whose coordinates are x, y, z is denoted

briefly by

point (x, y, e).

If the coordinates x, y, z when measured along AX, AY, A Z be

always considered positive ; when measured in the opposite directions,

viz. along A X' A Y', A Z', they must be taken negatively. Thus ac-

cordingly as P is in the spaces

Z A X Y, Z A Y X', Z A X' Y', Z A Y' X;
Z'AXY, Z'AYX', Z'AX'Y', Z'AY'X,

the point P will be denoted by

point (x, y, z), point (— x, y, z), point (— x, — y, z), point (x, — y, z)\

point (x, y, - z), point (- x, y, - z), point (- x, - y, - z), point (x, - y, •- z)

respectively.

2. Given the position of iivo points (a, /3, 7), («', /3', 7') in Jixed space,

tojind the distance bet'isoeen them.

The distance P P' is evidently the diagonal of a rectangular parallelo-

piped whose three edges are parallel to A X, A Y, A Z and equal to

as a', i3s/3', 7s/.
Hence

P F = V (a-aO*+ (/3-^')*+ iy — yV .... (1)

the distance required.

Hence if P' coincides with A or a', /3', 7' equal zero,

P A = VV* -h /32 + 7« (2)
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3. Calling the distance of any point P (x, y, z) from the origin A of

coordinates the radius-vector, and denoting it by g, suppose it inclined to

the axes A X, A Y, A Z or to the planes (y, '/,), (x, z), (x, y), by the

angles X, Y, Z.

Then it is easily seen that

X = f cos. X, y = f COS. Y, z = ^ cos. Z (3)

Hence (see 2)

COS. X rr 7——
Y-, r~,—iT > COS. Y = , , , , , ,

—^,V(x2+y* + z*)' V(x*+y* + z')' ,

'°^-^= V(x'+V + 3')
• <*^

SO that when the coordinates of a point are given, the angles 'which the ra--

dius-vector makes 'with each of the axes may hence befound.

Again, adding together the squares of equations (3), we have

(x» + y« + z«) = ^2 (COS.2X + cos.2 Y + cos.'Z).

But

^2= x^ + y« + z^ (see 2),

.-. cos. 2 X + cos. 2 Y + COS. * Z = 1 (5)

which shows that when two of these angles are given the other may be

found.

4. Given two points in space, viz. (a, jS, y), (a* (3', y'), and one of the

coordinates of any othei^ 'point (x, y, z) in the straight line that passes

through them, to determine this other point ; that is, required the equations

to a straight line given in space.

The distances of the point (a, j8, y) from the points («', /3', /), and

(x, y, z) are respectively, (see 2)

P F = V (a_a')^+ 0-/3')'+ (7—̂ ')%
and

P Q = V (« — x) ^ + — y) « + (7 — z) ^

But from similar triangles, we get

(y-z)^: (PQ)«:: (7-/)-(PF)*
whence «

which gives

"H«
— «')'+(^-/301(7— z)*=(7-/)'.U«— x)' + (/3— y)^}

* But since a, a' are independent of /3, /3' and vice versa, the two first

terms of the eqnation,

(a_a )\ (y_z)«- (y-/)* («_x)^- {y-yj (/3_y)' + (/3-/3')^ (y-z)' =
a2
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are essentially different from the last. Consequently by (6 vol. 1.)

(a— a')^(7--z)* = (y_/)=!(a_x)«
0—^') ' (y-z) 2 = (y—/) ^ (,8—y) 2

^

which give

z — 7 = +?^^^(a— x'))

";z;/ [ (6)

These results may be otherwise obtained ; thus, p g p',is the projection

of the given line on the plane (x, y) &c. as in fig.

p q p'

Hence

Also

z — y : / — y : : p q : p p'

: : m n : m p'

• : : y — /3 : ^'— ^

iV

z —"y": / — 7::pq:pp'::pr:pm
: : a — X : a — a.

Hence the general forms of the equations to a straight line given in

space, not considering signs, are

z = a X + bl
z = a' y + b' f

To find where the straight line meets the planes, (x, y), (x, z), (y, z),

we make

z = 0, y =i: 0, X = 0,

which give

Jb^

hii^Si^l
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b

z = b'

b' — b ^

X =
a

z = b

b — b'

y =

=:-;} («)

a

which determine the points required.

To find when the straight Une is parallel to the planes, (x, y), (x, z),

(y, z), we must make z, y, x, respectively constant, and the equations be •

come of the form

," = "
^ ,1 (8)ay = ax + b — bj ^

To find when the straight line is perpendicular to the planes, (x, y),

(x, z) (y, z), or parallel to the axes of z, y, x, we must assume x, y;

X, z; y, z; respectively constant, and z, y, x, will be any whatever.

To find the equations to a straight line passing through the origin of

coordinates ; we have, since x = 0, and y = 0, when z = 0,

z =
z = a y.

5. To Jind the conditions that two straight lines in Jixed space may inter-

sect one another ; and also their point of intersection.

Let their equations be

z = ax + A )

z = by + Bj
z = a' X + A' \ ,

z=b'y+ B'f

from which eliminating x, y, z, we get the equation of condition

a'A — aA^ _ b' B — b B^

a' — a "" b' — b

Also when this condition is fulfilled, the point is found from

A — A' B — B' a' A — n A' ,,^x
X = , -, y = <-, r-, Z = ; . . . (10)

a'— a ' -^ b —

b

a' — a ^

6. ToJind the angle /, at inhich these lines intersect.

Take an isosceles triangle, whose equal sides measured along these

lines equal 1, and let the side opposite the angle required be called i

;

then it is evident that

cos. I = 1 — w i

'
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But if at the extremities of the line i, the points in the intersecting lines

be (x', y', z'), (x", y", z"), then (see 2)

i = = (x' — x'O ' + (y—
y

')
' + {z' — z")

«

.-. 2 COS. I = 2 — J(x' — x") * + (y'— y") * + (z' — z") ^

But by the equations to the straight lines, we have (5)

z' = a x' -f A ")

z'=by' + Bj"

z" = a' x" + A' >

z"=b'y" + B'/

and by the construction, and Art. 2, if (x, y, z) be the point of intereec-

tion,

(X_ X')* + (y — y) ' + (z — z)« = 1 I

— x")* + (y — y")^ + {z— z'T = ij

Also at the point of intersection,

z = ax+A = a'x + A'"i

z = by + B = b'y + B'j

From these several equations we easily get

z — z' = a (x — a')

y— y'=-^ (''
— ^')

z — z" = a' (X — x'O

y-y"=p(x-x-)

whence by substitution,

. (X — x')' + aMx-xO* + ^[(x — xO*= 1

(X -x")^ + a'» (X - X-)'- + ^ (x-x'O^ = 1

which give

1
X X =

X" = 1

Hence

(X'—x'0'= !—5- +
l + a.+g l + a''+^, -^'(l + -'+p)V(>+ ''''+e^)
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y-v'= ^(x-x')

y-/'=^(x-x'o
and

ue have

z — z' = a (x — x')

z — z" = a' (x — x'O

iy^y=^—L^.^' 1 -'

(z'-E-)'= ^—-,+
a*

'

« a« f / . aS , /, „ a'2>

Hence by adding these squares together we get

2(l + aa'+-^;)
^

{2 COS. 1=2 — -(1 +1—

which gives

II / • a a+ a a' + r^,
COS. 1= ^ (II;

Tliis result may be obtained with less trouble by drawing straight lines

from the origin of coordinates, parallel to the intersecting lines ; and then

finding the cosine of the angle formed by these new lines. For the new

angle is equal to the one sought, and the equations simplify into

z' = ax' = b y', z" = a' x" = b' y'H

z=ax = by, z=a'x =b'y !

x'2 + /2+z'2 = 1
f

x"* + y"2+ z"' = 1 J
From the above general expression for the angle formed by two inter-

secting lines, many particular consequences may be deduced.

For instance, required the conditions requisite that t'iXO straight lines

given in space may intersect at right angles.

That they intersect at all, this equation must be fulfilled, (see 5)

a' A — a A' - b'B — b B';

a' — a "" b'— b
«4
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and that being the case, in order for them to intersect at right angles,

we have

1 = —, COS. 1 =

and therefore

1 + aa' + ^, = (12)

7. In the preceding No. the angle between two intersecting lines is

expressed in a function of the rectangular coordinates, which determine

the positions of those lines. But since the lines themselves would be

given in parallel position, if their inclinations to the planes, (x, y), (x, z),

(y, z), were given, it may be required, from other data, to find the same

angle.

Hence denoting generally the complements of the inclinations of a

straight line to the planes, (x, y), (x, z), (y, z), by Z, Y, X, the problem

may be stated and resolved, as follows

:

i

Required the angle made by the two straight lines, whose angles qfinclina-

fton are Z,Y,X; Z', Y,', X'.

X«et two lines be drawn, from the origin of the coordinates, parallel

to given lines. These make the same angles with the coordinate planes,

and with one another, as the given lines. Moreover, making an isosceles

triangle, whose vertex is the origin, and equal sides equal unity, we have^

as in (6),

COS. I = 1— li'^ = 1 — ij(x— xO' + (y--y')' + (z— zO^l *

the points in the straight lines equally distant from the origin being

(x, y, z), (x', y', z').

But in this case,

x« + y« + z'^ = 1

x'2 + y'*+ z'2= 1

and

X = cos. X, y = cos. Y, z = cos. Z

x' = COS. X', y' = COS. Y', z' = cos. Z'

\ COS. I = X x' + y y' + z z'

= cos. X. cos. X' + COS. Y. cos. Y' + cos. Z. cos. Z'. . (13)

Hence when the lines pass through the origin of coordinates, the same

expression for their mutual inclination holds good ; but at the same time

X, Y, Z ; X', Y', Z', not only mean the complements of the inclinations

to the planes as above described, but also the inclinatio7is of the lines to

the axes of coordinates of x, y, z, resjiectively.
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8. Given the length (L) of a straight line and the complements of its in-

clinations to the planes (x, y), (x, z), (y z), viz. Z, Y, X, tojind the lengths

of its projections upon those planes.

By the figure in (4) it is easily seen that

L projected on the plane (x, y) = L. sin. Z"\

(X, z) = L. sin. Y V . . . (U)

(y, z) = L. sin. Xj
9. Instead of determining the parallelism or direction of a straight line

in space by the angles Z, Y, X, it is more concise to do it by means of

Z (for instance) and the angle ^ which its projection on the plane (x, y)

makes with the axis of x.

For, drawing a line parallel to the given hne from the origin of the co-

ordinates, the projection of this line is parallel to that of the given line,

and letting fall from any point (x, y, z) of the new line, perpendiculars

upon the plane (x, y) and upon the axes of x and of y, it easily appears,

that

X = L cos. X = (L sin. Z) cos. 6 (see No. 8)

y ~= L. cos. Y = (L. sin. Z) sin. d

which give

cos. X = sin. Z. cos. 6'\ . .

cos. Y = sin. Z . sin. 6}
^

Hence the expression (13) assumes this form,

COS. I = sin. Z . sin. TJ (cos. & cos. d' + sin. 6 sin. ^) + cos. Z cos. Z'

= sin. Z . sin. Z' cos. (^— ^0 + cos. Z . cos. Z' . . . . (16)

which may easily be adapted to logarithmic computation.

The expression (5) is. merely verified by the substitution.

10. Given the angle of intersection (I) hetvoeen two lines in space and

their inclinations to the plane (x, y), to Jind the angle at tsohich their pn-o-

jections upon that plane intersect one another.

If, as above, Z, 7/ be the complements of the inclinations of the lines

upon the plane, and 6, (/ the inclinations of the projections to the axis of

X, we have from (16)

,. ... COS. I — cos. Z. COSv TI ,.„.
-^o'-i'-O^

.in.Z.sin.Z'
'">

This result indicates that I, Z, Z' are sides of a spherical triangle

(radius = 1), ^ — ^ being the angle subtended by I. The form may at

once indeed be obtained by taking the origin of coordinates as the center

of the sphere, and radii to pass through the angles of the spherical tri-

angle, measured along the axis of z, and along lines parallel to the

giveu lines.
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Having considered at some length the mode of determining the posi-

tion and properties of points and straight lines in fixed space, we proceed

to treat, in like manner, of planes.

It is evident that the position of a plane is fixed or determinate in posi-

tion when three of its points are known. Hence is suggested the follow-

ing problem.

11. Having given the three points (a, jS, y), (a', Q', /), (a", /3", /') in

space, tojind the eqtmtion to the plane passing through them ; that is, to

Jind the relation between the coordinates ofany othei' point in the plane.

Suppose the plane to make with the planes (z, y), (z, x) the intersec-

tions or traces B D, B C respectively, and let P be any point whatever

in the plane ; then through P draw P Q in that plane parallel to B D,
&c, as above. Then

z — QN = PQ' = QQ' cot. D B Z
= y cot. D B Z.

But

QN = AB — NA. cot. C B A
= A B + X cot. C B Z,

.\ z = A B + X cot. C B Z + y cot. D B Z.

Consequently if we put A B = g, and denote by (X, Z), (Y, Z) the

inclinations to A Z of the traces in the planes of (x, z), (y, z) respectively,

we have

z = g + X cot. (X, Z) + y cot. (Y, Z) . , . . (18)

Hence the form of the equation to the plane is generally

z=Ax+By+C ri9)
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NoMTto find these constants there are given the coordinates of three

points of the plane ; that is

y— Aa +B/3 +C
/ = Aa'+B/3'+C
/' = A a" + B ^" + C

from which we get

B - y«^—/« + /«^^-/^«^ + /^«— y«^^ _ ^^, ,v 7> (21)

(22)
p _ ^''(y «' — /«) + g(/a^^ — /^gQ +/3^(/^« — yg^O^-

a/3' — a'3 + a'/3''— a"/3' + a''/3— «/3''

Hence when the trace coincides with the axis of x, we have

C = 0,

and

A = cot. 5=0
^" (ya'-ya) + 13 (/«"_/'«') + /S'(/'a-7a'0 = >

7 ^' — / /3 + / /3" — /' ^' + /' ^ _ y /3" = )
' • • ^ ^

R_i i^-n . (/ c^"- 7" cc') + {S'- ^") . {y" a- y a")

/3" • a^' — of ^ + of /3" — a" p' + a" ^ — a ^" •"" ^"^^^

and the equation to the plane becomes

z = By (25)

When the plane is parallel to the plane (x, y),

A = 0, B = 0,
'

and.

z = C (26)

from which, by means of A = 0, B = 0, any two of the quantities /, y\ y"

being eliminated, the value of C will be somewhat simplified.

Hence also will easily be deduced a number of other particular results

connected with the theory of the plane, the point, and the straight line, of

which the following are some.

To find the projections on the planes (x, y), (x, z), (y, z) of the intersec-

tion of the planes,

z=Ax + By+C,
z = A'x+ B'y+ C

Eliminating z, we have

(A— A')x + (B— BOy + C—C = .... (27)

which is the equation to the projection on (x, y).
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Eliminating x, we get

(A'— A)z + (AB'— A'B)y + AC'--A'C = .... (28)

which is the equation to the projection on the plane (y, z).

And in like manner, we obtain

(B'—.B)z + (A'B— AB')x+BC'--B'C = . . . . (29)

for the projection on the plane (x, z).

To find the conditions requisite that a plane atid straight line shall be

parallel or coincide.

Let the equations to the straight line and plane be

X = a z + A"i

y =bz + B/
z = A' X + B' y + C.

Then by substitution in the latter, we get

z(A'a+ B'b— 1) + A'A+ B'B + C'=0.
Now if the straight line and plane have only one point common, we

should thus at once have the coordinates to that point.

Also if the straight line coincide with the plane in the above equation,

z is indeterminate, and (Art. 6. vol. I.)

A' a + B' b— 1 = 0, A' A + B' B + C = . . . (27)

But finally if the straight line is merely to be parallel to the plane, the

above conditions ought to be fulfilled even when the plane and line are

moved parallelly up to the origin or when A, B, C are zero. The only

condition in this case is

A' a + B' b = I (28)

To find the conditions that a straight line be perpefidicular to a plane

z = Ax + By + C.

Since the straight line is to be perpendicular to the given plane, the

plane which projects it upon (x, y) is at right angles both to the plane

(x, y) and to the given plane. The intersection, therefore, of the plane

(x, y) and the given plane is perpendicular to the projecting plane. Hence

the trace of the given plane upon (x, y) is perpendicular to the projec-

tion on (x, y) of the given straight line. But the equations of the traces

of the plane on (x, z), (y, z), are

z= Ax+ C, z = By + C^

**"

'

^

(29)

z=Ax-|-\^, z = r)y-t- i_^^

1 C 1 Cf
^=A"-A'y = B"-B)

and if those of the perpendicular be

x = a z + A/1

y = bz + B,J
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it is easily seen from (11) or at once, that the condition of these traces

being at right angles to the projections, are

A + az=0, A + b = 0.

To draw a straight line passing through a given point (a, iS, y) at right

angles to a given plane.

The equations to the straight line, are clearly

X — a + A (z — 7) = 0, y — /3 + B (z — 7) = 0. . . . (30)

Tofind the distance ofa given point (a, /3, y)from a given plane.

The distance is (30) evidently, when (x, y, z) is the common point hi

the plane and perpendicular

V {z—yy + (y_^)2 4- (X— «)« = (z— 7) V' 1 + A^ + B*.

But the equation to the plane then also subsists, viz.

z = Ax + By + C
from which, and the equations to the perpendicular, we have

z — 7=C — 7+Aa + B/?,

therefore the distance required is

C — 7 + Ao + B

3

(31)A* + B«

To Jind the angle I formed by iiw planes

z = Ax + By+C,
z = A' X + B' y + C.

If from the origin perpendiculars be let fall upon the planes, the angle

which they make is equal to that of the planes themselves. Hence, if

generally, the equations to a line passing through the origin be

X = a z )

y = bzJ
the conditions that it shall be perpendicular to the first plane are

'

A + a = 0,

B + b = 0,

and for the other plane

A' + a = 0,

B' + b = 0.

Hence the equations to these perpendiculars are

X + A z

y + Bz
X + A'z

y + B'z

'. = 0/
X + A'z = \

= 0,j
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which may also be deduced from the forms (30).

Hence from (11) we get

J __ 1 + A A^ + B B^
~ V(l+A2+B*) V(l + A'» + J^ 1 • • • ^^^)

Hence to find the incli7iatioti (s) ofa plane taith the plane (x, y).

We make the second plane coincident witli (x, y), which gives

A' = 0, B' = 0,

and therefore

"^•'= V(l+A' + b«) (*3)

In like manner may the inclinations (^), (»j) of a plane

z=Ax+By+C
to the planes (x, z), (y, z) be expressed by

y B
COS. L :=

(34>

COS.

Hence

COS. 2 s + COS. 2 ^ + COS. *
»j = 1 (35)

Hence also, if /, ^', ;;' be the inclinations of another plane to (x, y)j

(x, z), (y, z).

COS. I = cos. i COS. l' + COS. ^ COS. (^' + cos. n COS. r! . , . (36)

Tofind the inclination v of a straight line x = a z + A', y = b z + B',

to the plane z = Ax + By+C.
The angle required is that which it makes with its projection upon the

plane. If we let fall from any part of the straight line a perpendicular

upon the plane, the angle of these two lines will be the complement of y.

From the origin, draw any straight line whatever, viz. x = a' z, y = b'z.

Then in order that it may be perpendicular to the plane, we must have

a' = — A, b' = — B.

The angle which this makes with the given line can be found from (11);

consequently by that expression

1 — A a — B b -„^v
''"• " - V (1 +a*+ b*) V (1 + A«+ B^) • • •

^^^^

Hence we easily find that the angles made by this line and the coor-

dinate planes (x, y), (x, z), (y, z), viz. Z, Y, X are found from

rj _ 1
<^s- ^ - V(i + a^ + b«)

'
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b

V {1 + a» + b'')'

a

V (1 4. a^ + b

which agrees with what is done in (3).

•='^-^= V(l+\'+b') (3«)

TRANSFORMATION OF COORDINATES.

12. To transfer the origin of coordinates to the point (a, /3, y) ^without

changing their direction.

Let it be premised that instead of supposing the coordinate planes at

right angles to one another, we shall here suppose them to make any

angles whatever with each other. In this case the axes cease to be rec-

tangular, but the coordinates x, y, z are still drawn parallel to the axes.

This being understood, assume

X = x' + «, y = / + /3, z = z' + 7 (39)

and substitute in the expression involving x, y, z. The result will contain

x', y', z' the coordinates referred to the origin (a, |3, 7).

When the substitution is made, the signs of a, jS, y as explained in (1),

must be attended to.

13. To change the direction of the axes from rectangular, >withoui

qffecti7ig the origin.

Conceive three new axes A x', A y', A z', the first axes being supposed

rectangular, and these having any given arbitrary direction whatever.

Take any point ; draw the coordinates x', y', z' of this point, and project

them upon the axis A X. The abscissa x will equal the sum, taken with

their proper signs, of these three projections, (as is easily seen by drawing

the figure) ; but if (x x')> (y, yOj (z> z') denote the angles between the

axes A X, A x' ; A y, A y' ; A z, A z' respectively ; these projections

are

x' COS. (x' x), y' cos. (y' x), z' cos. (z' x).

In like manner we proceed with the other axes, and therefore get

X = x' cos. (x' x) + y' COS. (y' x) + z' cos. {z' x) -^

y = y' COS. iy y) + z' cos. (z' y) + x' cos. (x' y) > . . . (40)

z = z' COS. (z' z) -f y' cos. (y' z) + x' cos. (x' z) J
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s. * (x' x) + COS. ' (x' y) + COS. * x' z = 1 "^

5-' (y'x) + cos.«(y'y) +cos.2(y'z)= 1 > . .

s. * (z' x) + COS. * (z' y) 4. COS. * (z' x) = 1 )

}

(41;

(42)

Since (x' x), (x' y), (x' z) are the angles which the staight line A x',

makes with the rectangular axes of x, y, z, we have (5)

COS. * (x' x) + COS. ' (x' y) + cos.

COS.

cos.

We also have from (13) p.

cos.(xy)=cos.(x'x)cos.(y'x)+cos.(x'y)cos.(y'y)+cos.(x'z)cos.(y'z)

cos.(xV) = cos.(x'x)cos.(z'x)+ cos.(x'y)cos.(z'y)+ cos.(x'z)cos.(z'z)

cos.(y'z') =cos.(y'x)cos.(z'x)4-cos.)y'y)cos.(z'y)4-cos.(y'z)cos.(z'z)

The equations (40) and (41), contain the nine angles which the axes of

x', y', z' make with the axes of x, y, z.

Since the equations (41) determine three of these angles only, six of

them remain arbitrary. Also when the new system is likewise rectangu-

lar, or COS. (x'yO = cos. (x' z') — cos. (y'z') = 1, three others of the

arbitraries are determined by equations (42). Hence in that case there

remain but three arbitrary angles.

14. Required to transform the rectangular axe of coordinates to other

rectangular axeSt having the same origin, but ixeo of "which shall be situated

in a given plane.

Let the given plane be Y' A C, of which the trace in the plane (z, x) is

A C. At the distance A C describe the arcs C Y', C x, x x' in the planes

C A Y', (z, x), and X' A X. Then if one of the new axes of the coordi-

nates be A X', its position and that of the other two, A Y', A Z', will be

determined by C x' =
f>, C x = -vj/, and the spherical angle x C x' = ^ =

inclination of the given plane to the plane (z, x).

Hence to transform the axes, it only remains to express the angles

• (x'x), (y'x), &c. which enter the equations (40) in terms of ^ -4/ and p.
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By spherics

COS. (x'x) ^ COS. -vj/ COS. + sin. -^ sin. p cos. S,

Tn like manner forming other spherical triangles, we get

COS. (/ x) r= COS. (90<' + (p) COS. -^ + sin. -^ sin. (GO*' + p) cos. ^

COS. (x' y) = cos. (96« + -4/) cos. <p + sin. (90° + 4) sin. p cos. 6

cos. (y'y) = cos. (90°+-vl/)cos.(90^f)+ sin.(90°+ '4/)sin.(90<'+ p)cos.d

So that we obtain these four equations

cos. (x' x) = COS. -v}^ COS. p + sin. -vj/ sin. p cos. tf

cos. (y' x) = — sin. -^z sin. p + sin. %J/ cos,

) COS. f^

5. f COS. ^ f

n. ^.^t)s. ^C
1 ro<?. 4 -^

}

COS. (x' y) = — sin. 4' cos. <p + cos. -^ sin. p-<:t)r "
'^

* • . /

COS. (y' y) = sin. -vj/ sin. p + cos. -vl^ cos. p cos. 4

Again by spherics, (since A Z' is perpendicular to A C, and die inclin-

ation of the planes Z'A C, (x, y) is 90° — 6) we have

cos (z' x) = sin. -vJ/ sin. ^ i

cos. (z y) = cos. -v]/ sin. d f

''
And by considering that the angle between the planes Z A C, Z A X', =
90° + 6, by sphericsj'we also get

cos. (x'z) = — sin. (p sin. 6

COS. (y'z) = — cos. (p sin. 6 ^ (45)

cos. (z'z) = cos. 6

which give the nine coefficients of equations (40).

Equations (41), (42) will also hereby be satisfied when the systems are

rectangular.

15. To find the sedion of a surface made hy a plane.

The last transformation of axes is of great use in determining the na-

ture of the section of a surface, made by a plane, or of the section made

by any two surfaces, plane or not, provided the section lies in one plane

;

for having transformed the axes to others, A Z', A X', A Y', the two lat-

ter lying in the plane of the section, by the equations (40), and the de-

terminations of the last article, by putting z' = in the equation to the

surface, we have that of the section at once. It is better, however, to

make z := in the equations (40), and to seek directly the values of

cos. (x'x), COS.. (yx), &c. The equations (40) thus become

X = x^ cos. •vl' + y' sin. 4 cos. 6 -x

y = x' sin. -^— y' cos. •4' cos. 6 K. ..... (46)

z = y sin. & J
16. To determine the nature and position of all surfaces of the second

order ,- or to discuss the general equation of the second order^ viz.

ax* + by* + cz^ 2dxy + 2exz + 2fyz + gx -J- hy +iz = k . . (a)

First simplify itby such a transformation of coordinates as shall destroj'

b
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the terms in x y, x z, y z ; the axes from rectangular will become oblique,

by substituting the values (40), and the nine angles which enter these,

being subjected to the conditions (41), there will remain six of them

arbitrary, which we may dispose of in an infinity of ways. Equate to

zero the coefficients of the terms in x' y', x' z', y' t.

But if it be required that the new axes shall be also rectangular, as this

condition will be expressed by putting each of the equations (42) equal

zero, the six arbitrary angles will be reduced to ihree^ which the three

coefficients to be destroyed will make known, and the problem will thus

be determined.

This investigation will be rendered easier by the following process

:

Let x= az, y=/3zbe [the equations of the axis of x' ; then for

brevity making

1 = L_:
V (1 + a^ + ^^)

we find that (3)

cos. (x'x = a 1, cos. (x'y) = /SI, Cos. x'z = 1.

Reasoning thus also as to the equations x = a'z, y = j8' z of the axis

of y', and the same for the axis of z', we get

cos. (y'x) = a' I', cos. (y'y) = /3'1', cos. (y'z) = 1'

COS. (z' x) = a" 1", COS. \tI y) = /3" \', cos. (z' z) = V.

Hence by substitution the equations (40) become

X = 1 a x' + F a' y' + 1" o!

y = l/3x' +
z = 1 x' + 1' y'

The nine angles of the problem are replaced by the six unknowns a,

a', o!\ 13, /3', (3", provided the equations (41) are thereby also satisfied.

Substitute therefore these values of x, y, z, in the general equation of

the 2d degree, and equate to zero the coefficients of x' y', x' z', y' z', and

we get

(aa + diS + e) a' + (da + b/3 + f)/3' + e a + f /S + c = 0"

(a a + d iS + e) a" + (d a + b /3 + f) ^" + e a + f /3

(a«" + d/3" + e) a' + (da" + b/3"+ f) /3' +e a" + f/3'

One of these equations may be found without the others, and by making

the substitution only in part. Moreover from the symmetry of the pro-

cess the other two equations may be found from this one. Eliminate a',

B' from the first of them, and the equations x = a' z, y = ^' z, of the

axis of y'; the resulting equation

(a a + d ^ + e) X + (d a + b ^ + f) y + (e a + f S + c) 2 = . . (b)

is that of a plane (19).

F a' y' + 1" a" z' ^

1' iS' y + Y' ^" l' K

\ y' + Y' z'. J

3 + c =0-\

3 + c = l

r + c = J
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But the first equation is the condition which destroys the term x'y't

since if we only consider it, a, /3, a\ /3', may be any whatever that will

satisfy it ; it suffices therefore that the axis of y' be traced in the plane

above alluded to, in order that the transformed equations may not contain

any term in x' y.

In the same manner eliminating a", j3", from the 2d equation by means

of the equations of the axis of z', viz. x = a" z, y = jS" z, we shall have

a |.'lane such, that if we take for the axis of z every straight line which it

will there trace out, the transformed equation will not contain the term in

X' z',. But, from the form of the two first equations, it is evident that this

second plane is the same as the first : therefore, if we there trace the axes

of y and z* at pleasure, this plane will be that of y' and z', and the

transformed equation will have no terms involving x' y or x z'. The
direction of these axes in the plane being any whatever, we have an in-

finity of systems which will serve this purpose ; the equation (b) will be

that of a plane parallel to the plane which bisects all the parallels to x,

and which is therefore called the Diametrical Plane,

Again, if we wish to make the term in y' z' disappear, the third equa-

tion will give a', /?, and there are an infinity of oblique axes which will

answer the three required conditions. But make x', y', a', rectangular.

The axis^of x' must be perpendicular to the plane (y z') whose equa-

tion we have just found ; and that x = a z, y = /3 z, may be the equa-

tions (see equations b) we must have

a a + d /3 + e = (e « + f /^ + c) a . . , . (c)

d a + b /3 + f = (e a + f /3 + c) ^ . . . , (d)

Substituting in (c) the value of a found from (d) we get

{ (a— b)fe + (f=— e^) d J/S^

+ J (a_b)(c— b)e+ (2d^— f2— e*)e + (2c— a— b)fd} /3*

+ J (c— a)(c— b) d+ (2e2— f2— dO d + (2b—a— c) fe ] ^

+ (a— c) fd + (f^— d^) e = 0.

This equation of the 3d degree gives for /3 at least one real root; hence

the equation (d) gives one for a; so that the axis of x' is determined so as

to be perpendicular to the plane (y, z*,) and to be free from terms in

X' z", and y' z'. It remains to make in this plane (y*, z',) the axes at right

angles and such that the term x' y' may also disappear. But it is evident

that we shall find at the same time a plane (x, z',) such that the axis of y'

is perpendicular to it, and also that the terms in x' y, t ^ are not involved.

But it happens that the conditions for making the axis of y' perpendicular

to this plane are both (c) and (d) so that the same equation of the 3d de-

1%
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gree must give also ^. Tlie same holds good for the axis of z. Conse-

quently the tlnee roots of the equation (3 are all real, and are the values

of /3, ^, j8". Therefore a, a', a", are given by the equation (d). Hence,

T'here is only 07ie system of rectangular axes tsohich eliminates x' y', x' z',

x'y'; and there exists one in all cases. These axes are called the Prijici-

vol axes of the Suiface.

Let us analyze the case which the cubic in /3 presents.

1. If we make

(a_b)fe + (f2_e'^)d =
the equation is deprived' of its first term. This shows that then one of

the roots of /3 is infinite, as well as that a derived from equation (d) be-

comes e a + f /3 = 0. The corresponding angles are right angles. One
of the aKes, thai of z' for instance, falls upon the plane (x, y), and we
obtain its equation by eliminating a and jS from the equations x = a z,

y = /3 z, which equation is

ex + fy =
The directions of y', z' are given by the equation in /3 reduced to a

Quadrature.

2ndly. If besides this first coefficient the second is also = 0, by substi-

tuting b, found from the above equation, in the factor of /3 ^^ it reduces to

the last term of the equation in /3, viz.

(a— c) fd + (f2_d=) e = 0.

These two equations express the condition required. But the coeffi-

cient of B is deduced from that of /3 ^ by changing b into c and d into e,

and the same holds for the first and last term of the equation in jS.

Therefore the cubic equation is hIso thus satisfied. There exists therefore

an infinity of rectangular systems, which destroy the terms in x' y', x' z',

y' z'. Eliminating a and b from equations (c) and (d) by aid of the above

two equations of condition, we find that they are the product of fa— d

and e3— d by the common factor eda + fdjS + fe. These factors

are therefore nothing ; and eliminating a and /3, we find

fx = dz, ey =r dz, edx + fdy + fez = 0.

The two first are the equations of one of the axes. The third that ol

a plane which is perpendicular to it, and in which are traced the two

other axes under arbitrary directions. This plane will cut the surface in

a curve vherein all the rectangular axes are principal, which curve is

therefore a circle, the only one of curves of the second order which has

that property. The surface is one then of revolution round the axig

whose equations we have just given.
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The equation once freed from the three rectangles, becomes of the

form

k z * + m y *-4- n X * + q X 4- q' y + q'' z = h . . . . (e)

The terms of the first dimension are evidently destroyed by removing

the origin (39). It is clear this can be effected, except in the case

where one of the squares x % y ^, z * is deficient. We shall examine these

cases separately. First, let us discuss the equation

kz* + my* -f nx* = h (f)

Every straight line passing through the origin, cuts the surface in two
,

points at equal distances on both sides, since the equation remains the same

after having changed the signs of x, y, z. The origin being in the middle

of all the chords drawn through this point is a center. The surface therefore

has the property of possessing a center 'whe7iever the transformed equation

has the squares of all the variables.

We shall always take n positive : it remains to examine the cases where

k and m are both positive, both negative, or of different signs.

If in the equation (f) k, m, and n, aie all positive, h is also positive

;

and if h is nothing, we have x = 0, y = 0, z = 0, and the surface has

but one point.

But when h is positive by making x, y, or z, separately equal zero, we

find the equations to an ellipse, curves which result from the section of

the surface in question by the three coordinate planes. Every plane

parallel to them gives also an ellipse, and it will be easy to show tlie

same of all plane sections. Hence the surface is termed an Ellip-

soid.

The lengthy A, B, C, of the three principal axes are obtained by find-

ing the sections of the surface through the axes of x, y, and z. Th :e

give

kC* = h, mB*= h, nA= = h.

from which eliminating k, m and n, and substituting in equation (f) we get

C« -t- B*^ A« I (47)

A*B«z2 + A»C2y^ + B'C'x'^ = A*B'C0
which is the equation to an Ellipsoid referred to its center a7id principal

axes.

We may conceive this surface to be generated by an ellipse, triiced in

the plane (x, y), moving parallel to itself, whilst its two axes vary, the *

curve sliding along another ellipse, traced in the plane (x, z) as a direct-

b 3
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rix. If two of tlie quantities A, B, C, are equal, we liave an ellipsoid of

revolution. If all three are equal,, we have a sphere.

Now suppose k negative, and m and h positive or

kz- — my* — ax^=: — h.

Making x or y equal zero, we perceive that the sections by the planes

(y z) and (x z), are hyperbolas, whose axis of z is the second axis. All

planes passing through the axis of z, give this same curve. Hence the

surface is called an hyperholoid. Sections parallel to the plane (x y) are

always real ellipses. A, B, C V — 1 designating the lengths upon the

axes from the origin, the equation is the same as the above equation ex-

cepting the first term becoming negative.

Lastly, when k and h are negative

k z2 + my2 + nx^ = — h;
all the planes which pass through the axis of z cut the surface in hyper-

bolas, whose axis of z is the first axis. The plane (x y) does not meet

the surface and its parallels passing through the opposite limits, give

ellipses. This is a hyperholoid also, but -having two vertexes about the

axis of z. The equation in A, B, C is still the same as above, excepting

that the term in z' is the only positive one.

When h = 0, we have, in these two cases,

k2'= my2 + nx* . . (48)

the equation to a cone, which cone is the same to these hyperboloids that

an asymptote is to hyperbolas.

It remains to consider the case of k and m being negative. But by a sim-

ple inversion in the axes, this is referred to the two preceding ones. The

hyperholoid in this case has one or two vertexes about the axis of x ac-

cording as h is negative or positive.

When the equation (e) is deprived of one of the squares, of x * for in-

stance, by transferring the origin, we may disengage that equation from

the constant term and from those in y and z ; thus it becomes

kz^ + my^'rrhx (49)

The sections due to the planes (x z), (x y) are parabolas in the same

or opposite directions according to the signs of k, m, h ; the planes par-

allel to these give also parabolas. The planes parallel to that of (y z)

give ellipses or parabolas according to the sign of m. Tne surface is an

elliptic paraboloid in the one case, and a hyperbolic paraboloid in the

other case. When k = m, it is a paraboloid of revolution.

When h = 0, the equation takes the form

a'z^ + b=y2 =
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according to the signs of k and m. In the one case we have

z = 0, y =
whatever may be the value of x, and the surface reduces to the axis of x.

In the other case.

(a z + b y) (a z — b y) =
shows that we make another factor equal zero; thus we have the system

of two planes which increase along the axis of x.

When the equation (e) is deprived of two squares, for instance of x *,

y % by transferring the origin parallelly to z, we reduce the equation to

kz« + py + qx = (50)

*rhe sections made by the planes drawn according to the axis of z, are

parabolas. The plane (x y) and its parallels give straight lines par-

allel to them. The surface is, therefore, a cylinder whose base is a para-

bola, or a parabolic cylinder.

If the three squares in (e) are wanting, it will be that of a plane.

It is easy to recognise the case where the proposed equation is decom-

posable into rational factors ; the case where it is formed of positive

squares, which resolve into two equations representing the sector of two

planes.

PARTIAL DIFFERENCES.

17. If u =r f (x, y, z, &c.) denote any function of the variable x, y, z,

&c. d u be taken on the supposition that y, z, &c. are constant, then is the

result termed the partial difference of u relative to x, and is thus written

a- X.
^d x/

Similarly

denote the partial differences of u relatively to y, z, &c. respectively.

Now since the total difference of u arises from the increase or decrease

of its variables, it is evident that

d„=(|-^)dK+(-«)dy+(^")dz+&C.. ..(«•)
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But, by the general principle laid down in (6) Vol. I, this result may
be demonstrated as follows ; Let

u + du = A + Adx+Bdy+Cdz+&c.
A'dx«+ B'dy^+ C'dz* + &c.-i

+ Mdx.dy + Ndx.dz+&c.j
+ A" dy.^ + &c.

Then equating quantities of the same nature, v.e have

du = Adx+Bdy+Cdz + &c.

Hence when d y, d z, &c. = 0, or when y, z, &c. are considered con-
stant

d u = A d X
or according to the above notation

In the same manner it is shown, that

&c
Hence

du = (^) dx + (41) cly + (^i) d. + &c. as before.

Ex. 1. u = X y Zj &c.

/du\ /du\ /du\
Car) = y^' (dj) =''^' (^) = "J'

.'. du = yzdx + xzdy + xydz
d u _ d X d y d z

u
~~

X "y" z

Ex. 2. u = X y z, &c. Here as above

du dx.dy.dz.o— = H —^ H + &c.
u X y z

And in like manner the total difference of any function of any number

of variables may be found, viz. by first taking the partial differences, as in

the rules laid down in the Comments upon the first section of the first

book of the Principia.

But this is not the only use of partial differences. They are frequently

used to abbreviate expressions.* Thus, in p. 13, and 14, Vol. II. we
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learn that the actions of M, /*, jm.", &c. upon ^ resolved parallel to x,

amount to

d»(^+ x) (^'{^'—^)
5

fi" (x-'—x)

d t« - [(X'—x)'+(y'~y)H (^—z)^^"*"[x'-x)*+(y"—y)V (z"-z)^]l

.

^"' (x'"-x)
4. &c — M^ ^

^[(x'"— x)« + (y"'_y)«+ (z"'-z)^]^ + ^'''
[(x^ + y^+ z«) ]|

retaining the notation there adopted.

But if we make

and generally

V(x-x)« + (y—y)' + (z'— z)^ = §
0.1

<V/(x"-°—X""")* + (y"-n_-y"'-n») 2 ^ ^z"-"—z"-») * =
^

n, m,

and then assume

- X = ^' + ^' + &c (A)Si
0, 1 0, 2

+^+^ + &0 .(B)
8 1,3

+jq_ + tt-+s,,. (C)

2. 2,4

&C
we get

S S'
0,1 . 0,2

\dy/ ^dyy g' f'

0, 1 0, 2

We also get

VdxJ "
p

*" VdxV
0,1

/d^N __ ^/."(x"—

x

) /.y (-k"--x-) ,
/^N

Vdx7 - "
f' f' Wx'7
0, 2 1, 2

/d^\ _^ fx, fi"'{x"'—^x) <ttV"(x"'— x') ^y(x'"—x") /d D\

VdFv "" P P s^ '*'Vdx'"/
0,3 1,3 8,3
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Hence since (B) has one term less than (A) ; (C) one term less than

^B) ; and so on ; it is evident that

(d4) + (u4) + i'^) +^— (K)-(^.)-(rx)-^-

+C^) + (d4) +«''••

and therefore that

See p. 15, Vol. II.

Hence then X is so assumed that the sum of its partial differences re*

lative to x, x', x" &c. shall equal zero, and at the same time abbreviate

the expression for the forces upon fi along x from the above complex

formula into

dt* ~
/I \dx) s'

'

and the same may be said relatively to the forces resolved parallel to

y, z, &c. &c.

Another consequence of this assumption is

/d\\ /dx\
^•^^•Mdy) = ^-yCd^)-

For •
'

/ d X X ^;t'(x—x)y ^f/'(x"—'K)y ^^'"(x"'— x)y ,
„

y V dir) - —p— +—p— +—p + ^''-

0,1 0,2 0.3

/d X V ^VYx:— x')y' ^VV — xQy
'

. ^/^'(x— x)y
y te; =—p— + p + ^''' ~ e

,., (^ '^\ _/«'V"(x"'-x") y"
,
A^V"'(x"-x') y" /./."(x"-x)y' (/r^"('x"-x')y''

^ te; ^^—— +

—

p +^*^- p ~
f

'

2,3 2,4 0,2 1,2

&C.

Hence it is evident that

3 V (^\ - A^/*'(x— x)(y—y') /^/(x—x) (y—y") g^^^
'•'^ Vdx /

f

'

^
f

'

_^
A^V'(x"-x')(y--y") ^ ^>"(x'W) (y-y"

)
_^ g^^

^ /*V(V-x") (y -y") _^
^V"(x"-xj)(y-y"0 ^ g^^^

2, 3 2. *

&C.



ANALYTICAL GEOMETRY. xxvii

In like manner it is found that

0, 1 t,2

^>"(y"—y') (x—X") /xV"(y"—y') (x'—x'")
,

_

1. 2 i; 3

&C.

which is also perceptible from the substitution in the above equation of

y for X, X for y; y' for X', x' for y' ; and so on.

But >

, (y'-y) (x—x) = (x—x) (y—y)
{y"—y) (x—x") = (x"—x) (y—y")

&c.

consequently

See p. 16. For similar uses of partial differences, see also pp. 22, and
105.

CHANGE OF THE INDEPENDENT VARIABLE.

When an expression is given containing diiFerential coefficients, such

ns

dx' dx^^""-

in which the first differential only of x and its powers are to be found, it

shows that the differential had been taken on the supposition that dx is

constant, or that d ^ x = 0, d ' x = 0, and so on. But it may be re-

quired to transform this expression to another in which d * x, d ' x shall

appear, and in which d y shall be constant, or from which d * y, &c. shall

be excluded. This is performed as follows :

For instance if we have the expression

d v^
1 4- y
^ dx' dy
d* y dx
dx« .

the differential coefficients

dy dfy
dx' dx"
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may be eliminated by means of the equation of the curve to which we

mean to apply that expression. For instance, from the equation to a

parabola y = a x *, we derive the values of

IZ and —

y

dx ^""^ dx*
which being substituted in the above formula, these differential coefficients

will disappear. If we consider

dy d^y
d^' dx*

unknown, we must in general have two equations to eliminate them from

one formula, and these equations will be given by twice differentiating the

equation to the curve.

When by algebriacal operations, d x ceases to be placed underneath

d y, as in this form

y(<^^' + dyO
^52jdx* + dy* — yd*y

the substitution is effected by regarding d x, d y, d * y as unknown ; but

then in order to eliminate them, there must be in general the same

number of equations as of unknowns, and consequently it would seem the

elimination cannot be accomplished, because by means of the equation to

the curve, only two of the equations between d x, d y, d * y can be ob-

tained. It must be remarked, however, that when by means of these two

equations we shall have eliminated d y and d * y, there will remain a com-

mon factor d X *, which will also vanish. For example, if the curve is

always a parabola represented by the equation y = ax , by differentiat-

ing twice we obtain

dy = 2axdx0d2y = 2adx*
and these being substituted in the formula immediately above, we shall

obtain, after suppressing the common factor d x *,

y(l+4a»x')
4, a^ x'^ — 2ay*

The reason why d x * becomes a common factor is perceptible at once,

for when from a formula which primitively contained

d'y dy
dx** dx'

d * V
we have taken away the denominator of -.—f all the terms independent

of r—^ and j-^ must acquire the factor d x * ; then the terms which
dx^ d X ^

were affected by -r-%> do not contain d x, whilst those affected by t-^
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contain d x. When we afterwards differentiate the equation of the curve,

and obtain results of the form dy = Mdx, d^y = Ndx^ these values

being substituted in the terms in d^y, and in dy dx, will change them,

as likewise the other terms, into products of d x ^.
,

What has been said of a formula containing differentials of the two first

orders applying equally to those in which these differentials rise to supe-

rior orders, it thence follows that by differentiating the equation of the

curve as often as is necessary, we can always make disappear from the

expression proposed, the differentials therein contained.

The same will also hold good if, beside these differentials which we have

just been considering, the formula contain terms in d * x, in d ' x, &c.

;

for suppose that there enter the formula these differentials d x, d y, d ' x,

d ' y and that by twice differentiating the equation represented by y = f x,

we obtain these equations

F (x, y, d y, d x) =
F(x, y, dx, dy, d'x, d»y) = 0,

we can only find two of the three differentials d y, d ^ x, d - y, and we see

it will be impossible to eliminate all the differentials of the formula ; there

is therefore a condition tacitly expressed by the differential d '^ x ; it is

that the variable x is itself considered a function of a third variable which

does not enter the formula, and which we call the independent variable.

This will become manifest if we observe, that the equation y = f x may

be derived from the system of two equations

X = F t, y = (pt

from which we may eliminate t. Thus the equation

(X — c)'

is derived from the system of two equations

X = b t + c, y = a t%

and we see that x and y must vary by virtue of the variation which t may
undergo. But this hypothesis that x and y vary as t alters, supposes that

there are relations between x and t, and between y and t. One of these

relations is arbitrary, for the equation which we represent generally by

y = f X, for example

y = -^' (x — c) s

if we substitute between x and t, the arbitrary relation.
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this value being put in the equation

will change it to

(f — c')*

an equation which, being combined with this,

_ t'
^ - r«

'

ought to reproduce by elimination,

(X — c)

'

the only condition which we ought to regard in the selection of the varia-

ble t.

We may therefore determine the independent variable t at pleasure.

For example, we may take the chord, the arc, the abscissa or ordinate

for this independent variable ; if t represent the arc of the curve, we

have

t = V (dx« + dy^);

if t denote the chord and the origin be at the vertex of the curve, we

have

t = V(x* + y^);

lastly, if t be the abscissa or ordinate of the curve, we shall have

t = X, or t = y.

The choice ofone of the three hypotheses or of any other, becoming in-

dispensible in order that the formula which contains the differentials, may

be delivered from them, if we do not always adopt it, it is even then tacitly

supposed that the independent variable has been determined. For ex-

ample, in the usual case where a formula contains only the differentials

d X, d y, d* y, d' y, &c. the hypothesis is that the independent variable

t has been taken for the abscissa, for then it results that

dx ,

t = X, j-^ = 1,

d^x

and we see that the formula does not contain the seconJ, third, &c. dif-

ferentials.
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To establish this formula, in all its generality, we must, as above, sup-

pose X and y to be functions of a third variable t, and then we have
^ d^ __ d y tl X

d t ~ cTx • dT '

from which we get

djr

^ = ^ (53)dx d X ^

dT
taking the second differential of y and operating upon the second membei

as if a fraction, we shall get

d X d* y d y d' x
d'y _ d~t ' dl dT* d t

d X ~~ d X*

TP
In this expression, d t has two uses ; the one is to indicate that it is

the independent variable, and the other to enter as a sign of algebra.

In the second relation only will it be considered, if we keep in view that

t is the independent variable. Then supposing d t' the common factor,

the above expression simplifies into

d' y __ dxd'y — dyd'x
dx " dx* *

and dividing by d x, it will become

d* y _ dxd'y — dyd'x
dx^

~
dx^

Operating in the same way upon the equation (53), we see that in

taking t as the independent variable, the second member of the equation

ought to become identical with the first ; consequently we have only one

change to make in the formula which contains the differential coefiicients

^,^„ VIZ. to replace
J-/,

by

d X d* y — d y d*x .-^v

To apply these considerations to the radius of curvature which is given

by the equation See p. 6L vol. I.)

^ = —57—

'

dx«
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if we wish to have the value of R, in the case where t shall be the inde-

pendent variable, we must change the equation to

R =
dx d* y— d y d' X *

dx'
and observing that the numerator amounts to

(dx' + dy') ^

dx^
^we shall have

1 (dx' + dy')i
" " dxd*y — dy»d*x ^^^^

This value of R supposes therefore that x and y are functions of a third

independent variable. But if x be considered this variable, that is to say,

if t = X, we shall have d * x =0, and the expression again reverts to the

common one

^ _ (dx'+dy«)t
^

(> + 1&
d x d* y d* y

dT*
But if, instead of x for the independent variable, we wish to have the

ordinate y, this condition is expressed by y = t ; and differentiating this

equation twice, we have

d t - ^' d t '
- "•

The first of these equations merely indicates that y is the independent

variable, which effects no change in the formula ; but the second shows

us that d • y ought to be zero, and then the equation (55) becomes

_(dxM:_dyV
^ - dyd^x ^^^^

We next remark, that when x is the independent variable, and

consequently d ' x = 0, this equation indicates that d x is constant.

Whence it follows, that generally the independent variable has always

a constant differential.

Lastly, if we take the arc for the independent variable, we shall have

dt = V (dx' + dy«);

Hence, we easily deduce

dx« dy_* _ , .

dt* + dt« ""
'
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dillerentiating this equation, we shall regard d t as constant, since t is the

independent variable ; we get

2d xd'x 2dy d^y _
dt^ + dt« ~ '

which gives

dxd^x = — dyd^y
Consequently, if we substitute the value of d ' x, or that of d * y, in the

equation (55), we shall have in the first case

R = .'f'l:w'"f,. dx= ^"'''' + ''^ )dx. . (67)
(d x + d y *) d *

y d " y
^ '

and in the second case,

(dx- + dy-)^ V(dx-' + dy-)^- (dx +dy*)d''x'^y d^ "y
•

^^^^

In what precedes, we have only considered the two differential coeffi-

cients

d y d **

y
dl^'dlP'

but if the formula contain coefficients of a higher order, we must, by

means analogous to those here used, determine the values of

d^y t.d*y ^T—^3 of -j—^ &c.
dx^ d x^

which will belong to the case where x and y are functions of a third in-

dependent variable.
"'

PROPERTIES OF HOMOGENEOUS FUNCTIONS.

IfMdx + Ndy+ Pdt4- &i.\ = dz, be a homogeneousJunction of

any lutmber of variables^ x, y, t, &c. in which the dimension of each tei'm is

n, then is

Mx + Ny + Pt + &c. = nz.

For let M d x + N d y be the differential of a homogeneous function

z between two variables x and y ; if we represent by n the sum of the

exponents of the variables, in one of the terms which compose this func-

tion, we shall have therefore the equation

Mdx + Ndy = dz.

« Making ^ = q, we shall find (vol. I.)

F(q) X x» = z;

c
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and replacing, in the above equation, y by its value q x, and calling M'
N', what M and N then become, that equation transforms to

M' d X + N' d. q X = d z

;

and substituting the value of z, we shall have

M' d X + N' d (q z) = d (x" F. q.)

But d (q z) =: q d x + X d q. Therefore

(M' + N'q) dx + N'xdq = d (x" F. q).

But, (M* + N' q) d X being the differential of x " F q relatively to x, we

have (Art 6. vol. 1.)

M' + N'q = nx"-' X F.q.

If in this equation y be put for q x, it will become

M + N-^ = nx"-'F. q,X ^

or

Mx 4- Ny = nz.

This theorem is applicable to homogeneous functions of any number of

variables ; for if we have, for example, the equation

Mdx+ Ndy+ Pdt = dz,

in which the dimension is n in every term, it will suffice to make

s^= q, —= r
X ^' X

to prove, by reasoning analogous to the above, that we get z = x" F (q, r),

and, consequendy, that

Mx + Ny + Pt = nz (59)

and so on for more variables.

THEORY OF ARBITRARY CONSTANTS.

An equation V = between x, y, and constants, may be considered as

the complete integral of a certain differential equation, of which the order

depends on the number of constants contained in V = 0. These constants

are named arbitrary constants, because if one of them is represented by ff,

and V or one of its differentials is put under the form f (x, y) = a, we see

that a will be nothing else than the arbitrary constant given by the integra-

tion of d f (x, y). Hence, if the differential equation in question is of the

order n, each integration introducing an arbitrary constant, we have

V = 0, which is given by the last of three integrations, and contains, at
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least, n arbitrary constants more than the given differential equation. Let

therefore

F(x,y) = 0, F (x,y,5^) = 0, F (x,y,^,^4^.) = &c. (a)

be the primitive equation of a differential equation of the second order

and its immediate differentials.

Hence we may eliminate from the two first of these three equations,

the constants a and b, and obtain
I

^ ('^'^''dl'^) = ^'^ (""'^'di'^ = ^
. . . .

(b)

If, without knowing F (x, y) = 0, we find these equations, it will be

sufficient tQ-eliminate from them ^ , to obtain F (x, y) = 0, which will

be the complete integral, since it will contain the arbitrary constants a, b.

If, on the contrary, we eliminate these two constants between the

above three equations, we shall arrive at an equation which, containing*

the same differential coefficients, may be denoted by

''('''J'Jx'3F>) = « (<=)

But each of the equations (b) will give the same. In fact, by eliminating

the constant contained in one of these equations and its immediate differ-

ential, we shall obtain separately two equations of the second order,

which do not differ from equation (c) otherwise than the values of x and

of y are not the same in both. Hence it follows, that a differential equa-

tion of the second order may result from two equations of the first order

which are necessarily different, since the arbitrary constant of the one is

different from that of the other. The equations (b) are what we call the

first integrals of the equation (c), which is independent, and the equation

F (x, y) = is the second integral of it.

Take, for example, the equation y = a x + b, which, because of its

two constants, may be regarded as the primitive equation of an equation

of the second order. Hence, by differentiation, and then by elimination

of a, we get

^y ^y , u
T-^ = a,y = x-r^ + b.
dx "^ dx

These two first integrals of the equation of the second order which we

are seeking, being differentiated each in particular, conduct equally, by

d ^\
the elimmation of a, b, to the independent equation -r—^, = 0. In the

c3
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case where the number of constants exceeds that of the required arbitrary

constants, the surplus constants, being connected with the same equations,

do not acquire any new relation. Required, for instance, the equation of

the second order, whose primitive is

y = ^ax' + bx + c = 0;

differentiating we get

^' = ax + b.
dx

The elimination of a, and then that of b, from these equations, give

separately these two first integrals

^ = ax + b, y = xj| — i ax^ + c . . . (d)

Combining them each with their immediate differentials, we arrive,

d ^ V ,. .

by two different ways, at t—-^ = a. If, on the contrary, we had elimi-

nated the third constant a between the primitive equation and its imme-

diate differential, that would not have produced a different result; for

we should have arrived at the same result as that which would lead to

the elimination of a from the equations (d), and we should then have

fallen upon the equation x -r—^ = -r^ — b, an equation which reduces

d*v
to -j—^ =r a by combining it with the first of the equations (d).

Let us apply these considerations to a differential equation of the third

order : differentiating three times successively the equation F (x, y) = 0,

we shall have

F fx V ^^ - F/^x V ^ ^^ - F^x V^ ^ '^^ -

These equations admitting the same values for each of the arbitrary

constants contained by F (x, y) = 0, we may generally eliminate these

constants between this latter equation and the three preceding ones, and

obtain a result which we shall denote by

-/ dyd*yd^y\ ^ , .

This will be the differential equation of the third order of F (x, y) = 0,

and whose three arbitrary constants are eliminated ; reciprocally,

F (x, 3") = 0, will be the third integral of the equation (e).

If we eliminate successively each of the arbitrary constants from the
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equation F (x, y) = 0, and that which we have derived by differentiation,

we shall obtain three equations of the first order, which will be the second

integrals of the equation (e).

Finally, if we eliminate two of the three arbitrary constants by means

of the equation F (x, y) = 0, and the equations which we deduce by two

successive differentiations, that is to say, if we eliminate these constants

from the equations

F (x,y) = 0. F (x,y, pj = 0, F (x. y, ^I,
d^;) = „ . . (f)

we shall get, successively, in the equation which arises from the elimina-

tion, one of the three arbitrary constants ; consequently, we shall have as

many equations as arbitrary constants. Let a, b, c, be these arbitraiy

constants. Then the equations in question, considered only with regard

to the arbitrary constants which they contain, may be represented by

f c =. 0, p b c= 0, p a = (g)

Since the equations (f) all aid in the elimination which gives us one of

these last equations, it thence follows that the equations (g) will each be

of the second order ; we call them the first integrals of the equation (e).

Generally, a differential equation of an order w will have a number n

of first integrals, which will contain therefore the differential coefficients

dvd"~'v..
from -5-^ to -,—^i inclusively; that is to say, a number „_i of differential

coefiicients ; and we see that then, when these equations are all known,

to obtain the primitive equation it will suffice to eliminate from these equa-

tions the several differential coefficients.

PARTICULAR SOLUTIONS OF DIFFERENTIAL EQUATIONS.

It is easily seen that a particular integral may always be deduced from

the complete integral, by giving a suitable value to the arbitrary con-

stant.

For example, if we have given the equation

xdx-j-ydy = dyVx* + y^ — a*,

whose complete integral is

y + c = V (x^ + y2 — a*),

whence (for convenience, by rationalizing,) we get

(^'-^'>ai^ + ^''y^ + ''' = ^ .... no

«2
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and the complete, integral becomes

2 cy + 0*-— x« + a*^ = .... (i)

Hence, in taking for c an arbitrary constant value c = 2 a, we shall

obtain this particular integral

2cy + 5 a« — x2 = 0,

which will have the property of satisfying the proposed equation (h) as

well also as the complete integral In fact, we shall derive from tliis

particular integral

— x' — 5 a* d y __ 3C

^ ""
2 c ' cfx ~ "c

'

these values reduce the proposed to

(x^-a«)^' = ^(x« + c'^-5a^),

an equation which becomes identical, by substituting in the second mem-
ber, the value of c *, which gives the relation c = 2 a. Let

Mdx + Ndy = 0,

be a differential equation of the first order of a function of two variables

X and y ; we may conceive this equation as derived by the elimination of

a constant c from a certain equation of the same order, which we shall

represent by

mdx4-ndy = 0,

and the complete integral

F (X, y, c) = 0,

which we shall designate by u. But, since every thing is reduced to

taking the constant c such, that the equation

Mdx+Ndy=rO,
may be the result of elimination, we perceive that is at the same time

permitted to vary the constant c, provided the equation

Mdx + Ndy = 0,

holds good ; in this case, the complete integral

F {X, y, c) =
will take a greater generality, and will represent an infinity of curves of

the same kind, differing from one another by a parameter, that is, by a

constant.

Suppose therefore that the complete integral being differentiated, by

considering c as the variable, we have obtained
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an equation which, for brevity, we shall write

d y = p d X + q d c (k)

Hence it is clear, that if p remaining finite, q d c is nothing, the result

of the elimination of c as a variable from

F (X, y, c) = 0,

and the equation (k), will be the same as that arising from c considered

constant, from

F (x, y, c) = 0,

and the equation

d y = p d X

(this result is on the hypothesis

Mdx+Ndy = 0),

for the equation (k), since

q d c = 0,

does not diifer from

d y = p dx;

but in order to have

q d c = 0,

one of the factors of this equation = constant, that is to say, that we

have

d c = 0, or q = 0.

In the first case, d c = 0, gives c = constant^ since that takes place

for particular integrals; the second case, only therefore conducts to a par-

ticular solution. But, q being the coefficient of d c of the equation (k),

we see that q = 0, gives

dx
This equation will contain c or be independent of it. If it contain c,

there will be two cases ; either the equation q = 0, will contain only c

and constants, or this equation will contain c with variables. In the first

case, the equation q = 0, will still give c =r constant, and in the second case,

it will give c = f (x, y) ; this value being substituted in the equation

F (x, y, c) = 0, will change it into another function of x, y, which will

satisfy the proposed, without being comprised in its complete integral,

and consequently will be a singular solution ; but we shall have a parti-

cular integral if the equation c = f (x, y), by means of the complete ^'a-

tegral, is reduced to a constant.

c 1
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Wlien the factor q = from the equation q d c = not containing

the arbitrary constant c, we shall perceive whether the equation q =
gives rise to a particular solution, by combining this equation with the

complete integral. For example, if from q = 0, we get x = M, and put

this value in the complete integral F (x, y, c) = 0, we shall obtain

c = constant = B or c = fy

;

In the first case, q = 0, gives a particular integral ; for by changing c

into B in the complete integral, we only give a particular value to the

constant, which is the same as when we pass from the complete integral

to a particular integral. In the second case, on the contrary, the value

fy introduced instead of c in the complete integral, will establish between

X and y a relation different from that which was found by merely re-

placing c by an arbitrary constant. In this case, therefore, we shall have

a particular solution. What has been said of y, applies equally to x.

It happens sometimes that the value of c presents itself under the form

— : this indicates a factor common to the equations u and U which is ex-

traneous to them, and which must be made to disappear.

Let us apply this theory to the research of particular solutions, when

the complete integral is given.

Let the equation be

y dx — x'dy = av'(dx* + dy')

of which the complete integral is thus found.

Dividing the equation by d x, and making

dy
df =P

we obtain

y — px = a V{1 + p«).

Then differentiating relatively to x and to p, we get

J J 1
apdp

dy — pdx-xdp= ^^/^^p.) ;

observing that

d y = p d X,

this equation reduces to

J .
apdp _xdp H TJT-^,—Sx =^ ^ V(l + p*)

and this is satisfied by making d p = 0. This hypothesis gives p = con-

stant = c, a value which being put in the above equation gives
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y — ex = a V(l + c*) (1)

This equadon containing an arbitrary constant c, which is not to be

found in the proposed equation, is the complete integral of it.

This being accomplished, the part q d c of the equation d y = p d x -f-

q d c will be obtained by differentiating the last equation relatively to c

regarded as the only variable. Operating thus we shall have

1 ,
a c d c „

consequently the coefficients of d c, equated to zero, will give us

ac , ,

^ = - V(l + C-)
^"^^

To find the value of c, we have

(1 + c')^x2 = a'c^,

which gives

C'= -T-^^-T. 1 +C' = -^
and

^(' + -=> = V(a'-x-) =

by means of this last equation, eliminating the radical of the equation (m)

we shall thus obtain

c = - V(a»-x^) ("5

This value and that of ^(1 + c^) being substituted in the equation (\)

will give us

x' __ a^
y+ V(a« — X*) " V(a2 — X*)

whence is derived

y = V(a^-x^),

an equation which, being squared, will give us

y^ = a« — x^;

and we see that this equation is a particular solution, for by differentiating

it we obtain

J xd X
d y = ;

this value and that of V (x '^ + y ^), being substituted in the equation

originally proposed, reduce it to

a^ = a«.

In the application which we have just given, we have determined the
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value of c by equating to zero the differential coefficient \-r^j- This

process may sometimes prove insufficient. In fact, the equation

dy = pdx + qdc
being put under this form

Adx + Bdy + Cdc =
where A, B, C, are functions of x and y, we shall thence obtain

tly = — -gdx — g dc (o)

dx = — -^dy — -^dc (p)

and we perceive that if all that has been said of y considered a function of

X, is applied to x considered a function of y, the value of the coefficient of

d c will not be the same, and that it will suffice merely that any factor of B
destroys in C another factor than that which may destroy a factor of A,

in order that the value of the coefficient of d c, on both hypotheses, may

appear entirely different. Thus although very often the equations

§ = 0,
c =

give for c the same value, that will not always happen ; the reason of

which is, that when we shall have determined c by means of the equation

dc - "'

dx
It will not be useless to see whether the hypothesis of -5—gives the same

result.

Clairaut was the first to remark a general class of equations susceptible

of a particular solution ; these equations are contained in the form

dy
. -n dy

y = ^x + F. ^"" dx ; dx
on equation which we shall represent by

y = px + Fp (r)

By differentiating it, we shall find

dy = pdx + xdp + (-j^) dp;

this equation, since d y = pdx, becomes
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and since d p is a common factor, it may be thus written

:

We satisfy this equation by making d p = 0, which gives p = const.

= c; consequently, by substituting this value in the equation (r) we

shall find

y = ex + F c.

This equation is the complete integral of the equation proposed, since

an arbitrary constant c has been introduced by integration. If we differ-

entiate relatively to c we shall get

Consequently, by equating to zero the coefficients of d c, we have

dFc -

which being substituted in the complete integral, will give the particular

solution.

THE INTEGRATION OF EQUATIONS OF PARTIAL DIFFERENCES.

An equation which subsists between the differential coefficients, com-

bined with variables and constants, is, in general, a partial differential

equation, or an equation of partial differences. These equations are thus

named, because the notation of the differential coefficients which they

contain indicates that the differentiation can only be eflPected partially

;

that is to say, by regarding certain variables as constant. This supposes,

therefore, that the function proposed contains only one variable.

The first equation which we shall integrate is this ; viz.

'dz>

Vdx/

f
If contrary to the hypothesis, z instead of being a function of two vari-

ables X, y, contains only x, we shall have an ordinary differential equation,

which, being integrated, will give

z = a X + c

bnt, in the present case, z being a function of x and of y, the i/s con-

tained in z have been made to disappear by differentiation, since differen-
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tiating relatively to x, we have considered y as constant We ought,

therefore, when integrating, to J3reserve the same hypothesis, and suppose

that the arbitrary constant is in general a function of y ; consequently, we

shall have for the integral of the proposed equation

z = ax + fy.
Required to integrate the equation

in which % is any function of x. Multiplying by d x, and integrating,

we get

z =/Xdx + py.

For example, if the function X were x ^ + a ", the integral would be

x^
z = — +a2x + ?)y.

In like manner, it is found that the integral of

is "

z = X Y + p y .

Similarly, we shall integrate every equation in which (t— ) is equal to

a function of two variables x, y. If, for example,

/d z\ __ X
Vdx/ ~ V ay + x^'

considering y as constant, we integrate by the ordinary rules, making the

arbitrary constant a function of y. This gives

z = v'Cay + x'^) + <py.

Finally, if we wish to integrate the equation

('^\ - ^

Vdx/ ~ V(y« — X*}

regarding y as constant, we get

z = sin.-'-- + py.

Generally to integrate the equation

(^)dx=F(x,y)dx,

we shall take the integral relatively to x, and adding to it an arbitrary

function of y, as the constant, to complete it, we shall find

z = /"FCx, y) dx + f y.
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Now let us consider the equations of partial differences which contain

two differential coefficients of the first order ; and let the equation be

'd Z\ . ^T /d z^

in which M and N represent given functions of x, y. Hence

'd^\ M /d

substituting this value in the formula

isent given functions of x,

/d z\ _ M /d z\

which has no other meaning than to express the condition that z is a

function of x and of y, we obtain

or

, /dzxNdx — Mdy

Let X be the factor proper to make Ndx — Mdya complete differ-

ential d s ; we shall have

X (N d x — M d j) = d s.

By means of this equation, we shall eliminate Ndx— M d y from the

preceding equation, and we shall obtain

^" = rN'(§l)-^^-

Finally, if we remark that the value of
(y- ) is indeterminate, we may

take it such that —^ . (-^
—\ d s may be integrable, which would make it

a function of s ; for we know that the differential of every given function

of s must be of the form F s . d s. It therefore follows, that we may

assume

an equation which will change the preceding one into

d z = F s . d s

which gives

z = © s.
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Integrating by this method the equation

we have in this case

M = -y,
and

N = x;

consequently

d s = X (x d X + y d y).

It is evident that the factor necessary to make this integrable is z.

Substituting this for X and integrating,we get

s = x'^ + y*.

Hence the integral of the proposed equation is

z = f (x= + y').

Now let us consider the equation

H^) +^0 + ^ = o^

in which P, Q, R are functions of the variables x, y, z ; dividing it by P
and making

I = M, -^ = N,

we shall put it under this form

:

and again making

/d z\

and

'd z

it becomes

i^) = ^'

p + Mq + N = (a)

This equation establishes a relation between the coefficients p and q ot

the general formula

= pdx + qdy;
without which relation p and q would be perfectly arbitrary, for as it has

been already observed, this formula has no other meaning than to indicate

that z is a function of two variables x, y, and that function may be any
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whatever ; so that we ought to regard p and q as mdeterminate m Jiis last

equation. Eliminating p from it, we shall obtain

dz + Ndx = q(dy — Mdx)
and q will remain always indeterminate. Hence the two members of this

equation ai-e heterogeneous (See Art. 6. vol. 1), and consequently

dz + Ndx = 0, dy — Mdx = (b)

If P, Q, R do not contain the variable z, it will be the same of M and

N; so that the second of these equations will be an equation of two varia-

bles X and y, and may become a complete diflferential by means of a factor

X. This gives

X (d y — M d x) = 0.

The integral of this equation will be a function of x and of y, to wlncn

we must add an arbitrary constant s ; so that we shall have

F(x, y) = s;

whence we derive

y = f(x, s).

Such will be the value of y given us by the second of the above equa-

tions; and to show that they subsist simultaneously we must substitute

this value in the first of them. But although the variable y is not shown,

it is contained in N. This substitution of the value of y just found,

amounts to considering y in the first equation as a function of x and of

the arbitrary constant s. Integrating therefore this first equation on that

hypothesis we find

z = —yN d X + p s.

To give an example of this integration, take the equation

and comparing it with the general equation (a), we have

M=-^, N = -A V(x^ + y^).

These values being substituted in the equations (b) will change them to

d z — — V (x» -}- y2) d x = 0, d y — -^ d X = (cj

Let X be the factor necessary to make the last of these integrable, and

we have

or rather

x(dy_I-dx) =0,
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1 V
which is integrable when X = — ; for then the integral is -^ = constant.

Pat therefore

X

and consequently

y = s X.

By means of this value of y, we change the first of the equations

(c) into

1 V X*— s* X* J _
d z — a . d X = 0,

X

or rather into

dz = adx V(l + s*).

Integrating on the supposition that s is constant, we shall obtain

z = a/dx V (1 + s') + ?)s

and consequently

z = a X V (1 + s*) + p s.

Substituting for s its value we get

= a ^/ (X' + y') + f (i).
x

In the more general case where the coefficients P, Q, R of the equation

contain the three variables x, y, z it may happen that the equations

(b) contain only the variables which are visible, and which consequently

we may put under the forms

d z = f (x, z) d X = 0, d y = F (x, y) d X.

These equations may be treated distinctly, by writing them as above,

z =/f(x,z)dx + z, y =/F(x,y)dx + *y

for then we see we may make z constant in the first equation and y in

the second ; contradictory hypotheses, since one of three coordinates

X, y, z cannot be supposed constant in the first equation without its being

not constant in the second.

Let us now see in what way the equations (b) may be integrated in the

case where they only contain the variables which are seen in them.

Let /» and X be the factors which make the equations (b) integrable.

If their integrals thus obtained be denoted by U and by V, we have

A(dz + Ndx) = dU, /x(dy — Mdx) = d V.
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By means of these values the above equation vvrill become

dUrrq^dV (d)

.

Since the first member of this equation is a complete differential the

second is also a complete differential, which requires q — to be a function

of V. Represent this function by f V. Then the equation (d) will

become

dU = pV.dV
which gives, by integrating,

U = «i»V.

Take, for example, the equation ^

"yCjl) +'''(d-y) = y^:

which being written thus, viz.

/d z\ , X /d z\ z

we compare it with the equation

(ai) +M0 + N = «
.

and obtain

M = '^, N = —

-

y X

By means of these values the equations (b) becomes

dz .dx=0,dy dx = 0;
X y

which reduce to

xdz — zdx = 0,ydy — xdx = 0.

Tiic factors necessary to make these integrable are evidently—j and 2.

Substituting which and integrating, we find— and y * — x ' for the in-

tegrals. Putting, therefore, these values for U and V in the equation

U = * V, we shall obtain, for the integral of the proposed equation,

^=a.(y^-x^)

It must be remarked, that, if we had eliminated q instead of p, the equa-

tions (b) would have been replaced by these

Mdz+Ndy = 0,dy— Mdx = 0. . . . (e)

and since all that has been said of equations (b) applies equally to these,

d
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It follows that, in the case where the first of equations (b) was not in-

te<»rable, we may replace those equations by the system of equations (e),

which amounts to employing the first of the equations (e) instead of the

first of the equations (b).

For instance, if we had

this equation being divided by a z and compared with

will give us

M = -^,N=^y
a a z

and the equations (b) will become •

dz + '^^dxrzOjdy+^dxrrO;
a z •'a

which reduce to

azdz + xydx = 0,ady + xdx,= . . . (f)

The first of these equations, which, containing three variables, is not

immediately integrable, we replace by the first of the equations (e), and

we shall have, instead of the equations (f), these

— ^dz + |^dy = 0,ady + xdx = 0;

which reduce to

2ydy — 2zdz = 0,2ady + 2xdx = 0;

equations, whose integrals are

y* — z*,2ay-f-x*'
These values being substituted for U and V, will give us

y* — z» = p (2 ay + x«).

It may be remarked, that the first of equations (e) is nothing else than

the result of the elimination of d x from the equations (b)

.

Generally we may eliminate every variable contained in the coefficients

M, N, and in a word, combine these equations after any manner what-

ever ; if after having performed these operations, and we obtain two in-

tegrals, represented by U = a, V = b, a and b being arbitrary constants,

we can always conclude that the integral is U = * V. In fact, since

a and b are two arbitrary constants, having taken b at pleasure, we may

compose a in terms of b in any way whatsoever ; which is tantamount to

saying that we may take for a an arbitrary function of b. This condition

will be expressed by the equations a = f (b). Coiisequently, we shall
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have the equations U = p b, V = b, in which x, y, z represent the same

coordinates. If we eliminate (b) from these equations, we shall obtain

U = p V.
This equation also shows us that in making V = b, we ought to have

U = p b = constant ; that is to say, that U and V are at the same time

constant; without which a and b would depend upon one another, where-

as the function <p is arbitrary. But this is precisely the condition expressed

by the equations U = a, V = b.

To give an application of this theorem, let

Dividing by z x and comparing it with the general equation we

have

M = — ^, N = — -^;
X zx

and the equations (b) give us

d z —^ d X = 0, d y + ^ d X =
zx "^ X

or

zxdz — y*dx = 0, xdy-fydz= 0.

The first of these equations containing three variables we shall not at-

tempt its integration in that state; but if we substitute in it for y d x its

vahie derived from the second equation, it will acquire a common factor

x, which being suppressed, the equation becomes

zdz-fydy = 0,

and we perceive that by multiplying by 2 it becomes integrable. 1 he

other equation is already integrable, and by integrating we find

z* + y* = a, xy = b,

whence we conclude that

z' + y' = ?xy.

We shall conclude what we have to say upon equations of partial differ-

ences of the first order, by the solution of this problem.

Given an equation "which contains an arbitrai-y function of one or more

variables^ tofnd the equation ofpartial dijfh-ences which produced it.

Suppose we have

z = F(x'' + y»).

Make
X* + y^ =u (0

and the equation becomes

z = F u.

d2
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The difler^iitial of F u must be of the form ^ u . d u. Conse-

d z = d u . 9 u

If we tal?e tlie differential of z relatively to x only, that is to say, in

regarding y as constant, we ought to take also d u on the same

hypothesis. Consequently, diriding the preceding equation by d x,

we get

/d z\ /d u\ *

fc) = (dl^)^"-

Again, considering x as constant and y as variable, we shall similarly

find

'd z\ /d u

(d^) = (d^)^"-y/ \dy.

But the values of these coefficients are found from the equation (f).

which givesG

(^D=-.(^)=^y
Hence our equations become

and eliminating <p u from these, we get the equation required j viz.

/d Zy. /d Zx

As another example, take this equation

z« + 2 ax = F (x -^ y).

Making

x — y = u,

It becomes

z'4-2ax=Fu
ar.d differ ntiating, we get

d (z * + 2 a x) = d u ^ u

.

Then taking the differential relatively to x, we have

rd to y, we getand similarly, with regard to y, we get

'd z\ /d u
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But since

X — y = u

which, being substituted in the above equation, gives us

2z(^) +2a = pu,2z(^) =-fU
and eliminating <p u from these, we have the equation required ; viz.

We now come to

EQUATiaNS OP PARTIAL DIFFERKNCKS OF TH^ SECOND ORDER.

An equation of Partial Differences of the second ojxleif in which z is a

function of two variables x, y ought always to contain one or more of the

differential coefficients

/d * z\ /d * Z\ / d * z \

VdlTV* Vjp/' Id^Hdy/

independently of the differential coefficients which enter equations of the

first order.

We shall merely integrate the simplest equations of this kind, and shall

begin with this, viz.

il^d = »•

Multiplying by d x and integrating relatively to x we add to the inte-

gral an arbitrary function of y ; and we shall thus get

/dz\

(d^) = py

Again multiplying by d x and integrating, the integral will be com-

pleted when we add another arbitrary function of y, viz. -v}/ y. We thus

obtain

z = xpy + ^'y.

Now let us integrate the equation.

d8
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in which P is any function of x, y. Operating as before we first obtain

and the second integration gives us

z =/{/Pdx + fy]dx + ^}.y.

In the same manner we integrate

&-^
and find

2 =/ipx +/Pdy} dy + ^^x.

The equation

\djdk) " ^

must be integrated first relatively to one of the variables, and then rela-

tively to the other, which will give

z =/{py +/Pdx} dy + px.

In general, similarly may be treated the several equations

idf-) = ^' (dxriy""*-') = ^' (dx^dy"-*) = ^' ^'''

in which P, Q, R, &c. are functions of x, y, which gives place to a series

of integrations, introducing for each of them an arbitrary function.

One of the next easiest equations to integrate is this

:

Cdp) + P (^) = Q=

in which P and Q will always denote two functions of x and y.

Make

and the proposed will transform to

0+Pu = Q.

To integrate this, we consider x constant, and then it contains only

two variables y and u, and it will be of the same form as the equation

dy + Py dx = Qdx
whose integral (see Vol. 1. p. 109) is

y = e-/P'"' J/Qe/P-^Mx + C}.
Hence our equation gives

u = c-/"M/Qe-^^,dy + ^xj.
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But

Hence by integration we get

z =/{e--^P<Jy(/Qe-^P'iydy) + px} dy + 4x.

By the same method we may integrate

(d*z \ Ti /d z\ _ d'z . T» /d z\ ^
JTdy) + P

(dx) = Q' dTd^ + P
(37) = Q'

in which P, Q represent functions of x, and because of the divisor d x d y,

we perceive that the value of z will not contain arbitrary functions of the

same variable.

THE DETERMINATION OF THE ARBITRARY FUNCTIONS WHICH ENTER

THE INTEGRALS OF EgUATIONS OF PARTIAL DIFFERENCES O.Y

THE FIRST ORDEK.

The arbitrary functions which complete the integrals of equations of

partial differences, ought to be given by the conditions arising from the

nature of the problems from which originated these equations ; problems

generally belonging to the physical branches of the Mathematics.

But in order to keep in view the subject we are discussing, we shall

limit ourselves to considerations purely analytical, and we shall first seek

what are the conditions contained in the equation

/d z\

Since z is a function of x, y, this equation may be ^msidered as that of

a surface. This surface, from the nature of its equation, has the following

property, that (-r—) must always be constant. Hence it follows that

every section of this surface made by a plane parallel to that of x, y is a

straight line. In fact, whatever may be the nature of this section, if we

divide it into an infinity of pat-ts, these, to a small extent, may be con-

sidered straight lines, and will represent the elements of the section, one

of these elements making with a parallel to the axis of abscissae, an angle

rdz
allwhose tangent is (-7—) • Since this angle is constant, it follows that

the angles formed in like manner by the elements of the curve, with par-
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allels to the axis of abscissae will be equal. Wluch proves that the sec-

tion in question is a straight line.

We might arrive at the same result by considering the integral of the

equation

'dz>

(H) =

which we know to be

z = ax + ^y,

since for all the points of the surface which in the cutting plane, the or-

dinate is equal to a constant c. Replacing therefore f y by f c, and

making p c = C, the above equation becomes

z = ax + C;

this equation being that of a straight line, shows that the section is a

straight line.

The same holding good relatively to other cutting planes which may be

drawn parallel to that of x, 2, we conclude that all these planes will cut the

surface in straight lines, which will be parallel, since they will each form

with a parallel to the axis of x, an angle whose tangent is a.

If, however, we make x = 0, the equation z = a x + f y reduces to

z = f y, and will be that of a curve traced upon the plane of y, z; this

curve containing all the points of the surface whose coordinates are x = 0,

will meet the plane in a point whose coordinate is x =0; and since we

have also y = c, the third coordinate by means of the equation

z = ax + C
will be

'

z = C.

What has been said of this one plane, applies equally to all others

which are parallel to it, and it thence results that through all the points

of the curve whose equation is z = p y, and which is traced in the plane

of y, z, will pass straight lines parallel to the axis of x. This is ex-

pressed by the equations

'd zy

(D =

and

z = ax + f y;

and since this condition is always fulfilled, whatever may be the figure of

the curve whose equation is z =r p y, we see that this curve is arbi-

trary.

From what precedes, it follows that the curve whose equation is z = py,
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may be composed of arcs of different curves, which unite at their extre-

mities, as in this diagram

A C

or which have a break off in their course, as in this figure.

N

In the first case the curve is discontinuous, and in the second it is dis-

contiguous. We may remark that in this last case, two different ordinates

P M, P N corresponding to the same abscissa A P; finally, it is possible,

that without being discontiguous, the curve may be composed of an in-

finite series of arcs indefinitely small, which belong each of them to

different curves ; in this case, the curve is irregular, as will be, for

instance, the flourishes of the pen made at random ; but in whatever way
it is formed, the curve whose equation is z = p y, it will suffice, to con-

struct the surface, to make a straight line move parallelly with this condi-

tion, that its general point shall trace out the curve whose equation is

z = py,
and vhich is traced at random upon the plane of y, z.

If instead of the equation

(ffs) = "•

we had

in which X was a function of x, then in drawing a plane parallel to the

plane (x, z), the surface will be cut by it no longer in a straight line, as

in the preceding case. In fact, for every point taken in this section, the

tangent of the angle formed by the element produced of the section, with

a parallel to the axis of x, will be equal to a function X of the abscissa x

of this point ; and since the abscissa x is different for every point it foJ-
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lows that this angle will be different at each point of the section, which

section, therefore, is no longer, as before, a straight line. The surface

will be constructed, as before, by moving the section parallelly, so that its

point may ride continually in the curve whose equation is z = ^ y.

Suppose now that in the preceding equation, instead of X we have a

function, P of x, and of y. The equation

(p.) = P.

containing three variables will belong still to a curve surface. If we cut

tliis surface by a plane parallel to that of x, z, we shall have a section in

which y will be cwistant ; and since in all its points (j— ) will be equal

to a function of the variable x, this section must be a curve, as in the pre-

ceding case. The equation

'dz>

(n) P

being integrated, we shall have for that of the surface

z =/Pdx + py;
if in this equation we give successively to y the increasing values y', y%
y"', &c. and make P', P", P'", &c. what the function P becomes in these

cases, we shall have the equations

z=/PMx + <py, z=/P"dx + ?y" »

z =/P"'dx + f y'", z =/F'''dx + ^y"" &c. /
and we see that these equations will belong to curves of the same nature,

but different in form, since the values of the constant y will not be the

same. These curves are nothing else than the sections of the surface

made by planes parallel to the plane (x, z) ; and in meeting the plane

(y, z) they will form a curve whose equation will be obtained by equating

to zero, the value of x in that of the surface. Call the value of/Pdx,
in this case, Y, and we shall have

z = Y + py;
and we perceive that by reason of <p y, the curve determined by this equa-

tion must be arbitrary. Thus, having traced at pleasure a curve, Q R S,

upon the plane (y, z), if we represent by R L the section whose equation

Q
L

IS t =yp'd x 4- py', we shall move this section, always keeping the ex-
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tremity R applied to the curve Q R S ; but so that this section as it

movTes, may assume the successive forms determined by the above group

of equations, and we shall thus construct the surface to which will belong

the equation

Finally let us consider the general equation

whose integral is U = 9 V. Since U = a, V = b, each of these equa^

tions subsisting between three coordinates, we may regard them as be-

longing to two surfaces ; and since the coordinates are common, they

ought to belong to the curve of intersection of the two surfaces. This

being shown, a and b being arbitrary constants, if in U = a, we give to

X and y the values x', y' we shall obtain for z, a function of x', of y' and

of a, which will determine a point of the surface whose equation is U = a.

This point, which is any whatever, will vary in position if we give succes-

sively different values to the arbitrary constant a, which amounts to say-

ing that by making a vary, we shall pass the surface whose equation is

U = a, through a new system of points. This applies equally to V = b,

and we conclude that the curve of intersection of the two surfaces will

change continually in position, and consequently will describe a curved

surface in which a, b may be considered as two coordinates ; and since

the relation a = p b which connects these two coordinates, is arbitrary

we perceive that the determination of the function p amounts to making

a surface pass through a curve traced arbitrarily.

To show how this sort of problems may conduct to analytical condi-

tions, let us examine what is the surface whose equation is

We have seen that this equation being integrated gives

z = f (x* + y*).

Reciprocally we hence derive

x*-f.y' = *z.

If we cut the surface by a plane parallel to the plane (x, y) the equation

of the section will be

x^ -f y« = * c;

and representing by a * the constant * c, we shall have

X* + y* = a^
This equation belongs to the circle. Consequently the surface will



Ix INTRODUCTION.

hare this property, viz. that every sectjoo maJe by a plane iMrallel to the

plane (x, y) will be a circle.

This property is also indicated by the equation

yO = " (dy)

for this equation gives

dy
^ dx

This equation shows us that the subnormal ought to be always equal to

the abscissa which is the property of the circle.

The equation z = P (x* + y*) showing merely that all the sections

parallel to the plane (x, y) are circles, it follows thence that the law ac-

cording to which the radii of these sections ought to increase, is not

comprised in this equation, and that consequently, every surface of revo-

lution will satisfy the problem ; for we know tliat in this sort of surfaces,

the sections parallel to the plane (x, y) are always circles, and it is need-

less to say that the generatrix which, during a revolution, describes the

surface, may be a curve discontinued, discontiguous, regular or irregular.

' Let us therefore investigate the surface for which this generatrix will

be a parabola A N, and suppose that, in this hypothesis, the surface is

cut by a plane A B, which shall pass through the axis of z ; the trace of

L

this plane upon the plane (x, y) will be a straight line A L, which, being

drawn through the origin, will have the equation y = a x ; if we repre-

sent by t the hypothenuse of the right angled triangle A P Q, constructed

upon the plane (x, y) we shall have

t« = X* + y'i
but t being the abscissa of the parabola A M, of which Q M = z is the

ordinate, we have, by the nature of the curve,

t * = b z.

Putting for t * its value x * + y *, we get

z = \j(y* + x«),orz = ~(a«x«-f-x') = |^x'(l + fl')r
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and making

i (a- + 1) = m,

we shall obtain

% = mx*;

so that the condition prescribed in the hypothesis, where the generatrix

is a parabola, is that we ought to have

z = m X % when y = a x.

Let us now investigate, by means of these conditions, the arbitrary

function which enters the equation z = p (x * -4- y *). For that pur-

pose, we shall represent by U the quantity x* + y '» which is effected by

the symbol p, and the equation then becomes

z = pU;
^nd we shall have the three equations

x* + y'z= U, y = ax, z = mx*.

By means of the two first we eliminate y and obtain the value of x

'

which being put into the third, will give

2: = m.5-p^^

an equation which reduces to

th^ value of z being substituted in the equation z = p U, will change

it to

and putting the value of U in this equation, we shall find that

and we see that the function is determined. Substituting this value of

f (x * -|- y •) in the equation z = p (x * + y ^)> we get

z=l(x« + y^),

for the integral sought, an equation which has the property required,

since the hypothesis of y = ax gives

z = m x '.

This process is general ; for, supposing the conditions which determine

the arbitrary constant to be that the integral gives F (x, y, z) = 0, when

we have f (x, y, z) =0, we shall obtain a third equation by equating to
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U the quantity which follows f, and then by eliminating, successively,

two of the variables x, y, z, we shall obtain each of these variables in a

function of U ; putting these values in the integral, we shall get an equa-

tion whose first member is <p U, and whose second member is a compound

expression in terms of U ; restoring the value of U in terms of the vairi-

bles, the arbitrary function will be determined.

THE ARBITRARY FUNCTIONS WHICH ENTER THE INTEGRALS OF THE

E2UATIONS OF PARTIAL DIFFERENCES OF THE SECOND ORDER.

Equations of partial differences of the second order conduct to integrals

which contain two arbitrary functions ; the determination of these func-

tions amounts to making the surface pass through two curves which may
be discontinuous or discontiguous. For example, take the equation

(d * z\ ^

•whose integral has been found to be

z = xpy4--N|/y

Let A X, A y, A z, be the axis of coordinates; if we draw a plane

K L parallel to the plane (x, z), the section of the surface by this plane

will be a straight line ; since, for all the points of this section, y being

equal to A p, if we represent A p by a constant c, the quantities ?y, •4' y

will become p c, -^ c, and, consequently, may be replaced by two con-

stants, a, b, so that tlie equation

z = xfy + 4y
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will become

z = a X -f b,

and this is the equation to the section made by the plane K L.

To find the point where this section meets the plane (y, z) make
X = 0, and the equation above gives z = -vj/ y, which indicates a curve

a m b, traced upon the plane (y, z). It will be easy to show that the

section meets the curve a m b in a pomt m ; and since this section is a

straight line, it is only requisite, to find the position of it, to find a second

point. For that purpose, observe that when x = 0, the first equation

reduces to

whilst, when x = 1, the same equation reduces to

z = p y + -^ y.

Making, as above, y = Ap = c, these two values of z will become

z = b, z = a 4- b,

and determining two points m and r, taken upon the same section, m r

we know to be in a straight line. To construct these points we thus pro-

ceed : we shall arbitrarily trace upon the plane (y, z) the curve a m b,

and through the point p, where the cutting plane K L meets the axis of

y, raise the perpendicular pm = b, which will be an ordinate to the

curve ; we shall then take at the intersection H L of the cutting plane,

and the plane (x, y), the part p p' equal to unity, and through the point

p', we shall draw a plane parallel to the plane (y, z), and in this plane

construct the curve a' m' b', after the modulus of the curve a m b, and so

as to be similarly disposed ; then the ordinate m' p' will be equal to m p

;

and if we produce m' p' by m' r, which will represent a, we shall deter-

mine the point r of the section.

If, by a second process, we then pi'oduce all the ordinates of the curve

a' m'b', we shall construct a new curve a' r' b', which will' be such, that

drawing through this curve and through a m b, a plane parallel to the

plane (x, z), the two points where the curves meet, will belong to the

same section of the surface.

From what precedes, it follows that the surface may be constructed, by

moving the straight line m r so as continually to touch the two curves,

a m b, a' m' b'.

This example suffices to show that the determination of the arbitral'^

functions which complete the integrals of equations of partial differences

of the second order, is the same as making the surface pass through two

curves, which, as well as the functions themselves, may be discontinuous,

discontiguous, regular or irregular.
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CALCULUS OF VARIATIONS.

If we have given a function Z = F, (x, y, j/, y"), wherein y', y" mean

/dyx /d^yx

y itself being a function of x, it may be required to make L have certain

properties, (such as that of being a maximum, for instance) whether by

assigning to x, y numerical values, or by establishing relations between

these variables, and connecting them by equations. When the equation

y = p X is given, we may then deduce y, y', y" ... in terms of x and sub-

stituting, we have the form

Z = f X.

By the known rules of the differential calculus, we may assign the values

ofX, when we make of x a maximum or minimum. Thus we determine what

are the points of a given curve, for which the proposed function Z, is

greater or less than for every other point of the same curve.

But if the equation y = p x is not given, then taking successively for

px different forms, the function Z = fx will, at the same time, assume

different functions of x. It may be proposed to assign to ^ x such a

form as shall make Z greater or less than every other form of p x,yor the

same numerical value ofx 'whatever it may he in other respects. This latter

species of problem belongs to the calculus of variations. This theory

relates not to maxima and minima only; but we shall confine our-

selves to these considerations, because it will suffice to make known all

the rules of the calculus. We must always bear in mind, that the varia-

bles X, y are not independent, but that the equation y = p x is unknown,

and that we only suppose it given to facilitate the resolution of the prob

lem. We must consider x as any quantity whatever which remains the same

for all the differential forms of f x ; the forms of f, p', f" .... are therefore

variable, whilst x is constant.

In Z = F (x, y, y', y". . .) put y + k for y, y' + k', for y'. .
.

, k being

an arbitrary function of x, and k', k," . . . the quantities

dk^ dMc
dx' dx»"*

But, Z will become

Z, = F(x,y + k,y + k', y- + V'...)



ANALYTICAL GEOMETRY. Ixv

Taylor's theorem holds good whether the quantities x, y, k be depen-

dent or independent. Hence we have

so that we may consider x, y, y', y" . . . as so many independent variables.

The nature of the question requires that the equation y = 9 x should

be determined, so that for the same value of x, we may have always

Z^ > Z, or Z^ •< Z : reasoning as in the ordinary maxima and minima,

we perceive that the terms of the first order must equal zero, or that we

have

''(dT) + >''(d|) + ''"(P) + ^^- = »-

Since k is arbitraiy for every value of x, and it is not necessary that its

value or its form should remain the same, when x varies or is constant,

k', k" . . . is as well arbitrary as k. For we may suppose for any value

X = X that k = a + b (x — X) + ^ c (x — j^) « + &c., X, a, b, c . .

.

being taken at pleasure ; and since this equation, and its differentials,

ought to hold good, whatever is x, they ought also to subsist when
x = X, which gives k = a, k' = b, k" = c, &c. Hence the equation

Z, = Z -f- . . . cannot be satisfied when a, b, c . . . are considered inde-

pendent, unless (see 6, vol. I.)

(af) = »'(dT) = '''(^) = «-(^».)=''>

n being the highest order of y in Z. These different equations subsist

simultaneously, whatever may be the value of x ; and if so, there ought

to be a maximum or minimum ; and the relation which then subsists be-

tween X, y will be the equation sought, viz. y = f x, which will have the

property of making Z greater or less than every other relation between

X and y can make it. We can distinguish the maximum from the mini-

mum from the signs of the terms of the second order, as in vol. L
p. (3L)

But if all these equations give different relations between x, y, the

problem will be impossible in the state of generality which we have

ascribed to it ; and if it happen that some only of these equations subsist

mutually, then the function Z will have maxima and minima, relative to

some of the quantities y, y', y" . •. without their being common to them

all. The equations which thus subsist, will give the relative maxima and

minima. And if we wish to make X a maximum or minimum only relatively
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' lo one of the quantities y, y', y'' . .
. , since then we have only one equa-

tion to satisfy, the problem will be always possible.

From the preceding considerations it follows, that first, the quantities

X, y depend upon one another, and that, nevertheless, we ought to make
them vary, as if they were independent, for this is but an artifice to get

the more readily at the result.

Secondly, that these variations are not indefinitely small ; and if we em-

ploy the differential calculus to obtain them, it is only an expeditious

means of getting the second term of the developement, the only one

which is here necessary.

Let us apply these general notions to some examples.

Ex. 1. Take, upon the axis of x of a curve, two abscissas m, n; and

draw indefinite parallels to the axis of y. Let y =• p x be the equation

of this curve: if through any point whatever, we draw a tangent, it will

cut the parallels in points whose ordinates are

1 = y + y' ("^ — x), h = y + y' (n — x)

.

If the form of p is given, every thing else is known ; but if it is not

« given, it may be asked, what is the curve which has the property of

having for each point of tangency, the product of these two ordinates less

than for every other curve.

Here we have 1 X h ; or

Z= {y-x (ra — x)y'] + Jy + (n-x)y'}.
From the enunciation of the problem, the curves 'which pass through the

same point (x, y) have tangents taking different directions, and that which

is required, ought to have a tangent, such that the condition Z = maximum

is fulfilled. We may consider X andy constant; whence

/d^\ _ 2/ 2 X — m — n _ 1 1

\ d y'/ ~ * y (x—m) (x—n) ~x —mx — n'

Then integrating we get

y' = C(x— m) (x— n).

The curve is an ellipse or a hyperbola, according as C is positive or

negative ; the vertexes are given by x = m, x = n ; in the first case, the

prod uct h X 1 or Z is a maximum^ because y" is negative ; in the second,

Z is a minimum or rather a negative maximum ; this product is moreover

constant, and 1 h = — i C (m — n)*, the square of the semi-axis.

Ex. 2. What is the curve for which, in each of its points, the square of

the subnormal added to the abscissa is a minimum P

We have in this case

Z = (y/ + x)«
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whence we get two equations subsisting mutually by making

y y' + X =
and thence

. X * + y 2 = r '.

Therefore all the circles described f''om the origin as a center wf J alone

satisfy the equation.

The theory just expounded has not been greatly extended ; but it serves

as a preliminary developement of great use for the'comprshension of a

far more interesting problem which remains to be considered. This re-

quires all the preceding reasonings to be applied to a function of the form

/ Z: the sign y indicates the function Z to be a differential and that after

having integrated it between prescribed limits it is required to endow it

with the preceding properties. The difficulty here to fae overcome is that

of resolving the problem without integrating.

When a body is in motion, we may coujpare together either the differ-

ent points of the body in one of its positions or the plane occupied suc-

cessively by a given point. In the first case, the body is considered fixed,

and the symbol d will relate to the change of the coordinates of its surface

;

in the second, we must express by a convenient symbol, variations alto-

gether independent of the first, which shall be denoted by 3. When we

consider a curve immoveable, or even variable, but taken in one of its po-

sitions, d X, d y . . . announce a comparison between its coordinates ; but

to consider the different planes which the same point of a curve occupies,

the curve varying in form according to any law whatever, we shall write 3

X, 3 y . . . which denote the increments considered under this point of view,

and are functions of x, y ... In like manner, d x becoming d (x -f 3 x)

will increase by d 5 x ; d * x will increase by d ' 3 x, &c.

Observe that the variations indicated by the symbol b are finite, and

wholly independent of those which d represents ; the operations to which

these symbols relate being equally independent, the order in which they

are used must be equally a matter of indifference as to the result. So

that we have
3 . d X = d . 3 x
d^3x = 3.d*x

&c.

fhV=^* U.

and so on.

It remains to establish relations between x, y, 7. . . .such thatyZ may
be a maximnm or a minimum letween given limits. That the calculus may

be rendered the more symmetrical, we shall not suppose any differential
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constant ; moreover we shall only introduce three variables because it will

be easy to generalise the result To abridge the labour of the process,

make
d X = x^, d * X = X/^, &c.

so that

z = F (x, x„ x,„ . . . y^ y„ y,„ . . . z, z„ z,, . . .).

Now X, y and z receiving the arbitrary and finite increments 3 x, 5 y,

3 ^ d X or X, becomes

d (x + 3 x) = d X + a d X or x, + 3 X,.

In the same manner, x,, increases by d x^, and so on ; so that develop-

ing Z, by Taylor's theorem, and integratingy Z becomes

/•Z,=/Z+/{(^|)^x + (^)ay+(^)az+(.^)a.,

The condition of a maximum or minimum requires the integral of the

terms of the first order to be zero between given limits ivhatever may be

3 X, 3 y, 3 z as we have already seen. Take the differential of the known

function Z considering x, x^, x^^ . . . y, y^, y^, . . . as so many independent

variables; we shall have

dZ=mdx + ndx^ + pdx,,+... Mdy + Ndy,. . .+ (udz+ vdz, ...

ni, n . . . M, N . . . /x, v . . . being the coefficients of the partial differences

of Z relatively to x, x^ . . . y, y, . . . z, z^, . . . considered as so many varia-

bles ; these are therefore known functions for each proposed value of Z.

Performing this differentiation exactly in the same manner by the symbol

2, we have

3 Z = m ax + n 8d X + p 3d«x + q 3 d'x

+ M3y + N3dy + P3d'y + qad^y + . . . ^(A)

-fj«,3z+ v3dz + '3-3d*z+p/3d^y +

+ q3d'x + . . . ^

+ qad^y + . . . t
+ V 3 d ^ y + . . . )

But this known quantity, whose number of terms is limited, is precisely

that which is under the sign f, in the terms of the first order of the de-

velopement : so that the required condition of max. or min. is that

between given limits, whatever may be the variations 3 x, 3 y, 3 z. Ob-

serve, that here, as before, the differential calculus is only employed as a

means of obtaining easily the assemblage of terms to be equated to zero;

so that the variations are still any whatever and finite.
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We have said that d . 3 x may be put for d . 6 x ; thus the first hne is

equivalent to

m5x + n.d5x + p.d*3x+q.d'5x + &c.

m, n . . . contains differentials, so that the defect of homogeneity is here

only apparent. To integrate this, we shall see that it is necessary to

disengage from the symbol f as often as possible, the terms which con-

tain d 3. To eflfect this, we integrate hy 'parts which gives

ynd3x = n. Sx

—

/dn.3x
/p.d2ax = p d ^x — d p 5x+/d'p3x
/qd^ax=qd'^ax-~dq.dax+ d== q. d x —/d' q . 3 x

&c.

Collecting these results, we have this series, the law of which is easily

recognised ; viz.

/{m — d n + d « p — d 3 q 4- d * r — . . .) 3 X

+ (n— dp + d*q — d^r + d^s — ...)3x

+ (p— dq + d«r— d^s + dn — ...)dax

+ (q —- d r + . . .) d * 3 x

+ &c.

The integral of (A) ory . 3 z = , becomes therefore

(B).../{(m- d n + d^ p-...)3x+(M-d N+d 2 P-...)3 y+ (/^d i^...)3z}=0

C (n-dp+ d2q...)3x-f(N-dP+d2Q_...)3y+ (»-d*...)dz
(C)...^ +(p-dq + d==r...)d3x+(P-dQ+ ...)d3y + (^-d;^...)d3z

(.+(q-dr...) d^3x...+ K =
K being the arbitrary constant. The equation has been split into two,

because the terms which remain under the signy cannot be integrated, at

least whilst 3 x, 3 y, 3 z are arbitrary. In the same manner, if the nature

of the question does not establish some relation between 3 x, 3 y, 3 z, the

independence of these variations requires also that equation (B) shall again

make three others ; viz.

0= m — d n + d * p — d » q +d * r — . . . '),

0=M — dN+d=P — d3Q+d*R— ... V. . (D)
= /i— dy + d«ff — d';^/ + d-^g — . . . J

Consequently, to find the relations between x, y, z, which make y Z a

maximum, we must take the differential of the given function Z by con-

sidering x, y, z, d X, d y, d z, d ^ x, ... as so many independent vari-

ables, and use the letter 3 to signify their increase ; this is what is termed

taking the variation of Z. Comparing the result with the equation (A),

we shall observe the values of m, M, /tt, n, N . . . in terms of y, y, z, and

e3
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their differences expressed by d. We must then substitute these in the

equations (C), (D) ; the first refers to the limits between which the

maximum should subsist; the equations (D) constitute the relations re-

quired; they are the differentials of x, y, z, and, excepting a case of

absurdity, may form distinct conditions, since they will determine nume-
rical values for the variables. If the question proposed relate to Geo-
metry, these^ equations are those of a curve or of a surface, to which

belongs the required property.

As the integration is effected and should be taken between given limits,

the terms which remain and compose the equation (C) belong to these

limits: il is become of the form K + L = 0, L being a function of

X, y, z, 3 X, 3 y, 3 z . . . Mark with one and two accents the numerical

values of these variables at the first and second limit. Then, since the

integral is to be taken between these limits, we must mark the different

terms of L which compose the equation C, first with one, and then with

two accents ; take the first result from the second and equate the differ-

ence to zero ; so that the equation

L// — L, =
contains no variables, because x, d x . . . will have taken the values

x^ 3 x^ . . . x^^ 8 x^^ . . . assigned by the limits of the integration. We
must remember that these accents merely belong to the limits of the

integral.

There are to be considered four separate cases.

1. Jf the limits a7-e given andjixed^ that is to say, if the extreme values

of X, y, z are constant, since 3 x^, d 3 x^ . . . d x^^, d 3 x^^, &c. are zero, all

the terms of L^ and L^, are zero, and the equation (C) is satisfied. Thus

we determine the constants which integration introduces into the equations

(D), by the conditions conferred by the limits.

2. If the limits are arbitrary and independent^ then each of the coeflfi-

cients 3 x, , 3 x^^ . . . in the equation (C) is zero in particular.

3. If there exist equations of condition^ (which signifies geometrically

that the-curve required is terminated at points which are not fixed, but

which are situated upon two given curves or surfaces,) for the limits, that

is to say, if the nature of the question connects together by equations,

some of the quantities x^, y^, z,, x,^, y^^, z,, we use the differentials of these

equations to obtain more variations 3 x^, 3 y^ 3 z^, d x,^, &c. in functions

of the others ; substituting in L,, — L, =0, these variations will be re-

duced to the least number possible : the last being absolutely independent,

the equation will split again into many others by equating separately their

coeflRcients to zero.
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Instead of this process, we may adopt the following one, which is more

elegant. Let

u = 0, V = 0, &c.

be the given equations of condition; we shall multiply their variations

3 u, 3 V ... by the indeterminates X, >/. . . This will give X3u4.X'3v + .,,

a known function of 3 x^ d x^^, d y^ . . . Adding this sum to h„ — h,, we

shall get

L,, — L, + X 3 u + X' d V + . . . = . . . . (E).

Consider all the variations 3 x,, 3 x,,, ... as independent, and equate

their coefficients separately to zero. Then we shall eliminate the inde-

terminates X, X'. . . from these equations. By this process, we shall arrive

at the same result as by the former one ; for we have only made legiti-

mate operations, and we shall obtain the same number of final equations.

It must be observed, that we are not to conclude from u = 0, v = 0,

that at the limits we have du=0, dv = 0; these conditions are inde-

pendent, and may easily not coexist. In the contrary case, we must

consider d u = 0, d v = 0, as new conditions, and besides X 3 u, we

must also take X' 3 d u . . .

4. Nothinjr need be said as to the case where one of the limits is fixed

and the other subject to certain conditions, or even altogether arbitrary,

because it is included in the three preceding ones.

It may happen also that the nature of the question subjects the varia-

tions 3 X, 3 y, 3 z, to certain conditions, given by the equations

s = 0, ^ = 0,

and independently of limits; thus, for example, when the required curve

is to be traced upon a given curve surface. Then the equation (B) will

not split into three equations, and the equations ( D) will not subsist. We
must first reduce, as follows, the variations to the smallest number possi-

ble in the formula (B), by means of the equations of condition, and equate

to zero the coefficients of the variations that remain ; or, which is tanta-

mount, add to (B) the terms XB e + W 8 6 + . . .; then split this equation

into others by considering 3 x, 3 y, 3 z as independent ; and finally elimi-

nate X, X' . . .
I

It must be observed, that, in particular cases, it is often preferable to

make, upon the given function Z, all the operations which have produced

the equations (B), (C) instead of comparing each particular case with the

general formulae above given.

Such are the general principles of the calculus of variations : let us

illustrate it with examples.

«4
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Ex. 1. What is the curve C M K o/' ivhich the length M K, comprised

het-Aeen the given radii-vectors A M, A K is the least possible^

We have, (vol. I, p. 000)> >f ^ be the radius-vector,

s =/(i;«d<J* + d^) = Z

it is required to find the relation r = 9 <l, which^renders Z a minimuoi

the variation is

A 7 — rd^'-^ + r'd^.ad^ + dr.od r

^ - V (r « d ^ « + d r *)
*

Comparing with equation (A); where we suppose x = r, y = ^, we

have

ds
the equations (D) are

' rd^« ' dr ,, . ., r«d«m =—i— , n = -1—, M = 0, N =
ds ds

r d 6 * , /d r\ r * d ^

Eliminating d ^, and then d s, from these equations, and ds*=: r*d^;

4. d r S we perceive that they subsist mutually or agree ; so that it is

sufficient to integrate one of them. But the perpendicular A I let fall

from the origin A upon any tangent whatever. T M is

A J = A M 4- sin. A M T = r sin, /3,

which is equivalent, as we easily find, to

r tan. /3

ivhich gives

V (1 -I- tan. *
/3)

r'd tf (\d

ds
= c;V (r « d tf « + d r *)

and since this perpendicular is here constant, the required line is a

straight line. The limits M and K being indeterminate, the equations

(C) are unnecessary.

Ex. 2. Tojind the shortest line hetvceen two given points^ or two given
curves..
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The length s of the line is

/Z =/V(dx* + dy« + dz^).

It is required to make this quantity a minimum ; we have

as d s -^ d s

md comparing with the formula (A), we find

m = 0,M = 0,A^ = 0,n =4^,N=-^,v=4-^
d s d s d s

the other coefficients P, p, cr . . , are zero. The equations (D) become,

therefore, in this case,

whence, by integrating .

dx = ads,dy =:bds,dz = cds.
Squaring and adding, we get

a«+ b* + c« = 1,

a condition that the constants a, b, c must fulfil in order that these equa-

tions may simultaneously subsist.- By division, we find

dy__b dz__£
dx~"a'dx'~a*

whence

b X = a y + a', c x = a z + b';

the projections of the line required are therefore straight lines—the line is

therefore itself a straight line.

To find the position of it, we must know the five constants a, b, c,

a', b'. If it be required to find the shortest distance between two given

fixed points (x
, y,, zj, (x^

, y^^, z^J, it is evident that 3, x, d x,,, 5 y^ . . . are

zero, and that the equation (C) then holds good. Subjecting our two

equations to the condition of being satisfied when we substitute therein

x^, x^
, y, . . . for X, y, z, we shall obtain four equations, which, with

a' + b^ + c'z::!, determine the five necessary constants.

Suppose that the second limit is a fixed point (x^^, y,,, z^J, in the plane

(x, y), and the first a curve passing through the point (x^, y^ z,), and also

situated in this plane ; the ec(uation

b X = a y + a'

then suffices. Let y^ = f x^ be the equation of the curve ; hence

dy, =: Adx,;
the equation (C) becomes

,

^ = (ds) >>^ + (af) 'r.
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and since

equations

and since the second limit is fixed it is sufficient to combine together the

3y, = A8x,

dxjx, + dy,3y, = 0.

Eliminating d y, we get

dx, + Ady, = 0.

We might also have multiplied the equation of condition

dy, — A 8 X, =
by the indeterminate X, and have added the result to L^, which would

have given

(d-f).*"' + ft) '^' + ''^'-''^''' = "'

whence

ft)-^A = o. (i4)+x = o.

Eliminating X we get

dx, + Ady, = 0.

But then the point (x,, yj is upon the straight line passing through the

points (x„ y„ z,), (x,,, y,,, z„), and we have also

b d x^ = a d y„
whence

and

a = — b A

iy 1 _ b_;

dx A a

which shows the straight line is a normal to the curve of condition. The
constant a' is determined by the consideration of the second limit which is

given and fixed.

It would be easy to apply the preceding reasoning to three dimensions,

and we should arrive at similar conclusions ; we may, therefore, infer

generally that the shortest distance between two curves is the straight

line which is a normal to them.

If the shortest line required were to be traced upon a curve surface

whose equation is u = 0, then the equation (B) would not decompose into

three others. We must add to it the term X 3 u ; then regarding 5 x, 3 y,

i z as independent^ we shall find the relations

d.fe) + 4:'") = o.
^d s

' d X
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From these eliminating X, we have the two equations

which are those of the curve required.

Take for example, the least distance measured upon the surface of a

sphere, whose center is at the origin of coordinates : hence

u = X* 4- y* + z*— r* = 0,

Our equations give, making d s constant,

z^' X z= X d' z^ zd*y = yd*z,

whence

yd*x=:xd*y.

Integrating we have

zdx — xdz = ads, zdy — ydz = bds, ydx — xdy = cds.

Multiplying the first of these equations by — y, the second by x, the

third by z, and adding them, we get

aynbx + cz
the equation of a plane passing through the origin of coordinates. Hencf

the curve required is a great circle which passes through the points A'

C, or which is normal to the two curves A' B and C D which are lirai ts

and are given upon the. spherical surface.

When a body moves in a fluid it encounters a resistance which ceteris
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paribus depends on its form (see vol. I.) : if the body be one of revolu-

tion and moves in the direction of its axis, we can show by mechanics

that the resistance is the least possible when the equation of the gener-

ating curve fulfils the condition

y d d y ' __

d

or

y / .
" ''^—i =5 minimum.

d X* 4- dy 2 —• iitumiifUiiif

z = P-
1 + y"

Let us determine the generating curve of the solid of least resistance

(see Principia, vol. II.).

Taking the variation of the above expression, we get

- — 2ydy'dx- — 2yy'^ ^ .

'^=^>" = (dx'+dy')« = (T+f^'>P = Q>^^-

M - ^y' - /^^^ N

-

yy''(^ + y^')
&c •

"•^""dx^ + dy*" 1 +y"" ^^ "
(1 + y'^)' '

the second equation (D) is

M — dN = 0;

and it follows from what we have done relatively to Z, that

^(M^«)
= ^ai + ^^y' = y'^N+Ndy',

because

M *= d N.

Thus integrating, we have

^ + 1 + y'« - ^^ y - (1 + y'*)* •

Therefore

a(l + y")' = 2yy".

Observe that the first of the equations (D) or m — d n = 0, would

have given the same result — n = a ; so that these two equations conduct

to the same result. We have

y ~ 2y"

•^T" y'^-^ y'*
'

substituting for y its value, this integral may easily be obtained ; it remains

to eliminate y' from these values of x and y, and we shall obtain the

equation of the required curve, containing two constants which we shall

determine from the given conditions.
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Ex. 3. fVhat is the curve A B M in tsofiich the area B O D M comprised

befaoeen the arc B M the radii of curvature B O, D M and the arc O D
ofthe evolute, is a minimum ?

The element of the arc A M is

dsrrdxVl +y ;

the radius of curvature M D is

y-—

'

and their product is the element of the proposed area, or

;^
_ (l+y'')dx _ (dx +dy^)

^
* ""

y" d X d y *

It is required to find the equation y =r f x, which makes yZ, a mini-

mum.
Take the variation 8 N, and consider only the second of the equations

(D), vi^hich is sufficient for our object, and we get

M = 0, N — dP=4a,

d X d^y

(i.+ y'*)*

, , d X * + d y 2
. , 1 + y'N = —, „ -^

. 4 d y = X,/ 4. y',

P = — /'»dx •

But

ii±yv\^d (ii-±X-L) = Nd/+Pdy"dx

= 4ady+dPdy' + Pd/'dx,
putting 4 a + P for N. Moreover y'' d x = d y', changes the last

terms into

^ (y" d P + P d y") d X =" d (P /').. d X = — d:(il±^').
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Integrating, therefore,

y -"2(a/ + b)"-clx' (l + j/«)« '

finally,

^ = c+ ^^~f 4-btan.-'/;

On the other side we have

y =// d X = y' X —/x d /
or

y = y'x — cy'—/-y^^^dy'—Zbdy tan.-'y';

this last term integrates by parts^ and we have

y = y' X — c y' — (by — a) tan.-'y + f.

Eliminating the tangent from these values of x and y, we get

by = a(x-c) + ^\y'~y^r + bf,

V(by—ax+g}_
^^

,ds- ^ ^by — ax + g)'

finally,

s = 2 V (b y — a X + g) + h.

This equation shows that the curve required is a cycloid, whose four

constants will be determined from this same number of conditions.

Ex. 4. What is the curve of a given length s, between two jixed pointSj

for whichfy d s z^ a maximum ?

We easily find

(y + ^) (ji) = ^' ^^^^"^^ ^
^ = V ny+'^^r-c'j '

and it will be found that the curve required is a catenaiy.

.yds.
Sincey^^ is the vertical ordinate of the center of gravity of an arc

whose length is s, we see that the center of gravity of any arc whatever of

the catenary is lower than that of any other curve terminated by the

same points.

Ex. 5. Reasoning in the same way for y y * d x = minimum, and

y y d X = const, we find y * + X y = c, or rather y = c. We have

here a straight;.line parallel to x. Since "^-^—=— is the vertical ordinate

of the center of gravity of every plane area, that of a rectangle, whose

side is horizontal, is the lowest possible ; so that every mass of water
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whose upper surface is horizontal, has its center of gravity the lowest
possible, ,

FINITE DIFFERENCES.

If we have given a series a, b, c, d, . . . take each term of it from that

which immediately follows it, and we shall form the^r^if differences^ viz.

a' = b — a, b' = c — b, c' = d — c, &c.

In the same manner we find that this series a', b', c', d' . . . gives the

second differences

a." = b' — a', b^' = c' — b', c" = d' — c', &c.

which again give the third differences

a!" = h" — a", b'" = c" — b", c'" = d" — c", &c.

These differences are indicated by A, and an exponent being given to

it will denote the order of differences. Thus A "^ is a ferm of the series

of nth differences. Moreover we give to each difference the sign which

belongs to it ; this is —, when we take it from a decreasing series.

For example, the function

y = x' — 9x + 6

in making x successively equal to 0, 1, 2, 3, 4 . . . gives a series of

numbers of which y is the general term, and from which we get the

following differences,

for x = 0, 1, 2, 3, 4, 5, 6, 7 . . .

series y = 6,-2,-4, 6, 34, 86, 168, 286...

first diff. A y = —. 8, — 2, 10, 28, 52, 82, 118 .. .

second diff. A « y = 6, 12, 18, 24, 30, 36 . . .

third diff. A ' y = 6, 6, 6, 6, 6, . . .

We perceive that the third differences are here constant, and that the

second difference is an arithmetic progression : we shall always arrive at

constant differences, whenever y is a rational and integer function of x

;

which we now demonstrate.

In the monomial k x "^ make x = a, jS, y, . . . ^, z, X (these numbers

having h for a constant difference), and we get the series

.k a », k /3 "",... k 5 •", k X «, k X «».

Since x = X — h, by developing k x "» =: k (X — h) ", and designating

Dy m. A', A'' . . . the coefficients of the binomial, we find, that

k (X"* — X «") = k m h X >" -1 — k A' h * X ""-^ + k A" ' h. . .
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Such is the first difference of any two terms whatever of the series

k a », k ^ "»
. . . k X % &c.

The difference which precedes it, or k (x "— 6^) is deduced by

changing X into x and x into 6' and since x = X — h, we must put

X — h for X in the second member:

k m h(X-h) »-»-kA' h
«
(X-h '^) ...=k m h X'"-i-jA'+m(m-l)}kh'X'»-8 ^,,

Subtracting these differences, the two first terms will disappear, and

we get for the second difference of an arbitrary rank

km (m— 1) h«X»-8 + k B'h'X^'-s + . . .
^

In like manner, changing X into X — h, in this last developement, and

subtracting, the two first terms disappear, and we have for the third

difierence

km(m— 1) (m — S) h3xn>-3 + kB"h*X»-*. ..,

and so on continually.

Each of these differences has one term at least, in its developement,

like the one «bove ; the first has m terms ; the second has m — 1 terms

;

third, m — 2 terms ; and so on. From the form of the first term, which

ends by remaining alone in the mth difference, we see this is reduced to

the constant

1.2.3...mkh'n.
If in the functions M and N we take for x two numbers which give the

results m, n ; then M + N becomes m + n. In the same manner, let

m', n' be the results given by two other values of x ; the first difference,

arising from M + N, is evidently

(m — m') + (n — n').

that is, the difference of the sum is the sum of the differences. The same

may be shown of the 3d and 4th . . . differences.

Therefore, if we make

X = a, /3, y . .

.

in

k X "> + p X "-i + . . .

the mth difference will be the same as if these were only the first term

k X "», for that of p x '»-*, q x ""-^ ... is nothing. Therefore the mth

difference is constant, "when for x 'me substitute numbers in arithmetic pro-

gression, in a rational and iritegcrJunction ofn.

We perceive, therefore, that if it be required to substitute numbers in

arithmetic progression, as is the case in the resolution of numerical equa-

tions, according to Newton's Method of Divisors, it will suffice to find

the (m + 1) first results, to form the first, second, &c. differences. The



X = 0. 1 2. 3

Series 1

.

-1 .1. 13

1st. . . . -2 2. 12

2nd .. 3, 10

3d ... 6

6. 6 . 6. 6 6. 6 .. .

10 . 16 . 22 . 2^ . 34 . 40 . . .

2. 12 28 . 50 . 78 . 112. . .

— 1.1. 13 . 41 . 91 . 169 . . .

1. 2 . 3. 4 .5. 6...
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mlh difference will have but one term ; as we know it is constant and

= 1 . 2 . 3 . . . m k h "^, we can extend the series at pleasure. That of

the (m — l)th differences will then be extended to that of two known

terms, since it is an arithmetic procession ; that of the (m — 2)th differ-

ences will, in its turn, be extended j and so on of the rest.

This is perceptible in the preceding example, and also in this ; viz.

3d Diff. 6

2nd . . 4

1st . —2
Results 1

For X

These series are deduced from that which is constant

6.6.6.6...

and from the initial term already found for each of them : any term is

derived by adding the ttSjO terms on the left tichich immediately ^precede it.

They may also be continued in the contrary direction, in order to obtain

the results of x = — 1, — 2, — 3, &c.

In resolving an equation it is not necessary to make the series of results

extend farther than the term where we ought only to meet with numbers

of the same sign, which is the case when all the terms of any column are

positive on the right, and alternate in the opposite direction; for the

additions and subtractions by which the series are extended as required,

preserve constantly the same signs in the results. We learn, therefore,

by this method, the limits of the roots of an equation, whether they be

positive or negative.

Let y^ denote the function of x which is the general term, viz. the

X + 1th, of a proposed series

yo + yz + yi + . .
. yx + yx+i+ . •

.

which is formed by making

X = 0, 1, 2, 3 . . .

For example, yg will designate that x has been made = 5, or, with re-

gard to the place of the terms, that there are 5 before it (in the last ex-

ample this is 91). Then

ji — yo = ^ yo J y2 — yi = ^ yi » ya — ys = y2 • • •

A yl _ Ayo = A^yo, Ay2 — AV, = ASyj , A yg _ A yg = A^y^ . . .

A2y, — A^yo = A^yo , A^yg — A^y, = A^yi , A^yg — A^y^ = A^yg . . .

&c. /
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and generally we have

yx— yx-i = Ay ,_i
Ay x — Ay,_i = A«y»_,

A*yx — A«y, _ I = A-^y, _ I

&c.

Now let us form the differences of any series a, b, c, d . . . in this

manner. Make
b = c + a'

c = b + b'

d = c + c'

&c.

b' = a' + a"

c' = b' + b"

d' = c + c"

&c.

b'' = a" + a"'

c'' = b" + b'"

d" = c" + d"

&c.

and so on continually. Then eliminating b, b', c, c', &c. from the first

set of equations, we get

b = a + a'

c = a + 2 a' 4- a"

d = a + 3 a' + 3 a" + a"'

e = a + 4 a' + 6 a'' + 4 a!" + a!'"

f = a + 5 a' + 10 a" + &c.

&c.

Also we have

a' = b — a

a" = c — 2 b + a

a!" =d — 3c + 3b — a

&c.

But the letters a', a'', a'", &c. are nothing else than A y^, aVq, A^yo . • •

a, b, c . . . being yc, yi, y? • • • j consequently

y, = yo + A yo

72 = yo + 2Ayo+ A?y

yg = yo + 3 A yo + 3 A'^yo + A^y^

&c.
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And
^ yo = yi — yo

^^yo = ya —• 2 yi + yo

^^yo = ys — 3 ya + 3 yi — Vo

^*yo = y*— 4. ya +6 y.2 + 4 yi 4- yc

&c.

Hence, generally, we have

y, = yo + xAyo+ x ^^ . A^yo + ^ "^^ ' ^^^ '^'^ +-.-(A)

n —

1

n — In — 2
. ,„.

Anyo = yn — n y + n .—^— . y — n .
—-— . —j— y + . . . (B^

n—

1

^ n—

2

<* «' n —

3

These equations, which are of great importance, give the general term

of any series, from knowing its first term and the first term of all the

orders of differences ; and also the first term of the series of nth differ-

ences, from knowing all the terms of the series yo, yi, y-2 • • •

To apply the former to the example in p. (81), we have

yo= 1

Ayo = —

2

A'y„ = 4 .

AVo = 6

A*y, =
whence

y, = 1 — 2x+2x(x— l) + x(x— l)(x— 2) = x'— x^— 2x+l
The equations (A), (B) will Jje better remembered by observing that

y, = (I + Ay„)%

A"yo = (y--i)%
.

provided that in the developements of these powers, we mean by the

exponents of A y^, the orders of differences, and by those of y the place

in the series.

It has been shown that a, b, c, d . . . may be the values of yx, when

tliose of X are the progression al numbers

ra, m + h, m + 2 h . . . m + i h

that is

a = y^ , b = ym+ h j'C = &c.

In the equation (A), we may, therefore, put ym+s h for y„ y^ fory,,. A y^

for A yo, &c. and, finally, the coefficients of the i'** power. Make i h = z,

and write A, A » ... for A y^, A»y„ . . . and we shall get

zA. .
z.(z-h)A^ , z(z -h)(z-2h)A^ , ^.

y»+. = ym + -J-
+

21?
— + -2Y^ + ••• t»-i

/2
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This equation will give y^ when x = m + z, z being either integer or

fractional. We get from the proposed series the differences of all orders,

and the initial terms represented by A, A^, &c.

But in order to apply this formula, so that it may be limited, we must

arrive at constant differences ; or, at least, this must be the case if we

would have A, A* . . . decreasing in . value so as to form a converging

series : the developeraent then gives an approximate value of a term cor-

responding to

X = m + z;

it being understood that the factors of A do not increase so as to destroy

this convergency, a circumstance which prevents z from surpassing a

certain limit.

For example, if the radius of a circle is 1000,

the arc of 60° has a chord 1000,0
. ^ ^, r.

65« 1074,6 ^--^.'A'z:-- 2,0
70" 1147,2 *^»"

75° 1217,5
'-2,3

Since the difference is nearly constant from 60"* to 73°, to this extent

of the arc we may employ the equation (C); making h = 5, we get for

the quantity to be added to y = 1090, this
m

}, 74,6. z — 3% z (z — 5) = 15,12. z — 0,04. z«

So that, by taking z = 1, 2, 3.. . then adding 1000, we shall obtain the

chords of 61°, 62°, 63° ; in the same manner, making z the necessary

Jraction, we shall get the chord of any arc whatever, that is intermediate

to those, and to the limits 60° and 75°. It will be better, however, when

it is necessary thus to employ great numbers for z, to change these limits.

Let us now take

log. 3100 = y = 4913617

I6g. 3110

log. 3120

log. 3130

m
= 4927604

= 4941346

= 4955443

A. = 13987

13942

13897

A.« = — 45

—.45

We shall here consider the decimal part of the logarithm as being an

integer. By making h = 10, we get, for the part to be added to log.

3100, this

1400,95 X z — 0, 2 25 X z^

To get the logarithms of 3101, 3102, 3103, &c. we make

z = 1,2, 3....;

and in like manner, if we wish for the log. 3107, 58, we must make
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z — 7, 58, whence the quantity to be added to the logarithm of 3100 is

10606. Hence

log. 310768 = 5,4924223.

The preceding methods may be usefully employed to abridge the

labour of calculating tables of logarithms, tables of sines, chords, &c.

Another use which we shall now consider, is that of inserting the inter-

mediate terms in a given series, of which two distant terms are given.

This is called

INTERPOLATION.

It is completely resolved by the equation (C).

When it happens that A^ = 0, or is very small, the series reduces to

z yA

whence we learn that the results have a difference which increases propor-

tionally to z.

When A * is constant, which happens more frequently, by changing z

into z + 1 in (C), and subtracting, we have the general value of the first

difference of the new interpolated series ; viz.

First difference a' = ^ + liZzil+L^.s

A.*
Second difference a" == ^.

If we wish to insert u terms between those of a given series, we must

make

h = n + 1 ;

then making z = 0, we get the initial term *of the differences

A''
(n+1)*

A' = -^ — i n A''
;

n + 1 ^

we calculate first A", then A' ; the initial term A' will serve to compose

the series of first differences of the interpolated series, (A" is the constant

difference of it) ; and then finally the other terms are obtained by simple

additions.

If we wish in the preceding example to find the log. of 3101,

/3
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3102, 3103 ... we shall interpolate 9 numbers between those which are

given: whence

u = 9

A"= — 0,45

A' = 1400,725.

We first form the arithmetical progression whose first term is A', and

— 0,45 for the constant. The first differences are

1400,725; 1400,725; 1399,375; 1398,925, &c.

Successive additions, beginning with log. 3100, will give the consecutive

logarithms required.

Suppose we have observed a physical j:)henomenon every twelve holirs,

and that the results ascertained by such observations have been

For hours ... 78 __ oo-
12 ... 300 ^ - ^^*^ ^2 _ 144
24 ... 666 S6^

36 ... 1176 510 H4.

&c.
»

If we are desirous of knowing the state corresponding to 4'', S^ 12 '',

&c., we must interpolate two terms; whence

11 = z. A" = 16, a' = 58

composing the arithmetic progression whose first term is 58, and common

difference 16, we shall have the first differences of the new series, and

then what follow

First differences 68, 74, 90, 106, 122, 138 .. .

Series 78, 136, 210, 300, 406, 528, 646 , . .

A 0^ 4^, 8^ 16" 20h, 24".

The supposition of the second differences being constant, applies almos;

to all cases, because we may choose intervals of time which shall favour

such an hypothesis. This, method is of great use in astronomy; and

even when observation or calculation gives results whose second differ-

ences are irregular, we impute the defect to errors which we coiTect by

establishing a greater degree of regularity.

Astronomical, and geodesical tables are formed on these principles.

We calculate directly different terms, which we take so near that their

first or second differences may be constant; then we interpolate to obtain

the intermediate numbers.

Thus, when a converging series gives the value of y by aid of that of a

variable x ; instead of calculating y for each known value of x, when the

formula is of frequent use, we determine the results y for the continually
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increasing values of x, in such a manner that y shall always be nearly of

the same value : we then write in the form of a table every value by the

side of that of x, which we call the argumeni of this table. For the

numbers x which are intermediate to them, y is given by simple proposi-

tions, and by inspection alone we then find the results lequired.

When the series has two variables, or arguments x and z, the values

of y are disposed in a table by a sort of double entry s taking for coordi-

nates X and z, the result is thus obtained. For example, having made

z = 1, we range upon the first line all the values of y corresponding to

X = 1, V, 3...;

we then put upon the second line which z = z gives ; in a third line those

which z = 3 gives, and so on. To obtain the result which corresponds to

X = 3, z = 5

we slop at the case which, in the third column, occupies the fifth place.

The intermediate values are found analogously to what has been already

shown.

So far we have supposed x to increase continually by the same differ-

ence. If this is not the case and we know the results

y = a, b, c, d . . .

which are due to any suppositions

X = a, /3, 7, . . .

we may either use the theory which makes a parabolic curve pass through

a series of given points, or we may adopt the following:

By means of the known corresponding values

a, a ; b jS ; &c.

we form the consecutive functions

b—

a

A =

A.=

&c.

B =

B,=

B,=

&c.

c—

b

7—

^

d —

c

7

-A
y — a

A,—

A

A-,— A
• — 7

/4
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C = ^1— ^
d— a

&c.

D = c, — c

and so on.

By elimination we easily get

b = a + A (3— a)

c = a + A(7— a) + B(7— a) (7~/3)

d = a + A(a-- a) + B(3— a) (a— ^) + C(3— a)(a— 13)(3~7)
&c.

and generally

y^= a+A(x— t*) + B(x— a)(x--^) + C (x— «) (x—/3) (x—7)+&c.
We must seek therefore the first differences amongst the results

a, b, c . . .

and divide by the differences of

a, /3, 7 . . .

which will give

"•"A, Ai, A2, &c.

proceeding in the same manner with these numbers, we get

B, B„ B2, &c.

which in like manner give

C, Ci) Q-Zi &c.

and, finally substituting, we get the general term required.

By actually multiplying, the expression assumes the form

a + a'x + a'x'^ + ...

of every rational and integer polynomial, which is the same as when w€

neglect the superior differences.

The chord of 60" = rad. = 1000

= 1033
35

= 1077
42
56

A=li
Ai= 14,82

A2= 14,61

— 0,18
— 0,21

B =—0,035
Bi=— 0,031

620.20'

65M0'
69°. 0' =1133

We have -

« = 0, /3 = 21, 7 = 5^, a = 9.

We may neglect the third differences and put

y, = 100 + 15,082 x— 0,035 x«.

Considering every function of x, y^, as being the general term of the

series which gives

X = m, m + b, m + 2 h, &c.
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if we take the differences of these results, to obtain a new series, the

general iettti will be what is called the Jirst difference of the proposed

fiinction y^ which is represented by A y^. Thus we obtain this difference

by changing x into x + h in y^ and taking y^ from the result ; the re-

mainder will give the series of first differences by making

X = m, m + h, m -f 2 h, &c.

Thus if

yx =

Ay X =

a + X

(x+h)^
a + x+h a + x*

It will remain to reduce this expression, or to develope it according to

the increasing powers of h.

Taylor's theorem gives generally (vol. I.)

dy,,d2yh«„
'' d X d x^ L2

To obtain the second difference we must operate upon a y^ as upon U?e

proposed y^, and so on for the third, fourth, &c. differences.

INTEGRATION OF FINITE DIFFERENCES.

Integration here means the method of finding the quantity whose dif-

ference is the proposed quantity ; that is to say the general term y^ of a

ym) ym + hj ym + 2 h> &C.

from knowing that of the series of a difference of any known order. Tliis

operation is indicated by the symbol 2.

For example

2 (3 x2 + X — 2)

ought to indicate that here

h = L

A function yx generates a series by making

X = 0, 1, 2, 3 . . .

the first differences which here ensue, form another series of which

3 x^ 4- X — 2

is the general term, and it is

— 2, 2, 12, 28 . . .

By integrating we here propose to find yx such, that putting x + 1 for

X, and subtracting, the remainder shall be

3 X « + X — 2.
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It is easy to perceive tbat, first the symbols 2 and A destroy one another

ttsdojfandd; thus

2 A fx = f x<

Secondly, that

A (a y) = a A y
gives

2 a y = a 2 y.

Thirdly, that as

A(Al--Bu) = AAt — Bau
so is

S (A t — B u) = A 2 t ~ B 2 u,

t and u being the functions of ;c.

The problem of determining yx by its first difference does not contain

data sufficient completely to resolve it; for in order to recompose the

series derived from y^ in beginning with

— 2, 2, 12, 28, &c.

ive must make the first term

yo = a '
" -

and by successive additions, we shall find

a, a — 2, a + 2, a + 12, &c. <

in which a remains arbitrary.

Every integral may be considered as comprised in the equation (A)

p. 83 ; for by taking

X = 0, 1, 2, 3 . . .

in the first difference given in terms of x, we shall form the series of first
,

diflerences ; subtracting these successively, we shall have the second dif-

ferences ; then in like manner, we shall get the third and fourth difJer-

ences. The initial term of these series will be

^yo> ^'yo- • •

and these values substituted in yx will give y,. Thus, in the example

above, which is only that of page (81) when a = 1, we have

Ayo = —2, A«yo = 4, A^v^ = 6, A y^ = 0, &c.

;

which give

y, = yo — 2 X — X 2 + X '.

Generally, the first term yo of the equation (A) is an arbitrary constant,

which is to be added to the integral. If the given function is a second

difference, we must by a first integration reascend to the first difference

and thence by another step to y, ; thus we shall have two arbitrary con-

stants ; and in fact, the equation (A) still gives y, by finding A", A 3, the
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only difference in the matter being that y^ and A y^ are arbitrary. And
so on for the superior orders.

Let us now find 2 x ™, the exponent m being integer and positive.

Represent this developement by

2x'" = px + qx'' + rx*= + &c.

a, b, c, &C. being decreasing exponents, which as w^ell as the coefficients

p, q, &c. must be determined. Take the first difference, by suppressing

2 in the first member, then changing x into x -f- h in the second member

and subtracting. Limiting ourselves to the two first terms, we get

x" = pahx«-i + ^pa(a— l)h*x^-2 4....qbhx''-i + ...

But in order that the identity may be established the exponents ought

to give

a — 1 = m
a_2 = b—

1

whence

a = m + 1, b = m.

Moreover tlie coefficients give

l=pah, — ^pa(a — l)h = qb;
whence

P - (m + 1) h ' ^ = — ^•

As to the other terms, it is evident, that the exponents are all integer

and positive ; and we may easily perceive that they fail in the alternate

terms. Make therefore

2x™ = px™ + ^ — ix" +ax'"-^ + /3x™-3 -f yx^-^H- ...

and determine a, i3, y ... &c.

Take, as before, the first difference by putting x + h for x, and sub-

tracting : and first transferrinfj

X 2 ^ >

we find that the first member, by reason of

ph (m + 1) = 1,

reduces to

A'
^' xm-2 , A" !^— ^ 3h^

,
m— 5 5hg ^_^

^•2:3'' +^- 4 •2.5'' +^
• 6 '^Jf''

To abridge the operation, we omit here the alternate terms of the deve-

lopement ; and we designate by

1, m. A', A'', &c.

the coefficients of the binomial.

Making the same calculations upon

ax'"-i + /Sx"-^ 4. &r.
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we shall have, with the same respective powers of x and of h, '

,. ./ ,xn— 2 m— 3 ,. ,xm — 2 rn—

4

(m— 1) a+(m—1).—g— .

3
« + (m— I).—^—

.

+ (m— 3)/3+(m.-3).—

^

+
Comparing them term by term, we easily derive

_. "^

" ~ 3l'

• • 5
-«+...

m —^/3 4-*

3 P +...

(m — 4)7+..

^ = r

A'

2.3.4.5

'

A""
7 =

&c.

6.6.7

whence finally we get

sx"" = ; r—rrr tt + mahx^-^ + A"bh^x°»-3
(m + 1) h 2

+ A""ch«x»-HA'' dh'x™-'^+...(D)

This developement has for its coefficients those of the binomial, taken

from two to two, multiplied by certain numerical factors a, b, c . . ., which

are called the numbers of Bernoulli, because James Bernoulli first deter-

mined them. These factors are of great and frequent use in the" theory

of series ; we shall give an easy method of finding them presently. These

are their values

a = 1

12

b = 1

120

c = 1

252

d = 1

240

e = 1

132

f — 691

32780

g -
1

12

h — 3617

8160

i = 43867

14364
&c.
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which it will be worth the trouble fully to commit to memory.

From the above we conclude that to obtain 2 x°, m being any number,

mteger and positive, we must besides the two first terms
^m -J-

1

X '^

(m + 1) h 2~

also take the developement of

(x + h) ™

reject the odd terms, the first, third, fifth, &c. and multiply the retained

terms respectively by
a, b, c . .

.

Now X and h have even exponents only *when m is odd and reciprocally

;

so that we must reject the last term h ™ when it falls in a useless situation ;

the number of terms is I m + 2 when m is even, and it is |^ (m + 3) when

ni is odd ; that is to say, it is the same for two consecutive values of m.

Required the integral ofx ^°.

Besides

x^

11 h ^

we must develope (x + h) ""j retaining the second, fourth, sixth, &c. terms

and we shall have

lOx^ah + 120x''bh3 + 252x*ch5 + &c
Therefore

2xi° = 3^— ix»+ -l-xMi— x'h^ + x^h^— Jx'h'+ ^xh»lino DO

In the same manner we obtain

^ 1
X* X

'^ =2h~2
^

3h"~'2"^"6~'
« , x* x^ . h X*

4 h a ^ 4

^^4_ x'' X* hx^ h'x
5 h 4. ' 3 30

5 __ X ^ x^ 5 h x*^ h ' X

'

^ ^ Qh~~'2'^ ^~Y2 12~

, x'' x^ h. x^ h^x*.
7h 2^2 6^ 42'
x« xV 7 hx6 Th^x* . h

5 V ^ — 4- 4-
8 h 2 "^ 12 24 ^ 12
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-'' - yh
X » 2 h X ' 7 li 3 X ^ 2 h ^ X

'

~T+ 3 15 * 9

h-'x

30

2 X >> = -
10"

x9 3 h x" 7 h^x^ h^x*
" 2 "^ 4 10 ' 2

3h'x«
20

2 x" = -TT-i &c. as before,
llh

&c.

We shall now give an easy method of dcteimining die Number of

Bernoulli a, b, c. . . In the equation (D) make

x= h = 1;

2 X " is the general term of the series whose first difference is x ". We
shall here consider 2. x° = 1, and the corresponding series which is that

of the natural numbers

0, 1, 2, 3 . .

.

Take zero for the first member and transpose

-_i 1

m + 1 ^

which equals

2 (m + 1)

""l— m •

Then we get

oT^L^n = a m + b A" + c A '' + <1 A '1 + . . . + k m.
d (m + I

)

By making m = 2, the second member is reduced to am, which gives

1

^ "" 12*

Making m = 4, we get

3

Whence

j^
= 4 a + b A''

m — 1 m — 2
,= 4a + m.—^-.-^j-b

= 4 a + 4 b

= 1 + 4 b.

, 1

^ = -120-

Again, making m = 6, we get

^ = 6a + b A'' + c A»*

= 6a+ 20 b +6c
.

= i — ^ + 6 c
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which gives

1

^ ~ 252'

nnd proceeding thus by making

m = 2, 4, 6, 8, &c.

we obtain at each step a new equation which has one term more than the

preceding one, which last terms, viz.

2 a, 4 b, 6 c, . . . m k

will hence successively be found, and consequently,

a, b, c . . . k.

Take the difference of the product

y, = (x — h) X (x + h) (x + 2 h) . . . (x+ i h),

by X + h for x and subtracting ; it gives

A y;, = X (X + h) (x + 2 h) . . . (x + i h) x (i + 2) h;

dividing by the last constant factor, integrating, and substituting for y,
its value, we get

2 X (x + h) (x + 2 h) . . . (x + i h)

""
(iVsJ'h

X ^- (^ + ^^) (X + 2 h)...(x + i h)

This equation gives the integral of a product offactors in arithmetic

jprogre&do7i.

, Taking the difference of the second member, we verify the equation

1 —J
^ X (X + h) (x + 2 h) . . .(x + i h) ~ i h x (X + h) . . . [x -f- (i— 1} h|

which gives the integral of any inverse product

Required the integral qfa^.

Let

y^ = a*.

Then
A y^ = a'^ (a'' — 1)

whence

y^ = 2 a'^ (a" — 1) = a*;

consequently
a''

2 a '^ = —r
;- 4- constant.

a •> — 1

Required the integrals of sin. x, cos. x.

Since

cos. B — cos- A = 2 sin. h {^ + B). sin. ^ (A — B)

A cos. X. = cos. (x + h) — cos. X

hs . h •

,

2-) ^^"-
2

= — 2 sin. (x + g-) sin.
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Integrating and changing x + — into z, we have

2 sm. z = — COS. + constant.

o • h

In the same way we find

sm.

2 COS. z = r 1- constant.

2 sin.-

When we wish to integrate the powers of sines and cosines, we trans-

form them into sines and cosines of multiple arcs, and we get terms of

the form

A sin. q X, A cos. q x.

Making

q X = X

the integration is perfonned as above.

Required the integral ofa froduct^ viz.

Assume
2(uz) = u2z + t

u, z and t being all functions of x, t being the only unknown one. By
changing x into x + h in

u 2 z + t

u becomes u + A u, z becomes z + ^ z, &c. and we have

u2z+UZ + Au2(z + Az) + t+At;
substituting from this the second member

u 2 z + t,

we obtain the difference, or u z ; whence results the equation

= Au2(z + Az) + At
which gives

t = — 2^Au2(z + A z)].

Therefore

2 (U z) = U 2 Z — 2 JA u . 2 (z + A z)}

which is analogous to integrating by parts in differential funcKpns.

There are but few functions of which we can find the finite integral

;

when we cannot integrate them exactly, we must have recourse to series.

Taylor's theorem gives us

dy,
,
d'^y h« , .

y« = dK'' + dT-a +«"
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= y'h + ^'h^ + &c.

by supposition. Hence

y, = h 2 y' + !^ 2 /' + &C.

Considering y' as a given function of x, \iz. z, we have

y = z
~ r = z'

f" = z"

&c.

and

yx =fy^ X =/zdx
whence

h*/z d X =: h 2 z + — 2 z' + &c.
i6

which gives

2 z = h*'/z d X —
-I-

2 z' — ^ h » 2 z" — 8cc.

This equation gives 2 z, when we know z', 2 z'', &c. Take the dif-

ferentials of the two numbers. That of the first 2 z will give, when di-

vided by d X, 2 z\ Hence we get 2 z", then 2 z'", &c. ; and even without

making the calculations, it is easy to see, that the result of the substitution

of these values, will be of the form

2 z = h-'/z d X + A z + B h z' 4- C h 2 z" + &c.

It remains to determine the factors A, B, C, &c. But if

2 = X"»

we get

/z d X, z', z", &c.

and substituting, we obtain a series which should be identical with the

equation (D), and consequently defective of the powers m — 2, m — 4,

so that we shall have

/'zdx z ahz' bh^z'" . ch^z"'" . dhV"''' , -

'^ = -h- ¥+-!- + -IT +
-2:3:4r

+ -27776- + ^^

a, b> c, &c. being the numbers of BernouUu

For example, if

z = 1 X

y* 1 x.dx = xlx»^x
z' = x-^
z" = &c

y
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consequently

2lx = C + xlx — X — ^lx + a X-' + b x-' + c x-» + &c.

The series

a, b, c . . . k, 1,

having for first differences

a', b', c' . . . k'

we have

b = a + a'

c = b + b

d = c + c'

&c.

1 = k + k'

equations wliose sum is

1 = a + a' + b' + c' + . . . k'.

If the numbers a', b', c', &c. are known, we may consider them as being

the first differences of another series a, b, c, &c. since it is easy to com-

pose the latter by means of the first, and the first term a. By definition

we know that any term whatever 1', taken in the given series a', b', c', &c.

is nothing else than A 1, for T = m — 1 ; integrating

1' = A 1

we have
2 1' = 1

or

2 1' = a' + b' + c' . . . + k',

supposing the initial a is comprised in the constant due to the integra-

tion. Consequently

The integral of any term 'whatever of a series^ "ive obtain the sian of all

the terms that precede it, and have

2 yx = yo + yi + yg + • • • y x - 1-

In order to get the sum of a series, we must add yx to the integral ; or

which is the same, in it must change x into x + Ij before we integrate.

The arbitrary constant is determined by finding the value of the sum y^

when

X = 1.

We kncm therefore ho'w to find the summing term of every series whose

general term is knoivn in a rational and integerfunction qfn,
'

Let

y, = Ax"" -- Bx«+ C
m and n being positive and integer, and we have

A 2x" — B 2 X* + C sx**
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for the sum of the terms as far as y, exclusively. This integral being

onco found by equation D, we shall change x into x + 1, and determine

the constant agreeably.

For example, let

ya=x(2x— 1);

changing x into X + 1, and integrating the result, we shall find

4 x3+ 3 X* —

X

22x' + 32x+2x'' =
2.3

X + 1 4x— 1

there being no constant, because when x = 0, the sum = 0.

The series

Im O m 9 m
, <& ) ** . • •

of the m^** powers of the natural numbers is found by taking 2 x ™ (equa-

tion D); but we must add afterwards the x'** term which is x™; that is to

say, it is sufficient to change — ^ x " , the second terra of the equation

(D), into 1^ X™; it then remains to determine the constant from the term

we commence from.

For example, to find

S°= 1 + 2* + 3« + 4« + ...x*

we find 2 X*, changing the sign of the second term, and we have

x' x* X _ x+ 1 2x + 1

^-'3+'2"*"6'-
""-""S^- 2~'

the constant is 0, because the sum is when x = 0. But if we wish to

find the sum

S' = (n + 1)« + (n + 2)« + ...x'-

S' = 0, whence x = n — 1, and the constant is

n— 1 2n— 1-"•—2--—3"'
which of course must be added to the former ; thus giving

S'= (n + 1)*+ (n + 2)'+...x''

_ X + 1 2 X + 1 n — 1 2 n — 1

~ '^ • 3 • 2 " • 2~ • 3

= -^ X {x.(x+ 1). (2x + 1)— n.(n— l)(2n — 1)

= -^X {2 (x^^n^) + 3 (x« + nO + X — n].

This theory applies to the summation o^^gt^rate numbets, of the dif-

ferent orders ;«-t^

r2 -
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First order, 1 . 1 . 1 . 1 . 1 . 1 . 1 , &c.

Second order, 1.2.3.4.5. 6 . 7 , &c.

Third order. 1.3. 6 . 10. 15. 21 . 28, &c.

Fourth order, 1 .4. 10.20.35. 56 . 84, &c.

Fifth order. 1.5. 15.35.70. 126.210, &c.

and so on.

The law which (every term follows being the sum of the one immediate

'y over it added to the preceding one. The general terms are

First, 1

Second, x

Th;^.A ^.(x + 1)

2

Fo„„|,,
X (X + 1) (X + 2)

Ami

ntb
x.(x>|> 1) (x+2)...x + p —

2

P 1.2.3...P— 1

To sum the Pyramidal numbers, we have

S = 1 + 4 + 10 + 20 + &c.

Now the general or x^** term in this is

y, = i-
. X (X + 1) (X + 2).

But we find for the (x — 1)* term of numbers of the next order

^(x-l)x(x+ l)(x + 2);

finally changing x into x + 1, we have for the required form

S = ^x.(x + l)(x + 2)(x +3).

Since S = 1, when x = 1, we have

1 = 1 + constant, consequently

.'. constant zz 0.

Hence it appears that the sum of x terms of the fourth order, is the

x'*" term or general term of the fifth order, and vice versa ; and in like

manner, it may be shown that the x"^'' term of the (n + l)"^** order is the

sum of X terms of the n^'' order.

Inverse Jigurate numbers are fractions which have 1 for the numerator,

and a figurale series for the denominator. Hence the x^ term of the p"'

order is

1.2.3...(p—_0
x(x+ l)...x + p — 2
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and the integral of this is

^ ^ 1.2.3...(p_l)
(p~2)x(x +l)...(x + p — 3)*

Changing x into x + 1> then determining the constant by makinw

X = 0, which gives the sum = 0, we shall have

c = P-

p — 2'

and the sum of the x first terms of this general series is

P-l 1.2.3...'(p-l)

p — 2 (p— 2)(x+l)(x+2)...(x + p — 2)-

In this formula make
p = 3, 4, 5 . .

.

and we shall get

4.2. ij_i-4. 1.2 _ 2 2
*"3'*'6+10"' x(x+l) ~1 x+1
+ i. + i4.i+ 1-2.3 3 3
'A I lA • an '4 ^ 10^20^ •*'x{x+ l)(x + 2) 2 (x+l)(x+2)
1.1 i , 1.2.3.4 4 2.4
5 ^ 10 ^35^'"x(x+l)(x+2) (x+ 3) 3 (x4- J)...(x+ 3)

1 1 J_ 1.2.3.4.5 5 2.3.5
"T 5" « o 1 "r K« T" • • •

6 ^ 21^ 66^ • •x(x+l)...(x+4) 4 (x+1) . . . (x+ 4)

and so on. To obtain the whole sum of these series continued to infinity,

we must make
X = 00

which gives for the sum required the general value

P-1
p-2

which in the above particular cases, becomes '

2 3 4 5

1' 2' 3'4'^'^*

To sum the series
'

sin. a + sin. (a + h) + sin. (a + 2 h) + . . . sin. (a + x— 1 h)

we have

cos. (a + h X — -
j

2 sin. (a + X h) = C r

2sin.-^^

changing x into x + 1, and determining Cby the condition that x = — 1

makes the sum = zero, we find for the summing-term.

hx / . , .
h

cos.. (a — g-) — cos. (a + h X + ^

)

2 sm.^
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or

. / , h N . h (x + 1)
sin. (^a + -g- Xj sin. ^ ^

"T~ir
.sin.^

In a similar manner, if we wish to sum the series

COS. a + COS. (a + h) 4- cos. (a + 2 h) + • • . cos. (a + x— 1 ii^

we easily find the summing-teiia to be

sin. (a g) —sin. (a 4- h x + ^ )

' 2sm.-

or

/ ^ h • . h (X + 1)
cos. (a + 2 ^; sin- g

. h
^'2







A COMMENTARY

OM

N E W T O N'S PRINCIPIA,

SUPPLEMENT
TO

SECTION XI.

460 Prop. LVIT, depends upon Cor. 4 to the Laws of Motion,

which is

If any number of bodies mutually attract each other, their center of gra-

vity will either remain at rest or will move uniformly in a straight line,

. First let us prove this for two bodies.

Let them be referred to a fixed point by the rectangular coordinates

^ X, y ; x^ y',

and let their masses be

/*, fJ''-

Also let their distance be g, and f (g) denote the law according to which

they attract each other.

Then

will be their respective actions, and resolving these parallel to the axes of

abscissas and ordinates, we have (46)

d^x ,,,,x'— X-

l'~ -- -> <•)

d
Vou II.
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Ji,, .,L„y (2)

dt* >- ^

Hence multiplying equations (1) by /«. and those marked (2) by fi' and

adding, &c. we get

Atd'x + fi,'d^x' __

dF " "'

and

/*d^y +A^^d'y' _
dt"-

-"

and integratuig

d X , , d x'

"•di +"•— = '=

d y , / d y' ,

''•dT + ''- dT = <^-

Now if the coordinates of the center of gravity be denoted by

X, y,

we have by Statics

/i X + /a' x'
X =

and

d X __ 1 / djc , dx\ _ c
* dT ~

/A + ytt'
* V^ • "dl "^ ^^ dT/ "(«, + /*'

d t
~

/4 + /a' V'^ d t ^ d t / /!* + /*''

But

d X d y
Tt' Tt

represent the velocity of the center of gravity resolved parallel to the axes

of coordinates, and these resolved parts have been shown to be constant

Hence it easily appears by composition of motion, that the actual velocity

of the center of gravity is uniform, and also that it moves in a straight

line, viz. in that produced which is the diagonal of the rectangidar par-

allelogram whose two sides are d x, d y.

If

c = 0, c' =
then the center of gravity remains quiescent
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461 The general proposition is similarly demonstrated, thus.

Let the bodies whose masses

^\ l^'\ l^"\ &c.

be referred to three rectangular axes, issuing from a fixed point by the

coordinates

„/// ,jff/ „ni
•^ J y 5

^

&c.
Also let

f1,
2 be the distance of ^', ^'^

r I,' I,'"
gl,3 /-tj/"-

§2,3 •• Z*}/"-

&C. &C.

and suppose the law of attraction to be denoted by

Now resolving the attractions or forces

l^" f (gl.2)

&c.
parallel to the axes, and collecting the parts we get

"d-p-
= ''"^(^'.«)^i^ + "" f (?^'^)V— + ^^-

•^^
i\,2 fl, 3

IT^
" -/*'f (?1.2)^^=^ + /*'"f(f2.3)^^—^^ + &C.

"^ gl,2 i2,3

" "^
?1, 3 g-2,

3

&C. = &C.

Hence multiplying the first of the above equations by f/, the second by

n", and so on, and adding, we get

/d^x^ + fi,''d^7i" + /j.'"d''yi'" + &c. _
dt'

Again, since it is a matter of perfect indifference whether we collect the

forces parallel to the other axes or this ; or since all the circumstances are

similar with regard to these independent axes, the results arising from

similar operations must be similar, and we therefore have also

fi' d^y ' + fi"d^ y" + fj/"

d

^ y'" + &c. _
dT^ -• *

fi/ d^z'-\- (jJ' d ^ t!' + ul"

d

°
i!" H- &c. _

dt*
~

A2
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Hence by integration

, dx' ^ „dx'' ,„dx"' .

'^•-dT + ^-dr + '* 'dT + ^^- = ^

'^ • dT ^'^ dt ^'^ ^t +^*' -"^

, dz' „dz"
,

,„dz'''
,

- „
'^•rt ^'^ -dT + ^ -dr+^"- = "-

But X, y, z denoting the coordinates of the center of gravity, by statics

we have
- _ / X^ + fJ.'^ X." + jil" x'" + &c.
^ -

ti' + fi." + yl" + &c.

y - ^/ + // + 1^'" + &c.

- _ ^/ z^ + // z" + /^^^^ z^^^ + &c.
^ -

y;^' + ^" 4- /i"/ + &c.

and hence by taking the differentials, &c. we get

dx c

a t ~ / + it*'' + /*''' + &c.

dy r^

a t"
~

fj/ \- IJ'" + /*'" + &c.

di__ d^

d t
~

/*' + It*'' + u/" + &c.

that is, the velocity of the center of gravity resolved parallel to any three

rectangular axes is constant. Hence by composition of motion the actual

velocity of the center of gravity is constant and uniform, and it easQy ap-

pears also that its path is a straight line, scil. the diagonal of the rectan-

gular parallelopiped whose sides are d x, d y, d z.

462. We will now give another demonstration of Prop. LXI. or that

Of two bodies the motion of each about the center of gravity, is the same

as if that center 'was the center offorce, and the law offorce the same as

that of their mutual attractions.

Supposing the coordinates of the two bodies referred to the center of

gravity to be

we have

= x + x,l x'=x + X/,|

Hence since

d X dy
dT ' dT
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are constant as it has been shown, and therefore

dt» -"'
dt==

-"

we have

d'x _d'x,
dt^ - dt«

d^y _ d^y,

dt^ ~ dt''

and we therefore get (46)

dt^ ^ ^^^
e

dt* ^^^^
e

But by the property of the center of gravity

P = . 6

6 being the distance of [*>' from the center of gravity. We also have

^// ^/ _ ^//

Hence by substitution the equations become

-dT^--'*H-;;r-^;-y'

Similarly we should find

and

Hence if the force represented by

were placed in the center of gravity, it would cause /*' to move about it as

a fixed point; and if

were there residing, it would cause fi to centripetate in like manner.

Moreover if

Hs)=r
A 3
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then these forces vary as

so that the law of force &c. &c.

ANOTHER PROOF OF PROP. LXII.

463. Let jtt, ti! denote the two bodies. Then since /i has no motion

round G (G being the center of gravity), it will descend in a straight

line to G. In like manner yl will fall to G in a straight line.

Also since the accelerating forces on /x, ^' are inversely as /(*, (i! or

directly as G a*, G /«,', the velocities will follow the same law and corre-

sponding portions of G ^a, G yl will be described in the same times ; that

is, the whole will be described in the same time. Moreover after tliey

meet at G, the bodies will go on together with the same constant velocity

with which G moved before they met

Since here

tt will move towards G as if a force

ff^ + /*'

"'C^')
or

Hence by the usual methods it will be found that if a be the distance

at which ^ begins to fall, the time to G is

yj ^

and if a' be the original distance of /i*', the time is

(//. + y!) a' ^ nr

I
'2 V2'

y.'i

But

a : a' :://.': /A

therefore these times are equal, which has just been otherwise shown.
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ANOTHER PROOF OF PROP. LXIH.

464. We know from (461) that the center of gravity moves uniformly

in a straight line; and that (Prop. LVII,) /* and ^J will describe about G
similar figures, (Jj moving as though actuated by the force

and Q as if by

Hence the curves described will be similar ellipses, with the center of

force G in the focus. Also if we knew the original velocities of /«. and /*'

about G, the ellipse would easily be determined.

The velocities of /* and ,«.' at any time are composed of two velocities,

viz. the progressive one of the center of gravity and that of each round G.

Hence having given the whole original velocities required tofind the separate

j)arts of them,

is a problem which we will now resolve.

Let

V, V
be the original velocities of /t, /*', and suppose their directions to make

with the straight line /«. yl the angles

a, a!.

Also let the velocity of the center of gravity be

V

and the direction of its motion to make with y, ii! the angle

'
a.

Moreover let

V, v'

be the velocities of /t, fjJ around G and the common inclination of their

directions to be

^.

Now V resolved parallel to (i, fjf is

V cos. a.

But since it is composed of v and of v it will also be

v cos. a + V cos. 6

.'. V COS. a = v cos. a + V cos. 6.

In like manner we get

V sin. a = V sin. a + v sin. 6.

A4



COS. a •\- fj/y COS. a' = (jH + /*') V COS. a -\

sin. a + /a' V'' sin. a' = (/a + /u,') v sin. a J

8 A COMMENTARY ON [Seci-. Xl.

and also

V COS. a' = V COS. a — v' COS. 6

V sin. a' z= \ sin. a — v' sin. 6.

Hence multiplying by /i, yl, adding and putting

liy zz y! \'

we get

Ik V COS. a. -if yiy COS. a' = (^a + /«') V COS. a

and

II, V sin.

Squaring these and adding them, we get

^2 V^ + /2 v* + 2/*/*' VV COS. (a— a') = (/!* + /*')'v«

which gives

v= ^f/^'V' + /'V+ 2/(^A*'VV^cos.(a— gQl
y> + Ij/

By division we also have

— f6V sin. a + /i'V sin. a'
tan. a = —Y^ —

j-^Tj-. -.

.

fjk V COS. a -j- fji/\' COS. a'

Again, from the first four equations by subtraction we also have

V cos. a—V cos. a' = (v + v') cos. ^ = v .
—X-— cos. 6

ft!

V sin. a—V sin. a' = (v + v') sin. ^ = v .
——,— sin. ^

and adding the squares of these

V2 + V— 2VV'cos. (a— aO=v^(^^^-^y

whence

V = ^' ,. '/iV^+ V'^— 2W cos. (a— a')]

v' = -^^ V^V* + V'« — SVV'cos. (a~a')?
^ + /*

and by division

V sin. a — V sin. a'
tan. ^ = vv ^^7 ;

.

V cos. a— V'cos. a'

"Whence are known the velocity and direction of projection of fi about

G and (by Sect. III. or Com.) the conic section can therefore be found

;

and combining the motion in this orbit with that of the center of gravity,

which is given above, we have also that of /et.

465. Hence since the orbit of (j> round /u,' is similar to the orbit of

u. round G, if A be the semi-axis of the ellipse which fi describes round



Book I.] NEWTON'S PRINCIPIA. 9

G, and a that of the ellipse which it describes relatively to /*' which is also

in motion ; we shall have

A '. a.
'.

'.
(jf : (jj •\- fjf

.

466. Hence also since an ellipse whose semi-axis is A, is described by

the force

«'3
]

we shall have (309) the periodic time, viz.

^_ 2AgT _ 2':rA^{li + (J.')

2<r a^
V (At + iJ.')

'

467. Hence we easily get Prop. LIX.

For if /u, were to revolve round /*' at rest, its semi-axis would be a, and

periodic time

q-i/ <a ?r a

.'. T : T' :: V^' : V{fi + fi').

468. Prop. LX is also hence deducible. For if (a revolve round fjt-'' at

rest, in an ellipse whose semi-axis is a', we have

T'/ - ^-^^

and equating this with T in order to give it the same time about (*>' at rest

as about At' in motion, we have

2 era'

2

2Ta^

.*. a : a' :: (At + z*')^ : fi'^.

ANOTHEB PROOF OF PROP. LXIV.

469. Required the motions of the bodies ivhose masses are

fi, fL', fi", fj,'", &C.

and which mutually/ attract each other with forces varying directly as the

distance.

Let the distance of any two of them as ii, ijf, be f ; then the force of /*'

on (<A is
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and the part resolved parallel to x is

li! g . ^^~- = /i' (x— x').

In like manner the force of /«." on /tt, resolved parallel to x, is

Ao" (X— X'O

and so on for the rest of the bodies and for their respective forces resolved

parallel to the other axes of coordinates.

Hence

i^, =/(x-xO + /x"(x-x'0 + &c.

^ = ^(x'-x) + /'(x'— x'O + &c.

^' =^(x''-x) + /^'(x'^-xO + &c.

which give

&c. = &c.

i^ = (/* + A*' + /.'' + &C.) X— {/.X + /.' X' + &C.)

^ = (^ + /.' + /' + &c.)x'— (/.x + //x' + &c.)

^~ = (^ + /t' + fJ," + &c.)x"— {/IX + ^'x' + &c.)

&c. = &c.

Or since

(0. X 4- it*' x' + &c. = (((A + At' + &c.) x

making the coordinates of the center of gravity

X, y, z,

we have

'^^ = (^ + ^' + &c.)(x-x)

^' = (/* + /*' + &c.)(x'-x)

^=(A*+^'+ &C.)(x''^x).

&c. = &c.

In like manner, we easily get

^=(^ + ^'+&c.)(y — y)

^=(. + ^' + &c.)(y'-y)
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^y^'=(/* + // + &c.)(/'-y)

&c. = &c.

and also

(J t2
= i.^ -^ /* -t- «c.; (z — z;

^' = (^ + ^' + &c.) (z'~ z)

'|j'-^^^' = (a. + ^'+&c.)(z''-z)

&c. = &c.

Again,

X — x,y — y, z — z

x'— x^ y'— y, z'— z

&c. &c. &c.

are the coordinates of /t*, /tt,', (i!\ &c. when measured from the center of

gravity, and it has been shown already that

d^(x— x) d'x
dt^ ~dt«

d*(y-y)_d«y
dt« ~dt^

d*(z— i) d'z
dt* "dt^

and so on for the other bodies. Hence then it appears, that the motions

of the bodies about the center of gravity, are the same as if there were but

one force, scil.

((«, 4- ,«,'
-f- &c.) X distance

and as if this force were placed in the center of gravity.

Hence the bodies will all describe ellipses about the center of gravity,

as a center ; and their periodic times will all be the same. But their

magnitudes, excentricities, the positions of the planes of their orbits, and

of the major axes, may be of all varieties.

Moreover the motion of any one body relative to any other, will be

governed by the same laws as the motion of a body relative to a center

of force, which force varies directly as the distance ; for if we take the

e(juations

jp- = (^ + ^' + &c.) (X — x)

-^ = (^ + ^' + &c.)(x'-x)
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and subtract them we get

and similarly

and

^^i^_J^ = (/^ + /^' + &C.) (X -X')

dTv v')

—hr^- = (^ + ^' + &c.) (y -y')

^11^^ = (/^ + ^' + &c.) (z- z').

Hence by composition and the general expression for force (t-tI) it

readily appears that the motion of /m about /w', is such as was asserted.

470. Thus far relates merely to the motions of two bodies ; and these

can be accurately determined. But the operations of Nature are on a

grander scale, and she presents us with Systems composed of Three, and

even more bodies, mutually attracting each other. In these cases the

equations of motion cannot be integrated by any methods hitherto dis-

covered, and we must therefore have recourse to methods of approxi-

mation.

In this portion of our labours we shall endeavour to lay before the

reader such an exposition of the Lunar, Planetary and Cometary Theories,

as may afford him a complete succedaneum to the discoveries of our

author.

471. Since relative motions are such only as can be observed, we refer

the motions of the Planets and Comets, to the center of the sun, and the

motions of the Satellites to the center of their planets. Thus to compare

theory with observations,

// is required to determine the relative motion ofa system ofbodies^ ahotU

a body considered as the center of their motions.

Let M be this last body, /*, tJ-', /*", &c. being the other bodies of which

is required the relative motion about M. Also let

I, n, y

be the rectangular coordinates ofM

;

^+ X, n + y, 7 + z;

^ + x'n + y',7+z';

&c.

those of /t, ij/, &c. Then it is evident that

X5 yj z;

x',/,z'

&c.
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will be the coordinates of /t*, /»', &c. referred to M.

Call Si S'y
&c.

the distances of/*, /t*', &c. from M; then we have

S,
g'j &c. being the diagonals of rectangular parallelopipeds, whose sides

are

X, y, z

x', y', z'

&c.

Now the actions of (i, j«.', /tt", &c. upon M are

Ji ifL /Jl, &c
s s s ^

and these resolved parallel to the axis of x, are

/Ct X At' x' (a" x'

Therefore to determine ^ we have

d^_^x ^' ^^'
dt^ ~ ^2 ^ ^'3 + p"3 + ^^'da b

/U. X

tlie symbol 2 denoting the sum of such expressions.

In like manner to determine n, / we have

dt^ -^-g' '

dt^" *" §''

The action of M upon /*, resolved parallel to the axis of x, and in the

contrary direction, is

__Mx

Also the actions of i"-', (<*", &c. upon (i resolved parallel to the axis of x

are, in like manner,

fl' {k' — X) fl" JX" — X) fi,"' {x'"— x) „
-3 J -j J

-3 i o^C*

f 0,

1

f 0,2 f 0,3

fd.ra generally denoting the distance between /J''" ••••" and t^'"
•• **

But

f0.1
= V (X^— X)'' + (/— y)^ + (2^— Z)'

go.2= V(x"— x)«+(y"— y)'^+(z"— z)'

&c. = &c.
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f..9 = '^ {^'— xO « + (/'— y) ' + (z''^=^^«

and so on.

Hence if we assume

fO,l f0,2

fif (if' U,' fS.'"

+ -^— + ":;

—

fl,2 fl,3

+ ^-^^ + &c.
' ?2, S

&C.

and taking the Partial Difference upon the supposition that x is the only

variable, we have

«. Vdxy g'o.l f'o,2

the parenthesis
( ) denoting the Partial Difference. Hence tlie sum of

all the actions of (i', /jJ', &c. on /* is

IJ. Vd x/

Hence then the whole action upon /a parallel to x is

d.'(^ + x) _ 1 /dx> _ Mx
. d t« ~ ^ * Vdx/ f^

'

But

Hi - t^
dt^-^^'
d2x__ 1 /d Xx M X ^ /^x -.V

•'•dT^ ~
II UxJ g^ ?' ^^

Similarly, we have

^^y-l ri^A_My_,/^y
dt« - ^ Vdy; ^^^ -"

f^^
^"^^

^1^ _ ^ /d Xx M z ^ ^ z

dt*' - "7 Vdzy ^^ "'f'
^^

If we change successively in the equations (1), (2), (3) the quantities

(<*, X, y, z into

(jf, x', y', z';

II" Ti" m" f" •

^ > X , y , ^ ,

&c.

and reciprocally ; we shall have all the equations of motion of the bodies

/tt', fi"^ &c. round M.
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If we multiply the equations involving ^ by M + 2. /^ ; that m x, bv

tt : that in x', by /«.', and so on ; and add them together, we shall have

But since

(fil) = ^^^%^ + ^^•

and so on in pairs, it will easily appear that

(n) + (^') + ^^- = »•

d^ ^ d'^ X

whence by integrating we get

sdl d X

1 y _ c , _2^. ^dx
••^^ - M + 2.^ M + 2./.*

and again integrating

1 2. /«. X

a arid b being arbitrary constants.

Similarly, it is found that

/ = ^" + ''"'-MV^%
These three equations, therefore, give the absolute motion of M in

space, when the relative motions around itof ^, ^', (/.", &c. are known.

Again, if we multiply the equations in x and y by

s./^y
-^y + ^-M + 2.^'

and
2. ((A X

in like manner the equations in x' and y' by

^ y t- '*• M ^. 2. ag'



16 A COMMENTARY ON [Sect. XL

and

and so on.

And if we add all these results together, obsei-ving that from the nature
of X, (which is easily shown)

and that (as we already know)

we have

xd*y — yd*x S./tx d*y
^'^'

dT^ M + 2^- ^' "' dT^"

S.Aty * d^x
M + 2 .« d t

"

and integrating, since

/(xd^y — yd*x) =/xd«y—/yd«x
= X d y —/d X d y — (y d x —/d x d y)

= xdy — ydx,
we have

xdy — ydx ^. 2./ctx „ dy
2 . /* . ji

^^ = const. + ^r^p— .l.fl.^
dt ^M + 2..tt dt

2 . /«. y d X— —= 2 . /i . —

—

M + 2./tt* '^ d t

Hence

-KK ^ xdy—ydx xdy— ydx. dxC=M.2.|(*.
dt -

+2./*X2^. ^—^ + 2.^yX2./*-^-

dy
d t

= M.2./..^^y=^^+2./*/.
I
(x^-x)(dy--d y)-y-y)(dx^-dx)

| ^ ^ ^^^

c being an arbitrary constant.

In the same mannel^H'e arrive at these two integrals,

c"= M. .. ^.
Xd^^

,_ ^
^,|(/-y)(dz'-.iz)-(z'-^)(dy'-.ly)

J.

_
^^^

c' and c" being two other arbitrary constants.
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Again, if we multiply the equation in x by

o J « 2. At d X

M + 2./*'

the equation in y by

o J o 2 . (ti d y

the equation in z by

n J c\ 2 . /x d z

M + 2. At-

if in like manner we multiply the equations in x', /, z' by

o / J / o / 2 . (W- d X
2 A* d x' — 2a. ttt—M + 2. At

o / 1 / o / 2. At d y
2 At d y — 2 At . -Kir . ^ -

2 At' d z' — 2 A^'

.

2. Ai- d z

M + 2. At'

respectively, and so on for the rest ; and add the several results, observ-

ing that

-(a-;)=o

we get

2
dxd^x+dyd^y + dzd'z _ 22.Atdx ^ Atd'^jx

'^

dt« - M + 2At"" dt^

,
22. /^dy A^d'y 2 2 . a^ d z Vd'^z

^M + 2a6 dt^ ^M + 2At* dt^

2 M. 2.
M-dg + 2 d X;

and integrating, we have

2 . fi

dx^+dyHdz- _ (2.A^dx)^ + (2.A^dy)^ + (2./^dz)«

+ 2 M 2— 4- 2 X,

S

which gives

h= M. .^ dx^+dy^+dz' ^ ,^^^,^
I

(dx'-dx)H(d/-dy)^+(dz'-dz)'|
dt'

— |2 M 2. -^ + 2 x| (M + 2 At)

h being an arbitrary constant.

Vol. II. B

{^)
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These integrals being the only ones attainable by the present state of

analysis, we are obliged to have recourse to Methods of Approximatioi,

and for this object to take advantage of the facilities afforded us by the

constitution of the system of the World. One of the principal of these

is due to the fact, that the Solar System is composed of Partial Systems,

formed by the Planets and their Satellites : which systems are such, that

the distances of the Satellites from their Planet, are small in comparison

with the distance of the Planet from the Sun : whence it results, that the

action of the Sun being nearly the same upon the Planet as upon its Satel-

lites, these latter move nearly the same as if they obeyed no other action

than that of the Planet. Hence we have this remarkable property,

namely,

472. The motion of the Center of Gravity of a Planet and its Satellites,

is very nearly the same as if all the bodiesformed one in that Center.

Let the mutual distances of the bodies (i, /*', (/>", &c. be very small

compared with that of their center of gravity from the body M. Let

also

x = x+x,; y = y + y^; z = i + z,.

x' = r 4- x/; y' = y + y/; z' = "z + z/;

&c.

X, y, z being the coordinates of the center of gi'avity of the system of

bodies fi, (if, /«.", &c. ; the origin of these and of the coordinates x, y, z

;

x', y', z', &c. being at the center of M. It is evident that x^, y^, z,

;

x/, y/, z/, &c. are the coordinates of /*, /a', &c. relatively to their center of

gravity ; we will suppose these, compared with x, y, z, as small quanti-

ties of the first order. This being done, we shall have, as we know by

Mechanics, the force which sollicits the center of gravity of the system paral-

lel to any straight line, by taking the sum of the forces which act upon the

bodies parallel to the given straight line, multiplied respectively by their

masses, and by dividing this sum by the sum of the masses. We also

know (by Mech.) that the mutual action of the bodies upon one another,

does not alter the motion of the center of gravity o£ the system ; nor does

their mutual attraction. It is sufficient, therefore, in estimating the forces

which animate the center of gravity of a system, merely to regard the

action of the body M which forms no part of the system.

The action ofM upon ij>, resolved parallel to the axis of x is

^x
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the whole force which sollicits the center of gravity parallel to this straight

line is, therefore,

? .

2 (J,

Substituting for x and j their values

X _ X + x^
,3
f Ux + X,) ^ + (y + y,)'^''+ (z + z,) ']^

If we neglect small quantities of the second order, sell, the squares and
products of

X/, y/j z, ; x/, y/, z/ ; &c.

and put

7 = >/ (X 2 + P + z^)

the distance of the center of gravity from M, we have

^ _. J ,
X, 3x(xx, +-yy, + zz,)

for omitting x ^ y ' &c., w§ have

p = (X + xj X J(e)^ + 2 (X X, + y y, + z zj]
"^

nearly

= (^+x,) X J(7)
-' — 3 (7) - Mx X, + y y, + ^zj nearly

= —^— ' =— . (x X, + y y, + z z.) nearly.

Again, marking successively the letters x^, y^, z^, with one, two, three,

&c. dashes or accents, we shall have the values of

X X - -

..
. -, , &c.

i

But from the nature of the center of gravity

2./^x = 0, S./iy = 0, 2./iz =
we shall therefore have

^— — — -=— nearly.

Thus the center of gravity of the system is sollicited parallel to the

axis of X, by the action of the body M, very nearly as if all the bodies of

the system were collected into one at the center. The same result evi-

dently takes place relatively to the axes of y and z ; so that the forces, by

B2
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which the center of gravity of the system is animated parallel to these

axes, by the action of M, are respectively

My J Mz

"When we consider the relative motion of the center of gravity of the

system about M, the direction of the force which sollicits M must be

changed. This force resulting from the action of /*, (j.', &c. upon M, and

resolved parallel to x, in the contrary direction from the origin, is

if we neglect small quantities of the second order, this function becomes,

after what has "been shown, equal to

X 2./i

In like manner, the forces by which M is actuated arising from the

system, parallel to the axes of y, and of z, in the contrary direction, are

y2./A ,z2
and

iiV is)'

It is thus perceptible, that the action of the system upon the body M,
is very nearly the same as if all the bodies were collected at their common

center of gravity. Transferring to this center, and with a contrary sign,

the three preceding forces; this point will be sollicited parallel to the

axes of X, y and z, in its relative motion about M, by the three following

forces, scil.

-(M + 2^)-^3,_(M+2/.)i,_(M+2^)-4^.
(g) is)

'
is)

'

These forces are the same as if all the bodies a, /«,', /j/\ &c. were col-

lected at their common center of gravity ; which center, therefore, moves

nearly (to small quantities of the second ordei) as if all the bodies were col-

lected at that center.

Hence it follows, that if there are many systems, whose centers of gra-

vity are very distant from each other, relatively to the respective distances

of the bodies of each system ; these centers will be moved very nearly, as

if the bodies of each system were there collected ; for the action of the

first system upon each body of the second system, is the same very nearly

as if the bodies of the first system were collected at their common center

of gravity ; the action of the first system upon the center of gravity of the

second, will be therefore, by what has preceded, the same as on this hy-

pothesis ; whence we may conclude generally that the reciprocal action of
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diffh-ent systems upon their respective centers ofgravity^ is the same as if all

the bodies of each system ivere there collected, and also that these centers

move as on that supposition.

It is clear that this result subsists equally, whether the bodies of each

system be free, or connected together in any way whatever ; for their mu-

tual action has no influence upon the motion of their common center

of gravity.

The system of a planet acts, therefore, upon the other bodies of the

Solar system, very nearly the same as if the Planet and its Satellites,

were collected at their common center of gravity ; and this center itself is

attracted by the different bodies of the Solar system, as it would be on

that hypothesis.

Having given the equations of motion of a system of bodies submitted

to their mutual attraction, it remains to integrate them by successive

approximations. In the solar system, the celestial bodies move nearly as

if they obeyed only the principal force which actuates them, and the per-

turbing forces are inconsiderable ; we may, therefore, in a first approxi-

mation consider only the mutual action of two bodies, scil. that of a planet

or of a comet and of the sun, in the theory of planets and comets ; and

the mutual action of a satellite and of its planet, in the theory of satellites.

We shall begin by giving a rigorous determination of the motion of two

attracting bodies : this first approximation will conduct us to a second in

which we shall include the first powers of small quantities or the perturb-

ing forces ; next we shall consider the squares and products of these

forces; and continuing the process, we shall determine the motions of the

heavenly bodies with all the accuracy that observations will admit of.

FIRST APPROXIMATION.

473. We know already that a body attracted towards a fixed point,

by a force varying reciprocally as the square of the distance, de-

scribes a conic section ; or in the relative motion of the body /^, round

M, this latter body being considered as fixed, we must transfer in a di-

rection contrary to that of fi, the action of j"- upon M ; so that in this re-

lative motion, /u- is sollicited towards M, by a force equal to the sum ol

the masses M, and /«- divided by the square of their distance. All this

has been ascertained already. But the importance of the subject in the

Theory of the system of the world, will be a sufficient excuse for repre-

senting it under another form,

B3
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First transform the variables x, y, z into others more commodious for

astronomical purjioses. f being the distance of the centers of /* and M,
call (v) the angle which the projection of g upon the plane of x, y makes
with the axis of x ; and {6) the inclination of § to the same plane ; we
shall have

X = g cos. 6 COS.

y = S cos. 6 sin. v; ^ (1)

z

Next putting

we liave

= g COS. cos. V ;
"\

= § COS. 6 sin. v; >

= f sin. 6. J

^ u + fi _ /j^j^^f + yy+zzr) Xy = z . j-^ f-
-

r • /^

Similarly

dQv _ 1 /dXx M+^ /c^x'

dxJ ~ fi\dx) s' C
[t \d x/ f

^

AtX

M „ ^y
- ,— i- . —3-

/dQx _ _L/dX\ _
Vdy / (Ct \d y/

/d Q \ _ 1 fA\\ __ M_ ^
Vdzy' ~ /*Vd z/ f3

-^^ gs •

Hence equations (1), (2), (3) of number 471, become

d'x _ /dQ. d^y __ /dQ. d^ _ /d Qv

dt^~Vdxy* dt^ ~ Vdy;' dt*~ Vdzr
Now multiplying the first of these equations by cos. 6. cos. v ; the

second by cos. &. sin. v ; the third by sin. tf, we get, by adding them

d^^_njj f_d^^ _ /d Qx .

In like manner, multiplying the first ofthe above equations by— % cosJ X
sin. v; the second by f cos. 6 cos. v and adding them, &c. we have

d v
COS. ='

)

d. =('^) («)

And lastly multiplying the first by — g sin. 6. cos. v ; the second by

•— f sin. 6. cos. V and adding them to the third multiplied by cos. 6. we

have

^ 'dV

dG^^cos.^.)

, u» ,
jdv« . , . , 2?dedd /dQ\ ...

To render the equations (2), (3), (4), still better adapted for use, let

1
u = r

g cos. e
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and

s = tan. 6
^

u being unity divided by the projection of the radius f upon the plane

of X, y ; and s the tangent of the latitude of ^ from that same plane.

If we multiply equation (3) by g ^ d v cos.* 6 and integrate, we get

h being the arbitrary constant.

Hence

dt = d V

dQx dv
"W0" + ^/O-r

(S)

If we add equation (2) multiplied by— cos. 6 to equation (4) multi-

plied by —-— , we shall have

whence

Substituting for d t, its foregoing value, and making d v constant, we
shall have

/dQ>^ d u Vd Q>^ s ^d Q>

= d v/ u*d

v

/dQ\ s^ /dQ\
V (1 uy' u V d s y

d v'

'•+^/(^)t=
d Qxdv

In the same way making d v constant, equation (4) will become

ds/dQx /dQ\ 2\/dQ\
d^s. dv(dv)-"<T;i)-(^+^Hd7)=
d v'

Now making M + /«. z= m, we have (in this case)Qm= — or

(6)

C^)

m u

V(l+s«)
and the equations (5), (6), (7) will become

dv
dt

h.u

= T ; -f- Ud v^

fj'

h«(l + s=)^'
(8)

B4
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(These equations may be more simply deduced directly 124 and Wood-
house's Phys. Astron.)

Tlic area described during the element of time d t, by the projection

d V
of the radius-vector is ^ —^ ; the first of equations (8) show that this area

is proportional to that element, and also that in a finite time it is propor-

tional to the time.

Moreover integrating the last of them (by 122) or by multiplying by

2 d s, we get

s = y sin. (v — d) (9)

7 and 6 being two arbitrary constants.

Finally, the second equation gives by integration

" = h'(i+V)
^^^"+^' + ^"^^-(^

—

^l = ^^^Y^'' '
•
(i»)

e and w being two new arbitraries.

Substituting for s in this expression, its value in terms of v, and then

this expression in the equation

'
A «.

tlv
d t = r—o ;h u^

the integral of this equation will give t in terms of v; thus we shall have

v, u and s in functions of the time.

This process may be considerably simplified, by observing that the

value of s indicates the orbit to lie wholly in one plane, the tangent of

whose inclination to a fixed plane is y, the longitude of the node 6 being

reckoned from the origin of the angle v. In referring, therefore, to this

plane the motion of a^ ; we shall have

s = and y = 0,

which give

1 /A

u = - = p {1 + e cos. (v — t^)}.

This equation is that of an ellipse in which the origin of g is at the

focus

:

h'

is the semi-axis-major which we shall designate by a ; e is the ratio of

the excentricity to the semi-axis-major ; and lastly w is the longitude of

the perihelion. The equation

d V

h u*
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lience becomes

d t = ^—, ^ X
dv

V fi [1+ ecos. (V — •=r)p"

Develope the second member of this equation, in a series of the angle

V — w and of Its multiples. For that purpose, we will commence by

developing

__J
1 + e COS. (V zsr)

in a similar series. If we make

X =
1 + >/ (1 — e*)'

we shall have

1 I f 1 X.c-(^-^)v^-^ ) .

1+ecos. (v— 1^)~ VI— eHl+?^c(^-«) -i l+Xc-(^-^)V-i j
'

c being the number whose hyperbolic is unity. Developing the second

member of this equation, in a series; namely the first term relatively

to powers of c(^—'^)^—^, and the second term relatively to powers of

c — (v — bt) -v/_i and then substituting, instead of imaginary exponentials,

their expressions in terms of sine and cosine ; we shall find

I + e cos. (v — w) -/ 1 — e*

Jl_2Xcos. (v— zir) + 2X2COS. 2(v— w)— 2X3cos.3(v— 17) + &c.J

Calling f the second member of this equation, and making q = — : wc

shall have generally

1
±e-— d~.(^)

fl + ecos. (v— =r)J«+i 1.2.3 m. d q"'

for putting

q q + R
R being = cos. (v — tsr)

''(i)q >^ _ _ 1

dq - (q + R)

dq« -(q + R)»

&c. = &c.
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dq«» ^ 2.3...m (q+K)"" + ' ^

1

" n+ ecos. (v— t^)l"» + i'

Hence it is easy to conclude that if we make

1 -#
= (1— eO "^ X

n + e COS. (v— x^)Y

{I +E (1). COS. (V — «r) + E ^2). COS. 2 (v — «r) + &C.}

we shall have generally whatever be the number (i)

E (0 = + 2e4l+i_VT^j
.

the signs + being used according as i is even or odd ; supposing there-

fore that u = a~^ V m, we have

ndt = dv{l + E(i)cos. (v— «r) + E(-^)cos.2 (v— «r)-|- &c.i

and integrating

n t +6 = V + E ('^ sin. (v— z^) + ^ E (2) sin. 2 (v— =r) + &c.

s being an arbitrary constant. This expression for n t + ^ is very con-

vergent when the orbits are of small excentricity, such as are those of the

Planets and of the Satellites ; and by the Reversion of Series we can find

V in terms of t : we shall proceed to this presently.

474. When the Planet comes again to the same point of its orbit, v is

augmented by the circumference 2 sr ; naming therefore T the time of the

whole revolution, we have (see also 159)

T — — — ^ ^^^
~" n ~ V m '

This could be obtained immediately from the expression

yVdjr
^ ~ h

__ 2 area of Ellipse __ 2 t a b"
h - h

But by 157

h*=ma(l — e")

X - '^^^^
"" V m '
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If we neglect the masses of the planets relatively to that of the sun we
have

which will be the same for all the planets ; T is therefore proportional in

5.

that hypothesis to a 2, and consequently the squares of the Periods are as

the cubes of the major axes of the orbits. We see also that the

same law holds with regard to the motion of the satellites around their

planet, provided their masses are also deemed inconsiderable compared

with that of the planet.

475. The equations of motion of the two bodies M and /(* may also be

integrated in this manner.

Resuming the equations (1), (2), (3), of 471, and putting M+A«'= ni, we
have for these two bodies

_ d ^ X m x'

" - dT^; + T^
=

=

dt 2 "" „3 }> (0)

d '^ z m z

dT^ + 7^.
The integrals of these equations will give in functions of the time t, the

three coordinates x, y, z of the body /(a referred to the center of M ; we

shall then have (471) the coordinates t,, n, 7 of the body M, referred to a

fixed point by means of the equations

^ = a + b t — ^—

;

^ m
' H = a' + b't — ^;m

7 = a'' + b"t—^^' m
- Lastly, we shall have the coordinates of /*, referred to the same fixed

point, by adding x to ^, y to n, and z to 7 : We shall also have the rela-

tive motion of the bodies M and /«, and their absolute motion in space.

476. To integrate the equations (0) we shall observe that if amongst

the (n) variables x '•^\ x ^^^ x ^") and the variable t, whose difference

is supposed constant, a number n of equations of the following form

di xW . ,
d>-i x(') . ^ d'-^x^*^= H
dt*-i ' dt^-^

in which we suppose s successively equal to 1, 2, 3 n ; A, B H
oeing functions of the variables x ('), x ^^\ &c. and of t symmetrical
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with regard to the variables x ^^\ x '^, &c. that is to say, such that they

remain the same, when we change any one of these variables to any other

and reciprocally ; suppose

xO) = a(')x^°-' + '^ + bWx(*-i + 2) + h") x(n),

x(2) = a^2) x^-'-i + J) + b® x^"-' + 2) + li(2) xn.

X(n-i) _ a (n-i) X (•»-» + !) _|. I3
^"^ -*) X (" -' + '^) -^ h^-'5 X ^"^

a^'>, h^^\ h ('^; a^*^, b^% &c. being the arbitraries of which the

number is i (n — i). It is clear that these values satisfy the proposed

system of equations : Moreover these equations are thereby reduced to i

equations involving the i variables x ^"-' + ^) x^"\ Their integrals

will introduce i * new arbitraries, which together with the i (n — i) pre-

ceding ones will form i n arbitraries which ought to give the integration

of the equations proposed.

477. To apply the above Theorem to equations (0) ; we have

z = a X + b y
a and b being two arbitrary constants, this equation being that of a plane

passing through the origin of coordinates ; also the orbit of /» is wholly in

one plane.

The equations (0) give

= d(f'.^)+mdj4; (0')

= i{s'.^^)+m,i.

Also since

and

j« = x« +y^ + z«

.*. fdg = xdx + ydy + zdz
and differentiating twice more, we have

gd^g + 3 df d^g = X d'x + y d^y + zd'z
+ 3(dxd^x + dyd2y + dzd*z),

and consequently

"• V dt'J ^ (. ilf + ^dt« + dt'f

iQ.fi d'x,
, d'y.j d'zl

Substituting in the second member of this equation for d ^ x, d ^
y, d ^' z
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their values given by equations (0'), and for d*x, d^y, d*z their values

given by equations (0) ; we shall find

= d(^^i^^+mde).

If we compare this equation with equations (0'), we shall have ia virtue

of the preceding Theorem, by considering -r—- , -j-^ , t— , 3-^ , as so many

particular variables x ^^\ x ®, x ^^, x ^*\ and g as a function of the time t;

dgrrXdx+ydy;
X and y being constants ; and integrating

= - + Xx + 7y,

h 2 .— being a constant. This equation combined with

z = ax + by; g* = x^ + y2 + z^

gives an equation of the second degree in terms of x, y, or in terms of

X, z, or of y, z ; whence it follows that the three projections of the curve

described by fi about M, are lines of the second order, and therefore that

the curve itself (lying in one plane) is a line of the second order or a conic

section. It is easy to perceive from the nature of conic sections that, the

radius-vector § being expressed by a linear function of x, y, the origin of

X, y ought to be in the focus. But the equation

i = - + ^^ + 7y

gives by means of equations (0)

. d'S ^ ""m)
^ = dF + ^—P

Multiplying this by d f and integrating we get

a' being an arbitrary constant. Hence

d t = e ''-f

which will give g in terms of t ; and since x, y, z are given above in terms

of ^, we shall have the coordinates of /u. in functions of the times.

478. We can obtain these results by the following method, which has

the advantage of giving the arbitrary constants in terms of the coordinates

X, y, z and of their first differences ; which will presently be of great use

to us.
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r.et V = constant, be aa integral of the first order of equations (0), V

being a function of x, y, z, ,— , t-^ , ~ . Call the three last quantities

x', y'j z'. Then V = constant will give, by taking the differential,

^ •_ /d V\ tl X /d V\ ^ y 1 z*^^ ^\ J 2
" - U xV • dT "^ vay; * ar + vot '

• at

+ VdxV* dt"^Vdy7' dt'+Vdz'y'* dt

But equations (0) give

dx'_ mx dy'__ my dz'__ mz
Tt ~ p~' "dT

~ p' dT ~
P"'

we have therefore the equation of Partial Differences

, /d Vn
, ,

/d Vx , ,d Vx
« = ^ (dir) + y (ay) + ^ ( dr)

in r /'d Vx ^ /<i Vx , /d Vx

It is evident that every function of x, y, z, x', y', z' which, when sub-

stituted for V in this equation, satisfies it, becomes, by putting it equal to

an arbitrary constant, an integral of the first order of the equations (0).

Suppose

V = U + U' + U" + &c.

U being a function of x, y, z ; U' a function of x, y, z, x', y', z' but of the

first order relatively to x', y', zf ; U^' a function of x, y, z, x', y', z' and of

the second order relatively to x', y', z', and so on. Substitute this value

of V in tlie equation (I) and compare separately 1. the terms without

x', y', z' ; 2. those which contain their first powers ; 3. those involving their

squares and products, and so on ; and we shall have

/d U\ /d U\ /d U'x
^ = ^(di?-) + y(d7) + ^(dF)'

, /d Ux
, , /d Ua

. ,
/d Ux m f /d U'\ ^

/d U'\ ^ /d U"x

^(dT)+y(-d-r)+<^)=piHd^)+y(ay)+<-dz'))
&c.

which four equations call (I').

The integral of the first of them is

U' = funct. [x y' — y x', x z' — z x', y z' — z y', x, y, z]
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The value of U' is linear with regard to x', y^ z' \ suppose it of this

form

U' = A (x y' — y x') + B (x z' — z x') + C (y z' — z y')

;

A, B, C being arbitrary constants. Make

U"', &c. = ; •

then the third of the equations (F) will become

The preceding value of \5' satisfies also this equation.

Again, the fourth of the equations (F) becomes

of which the integral is

U" = funct. Jx y' — y x', x z' — z x', y z' — z y', x', y ', z'\

.

This function ought to satisfy the second of equations (F), and the first

member of this equation multiplied by d t is evidently equal to d U. The

second member ought therefore to be an exact differential of a function of

X, y, z ; and it is easy to perceive that we shall satisfy at once this condi-

tion, the nature of the function U", and the supposition that this function

ought to be of the second order, by making

U" = (D y' — E X') . (X / — y x') + (D z' — F x') (x z' — z x')

+ (E z- — F y) (y z' — z y'} + G (x'^ + y 2 + z' ')^

D, E, F, G being arbitrary constants ; and then g being = Vx M-y^+z^,
we have

U = — -(Dx + Ey + Fz + 2G);

Thus we have the values of

U, U', U" ;

and the equation V = constant will become

const.=—-Px+Ey+Fz+2G} + (A + Dy' — Ex') (x y — y x')

+ (B+ Dz' — Fx') (xz— zx')+ (C+Ez' — Fy') (yz'— zy)

This equation satisfies equation (I) and consequently the equations (0)

whatever may be the arbitrary Constants A, B, C, D, E, F, G. Sup-

posing all these = 0, 1. except A, 2. except B, 3. except C, &c. and

putting

d X d y d z ^ , ,

T— ,
1-*^

, ,— tor X , y , z

,

d t ' d t (1 t ' -^ '
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we shall have the integrals *

fp-xdy — > d X ^,_xdz — zd x »_ydz--z d y
dt '""-

dt ''^- dTt

n-f _L ^ J°^
dys+dzn y dy.dx zdz . d x

• 17 ar^— / + dt* + dt^

(V) ^ O-f X v/™ dx'+ dz^ -( xdx.dy zdz. dy

n-f'a.^/"^ dx' + d y')
,
xdx.dz

,
ydy.dz0_t +z|- dT^~f + dt^ + dt«

. m 2m . dx« + dy*+dz*

.«=T--T"*'"~ d-t^

c, c', c'', f, f, f" and a being arbitrary constants.

The equations (0) can have but six distinct integrals of the first order,

by means of which, if we eliminate d x, d y, d z, we shall have the three

variables x, y, z in functions of the time t ; we must therefore have at least

one of the seven integrals {P) contained in the six others. We also per-

ceive a priorif that two of these integrals ought to enter into the five

others. In fact, since it is the element only of the time which enters

these integrals, they cannot give the variables x, y, z in functions of the

time, and therefore are insufficient to determine completely the motion of

a about M. Let us examine bow it is that these integrals make but five

distinct integrals.

If we multiply the fourth of the equations (P) by ^
. ^ , and

X U Z "^"^ Z (1 X
add the product to the fifth multiplied by t— , we shall have

n_f z dy—ydz ^, xdz—zdx xdy—ydx/m dx^dy^ )"-*•
dl +*• dl +^- dt \g dT^~/

+
xdy — ydxfxdx.dz ydy.dz

dt
fx dx. d z y d y . d z \
t tUt'""*" dt^ )'

„, . . t.
xdy — ydx xdz— zdx ydz — zdy,.

Substitutmg for
(\^ ^

' jl » "^ '
'"^"'

values given by the three first of the equations (P), we shall have

f

'

cf—f c" ( m d x'+ d y
g

"> xdx.dz y dy.d z

^= I "^""iT dl^ j+ TF~+ dt^ *

This equation enters into the sixth of the integrals P, by making

f" = f
'
c' — f c^

or = f c" — f c' + f" c. Also the sixth of these
c

integrals results from the five first, and the six arbitraries c, c', c", f, f, f
are connected by the preceding equation.
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If we take the squares off, f, i" given by the equations (P), then add

them together, and make f '^ + f * + F' * = 1 % we shall have

,„ 2__ / I
dx^+dy^+dz ^ (l^i\^ 1 f dx^+dy^+dz' 2 mi

^"""'"t^ d~P Vdt^ \'\ dt° yV
but if we square the values of c, c', c", given by tlie same equations, and

make c* + c'* 4- c"* = h'; we get

%

dx'^ + dy^ + dz' /L^
dt

the equation above thus becomes

__ d x^+ dy^+ dz^ 2 m m» —

P

""
r~dT^ g

*" h^~*
Comparing this equation with the last of equations (P), we shall have

the equation of condition,

m' — V _ jn

h« ~ a
*

The last of equations (P) consequently enters the six first, which are

themselves equivalent only to five distinct integrals, the seven arbiti'ary

constants, c, c', c", f, f, f", and a being connected by the two preceding

equations of condition. "Whence it results that we shall have the most

general expression of V, which will satisfy equation (I) by taking for this

expression an arbitrary function of the values of c, c', c", fj and T, given

by the five first of the equations (P).

479. Although these integrals are insufficient for the determination of

X, y, z in functions of the time ; yet they determine the nature of the

curve described by /i about M. In fact, if we multiply the first of the

equations (P) by z, the second by — y, and the third by x, and add the

results, we shall have

= c z — c' y + c'' X,

the equation to a plane whose position depends upon the constants

c, c', d'.

If we multiply the fourth of the equations (P) by x, the fifth by y, and

the sixth by z, we shaU have

n <• I f/ , f// . 2 dx«+dy*+dz2
,
g^d^^=fx+f'y+P'z+m^— f^ ^ 1^7 + Vt*'

but by the preceding number

,
dx^4- dy'+ dz' ?IAi!-l,»

^ * dt« " dt« "" *

.-.0 = m g — h» + f X + f y + f" z.

This equation combined with

= c" X — c' y + c z

Vot. II. C
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and

g* = x» + y' + z*

gives the equation to conic sections, the origin of f being at the focus.

The planets and comets describe therefore round the sun very nearly

conic sections, the sun being in one of the foci ; and these stars so move

that their radius-vectors describe areas proportional to the times. In fact,

if d V denote the elemental angle included by ^, g + d
f,
we have

dx* + dy" + dz* = g*d v^ + d g*

and the equation

, dx« + dy*+ dz' g'd g' _ ^^,
dt* dt

becomes

f*d v» = h«d t';

hdt
.'. d V = r— .

Hence we see that the elemental area | f
* d v, described by g, is propor-

tional to the element of time d t ; and the area described in a finite time is

therefore also proportional to that time. We see also that the angular

motion of/* about M, is at every point of the orbit, as —, ; and since without

sensible error we may take very short times for those indefinitely smally we

shall havef by means of the above equation, the horary motions of the planets

and comets, in the different points of their orbits.

The elements of the section described by fi, are the arbitrary constants

of its motion ; these are functions of the arbitraries c, c', c", f, T, f", and

— . Let us determine these functions,
a

Let 6 be the angle which the intersection of the planes of the orbit and

of (x, y) makes with the axis of x, this intersection being called the li?ie

of the nodes ; also let <p be the inclination of the planes. If x', y' be the

coordinates of fi referred to the line of the nodes as the axis of abscissas,

then we have

x' = X COS. ^ + y sin. 6

y' = y COS. 6 — x sin. 6.

Moreover

z = y' tan. f
.*. z = y COS. 6 tan. f— x sin. 6 tan. p.

Comparing this equation with the following one

= c" X — c' y + c z
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we shall have

c' = c COS. 6. tan. p
c" zz. c sin. 6 tan. <p

whence

and

c
tan. 6 -zz -r

c

tan. p = —^ '
'

c

Thus are determined the position of the nodes and the inclination of the

orbit, in functions of the arbitrary constants c, c', c".

At the perihelion, we have

gdf = 0, orxdx + ydy + zdz = 0.

Let X, Y, Z be the coordinates of the planet at this point ; the fourth

and the fifth of the equations (P) will give

_Y __ f
X - f

But if I be called the longitude of the projection of the perihelion upon

the plane of x, y this longitude being reckoned from the axis of x, we have

Y^ = tan. 1

;

T f'
.-. tan. I = ,

which determines the position of the major axis of the conic section.

If from the equation

2 clx'+ dy' + dz« _ g'dg' _ , ,

^ • dt^ dt'^
~

we eliminate a\^ » ^^ means of the last of the equa-

tions (P), we shall have

me* f *d e* 1 ,

but d g is at the extremities of the axis major ; we therefore have at these

points

n h *

= p«_2ap+ ?-^.
* * m

The sum of the two values of % in this equation, is the axis major, and

their difference is double the excentricity ; thus a is the semi-axis major of

the orbit, or the mean distance of ^t from M ; and

VO-i^a)



30 A COMMENTARY ON [Sect. XI.

is the ratio of the excentricity to the semi-axis major. Let

h«x
= J( 1 m sn

and having by tlie above

m _ m' — 1'

we shall get

m 6 = 1.

Thus we know all the elements which determine the nature of the conic

section and its position in space.

480. The three finite equations found above between x, y, z and f give

X, y, z in functions of g ; and to get these coordinates in functions of the

time it is sufficient to obtain f in a similar function ; which will require a

new integration. For that purpose take the equation

m g* ^f ' "

2 m — —2 *_—s_ — us
»

a d t«

But we have above

h' = — (m« — 1«) = am(l — e«);

.-. d t =
V m /|2f — ^" — a(l — e«)|

whose integral (237) is

a^
t + T = ^^^ (u — e sin. u) (S)

u being = cos. -^ ( —j, and T an arbitrary constant.

This equation gives u and therefore § in terms of t; and since x, y, z

are given in functions of f, we shall have the values of the coordinates for

any instants whatever.

We have therefore completely integrated the equations (0) of 475, and

thereby introduced the six arbitrary constants a, e, I, 6, <p, and T. The
two first depend upon the nature of the orbit ; the three next depend upon

its position in space, and the last relates to the position of the body u.

at any given epoch ; or which amounts to the same, depends upon the

instant of its passing the perihelion.

Referring the coordinates ofthe body fi, to such as are more commodious

for astronomical uses, and for that, naming v the angle which the radius-
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vector makes with the major axis setting out from the perihelion, the

equation to the ellipse is

^ ~"
1 + e cos. V

*

The equation

g = a ( 1 — e COS. u)

indicates that u is at the perihelion, so that this point is tlie origin of two

angles u and v ; and it is easy hence to conclude that the angle u is formed by

the axis major, and by the radius drawn from its center to the point where

the circumference described upon the axis major as a diameter, is met by

tlie ordinate passing through the body /* at right angles to the axis major.

Hence as in (237) we have

V . 1 + e ^ u
tan. -^ = jj 1 . tan. -^ .

2 ^1 — e 2

We therefore have (making T = 0, &c.)

n t = u — e sin.

j= a(l — e

and

1. u ~j

cos. u)
I

V /I + e u
(0

n t being the Mean Anomaly,

n the Excentric Anomaly,

V the Time Anomaly.

The first of these equations gives u in terms of t, and the two others

will give f and v when u shall be determined. The equation between u
and t is transcendental, and can only be resolved by approximation.

Happily the circumstances attending the motions of the heavenly bodies

present us with rapid approximations. In fact the orbits of the stars are

either nearly circular or nearly parabolical, and in both cases, we can de-

termine u in terms of t by series very convergent, which we now proceed

to develope. For this purpose we shall give some general Theorems

upon the reduction of functions into series, which will be found very use-

ful hereafter.

481. Let u be any function whatever of a, which we propose to deve-

lope into a series proceeding by the powers of a. Representing this

series by

U = «'+ a.q,+ a*. q2+ «°. qn+ «" + ^ qD+ + &c.

C3
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«j qi> q2j &c. being quantities independent of a, it is evident that?^ is what

u will become when we suppose a = ; and that whatever n may be

(j^) = 1.2....n.q„ + 2.3....(n+l).a.q„ + j + &c.

(d ** u\ • •

-j

—

-) being taken on the supposition that every thing in

u varies with a. Hence if we suppose after the differentiations, that a = 0,

in the expression T j

—

A we have

_/d''u\ 1

^" ~\da°>' ^ 1.2 n*

This is Maclaurin's Theorem (see 32) for one variable.

Again, if u be a function of two quantities a, «', let it be put

u = M 4- a . qi + a 2
. q^-^ + &c.

+ «'• qo.i +««'• qi.i + &c.

+ a' *. qo,2 + &C.
the general term being

«''a'°'qn.n-
Then if generally

/ d " + °' u \

Vd a " . d a' «'/

denotes the (n + n')''' difference of u, the operation being performed (n)

times, on the supposition that a is the only variable, and then n' times on

that of a' being the only variable, we have

(dli)
~ *^''° + ^ " • ^2.0 + ^ " '• ^3.0 + 4, a' q^^o + 5 a*. q5,o + &c.

+ «' qi.l +2a.«'q2,i +3a'^a'q3^i +4aVq4^i + &c.

+ a' * qi,2 +2aa'^q2,2 +3a«a^q3,2 + &C.

+ "-'^
qi,3 + 2aa''q2^3 + &c.

+ a'* qi.4 + &c.

(d^)
~ ^ ^*'' + ^- 2 " 93.0 + 4. 3 a 2 q4 + 5. 4 a' qj^o + &c.

+ 2a qj,! + 3. 2aaq3,i + 4. 3o«c£q4^i 4. &c.

+ 2a« q2.2 + 3.2aa2q3^2 + &c.

+ 2a3q +&C.

(d^«)=2^^> + ^-^"^^^ + ^*^-

+ 2 a q2_2 + &c.

and continuing the process it will be found that
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so that when a, a both equal 0, we have

/ d » + "' u \

_ \d a n
. d a'"n7

^"•"'~2. 3....n X 2. 3....n' ^^^

A nd generally, if u be a function of a, a, a", &c. and in developing it

into a series, if the coeflScient of a °. a «'. a." ^'. &c. be denoted by q„, ^., a"> &c

we shall have, in making «, 6.^ a", &c. all equal 0,

/ d n + n' + n" + &c. ^ .

0,^ _ Vda".da»'.da^^°",&C.) .

qn.n'.n". &c.
-2.3....n X 2. 3 . . . . n' X 2. 3 . . . . n" X &c. " '^ '

This is Maclaurin's Theorem made general.

482. Again let u be any function of t+ a, t'+ a, t" + a", &c. and

put

u z= p (t + a, f + <i, t'' + a", &c.)

then since t and a are similarly involved it is evident that

/ (J
n + n' + n" + &c. y . ,

^J
n + n' + n" + &c. y .

Vd a", d a."', d «"n"&c./ ~ Vd t". d t'°'. d t'">". &c.^

and making

«, a, a'', &c. = 0,

or

u = ^ (t, t', t", &c.)

by (2) of the preceding article we have
,dn + n' + n".&c.

^ ^ ^^^ ^/^
^i

^ g^C,)

__ V d t°. d t^^'. d t^"°"&c /

q n.n'.n'.&c. "
2. 3 .... n X 2. 3 n' X 2. 3 n" X &c. * * * ^*^

which gives Taylor's Theorem in all its generality (see 32).

Hence when

u = P . (t + «)

^" ~ 2. 3....n.dt»

and we thence get

,(t + .) = Mt) +«^ + "^'.^ + &c. (i)

483. Generally, suppose that u is a function of «, a, a", &c. and of

t, t', t", &c. Then, if by the nature of the function or by an equation of

P.. ftial Differences which represents it, we can obtain

/ d» + "' + &°-.U N

V-da". da"'. &c./

in a function of u, and of its Diffeiences taken with regard to t, t', Sec

C4
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calling it F when for u we put tt or make a, d, a", &c. = ; it is evident

we have

_ F
qn.n'.n.te. ~

2. 3 ... n X 2. 3 ... n' X 2. 3 . . . n", x &c.

and therefore the law of the series into which u is developed.

For instance, let u, instead of being given immediately in terms of a,

and t, be a function of x, x itself being deducible firom the equation of

Partial Differences

=^0
in which X is any function whatever of x. That is

Given
u = function (x)

to develope u into a series ascending by the powers of a.

Fii'st, since

•••(rJ = ('-^^) w
Hence

/d'uv /d'/Xdux
VdaV~ V da.dt )*

But by equation (k), changing u intoyX d u

/d./Xdu >, _ /d^/X^dux
V d^i )-\ dt )'

/dj_ux _ /d'/X'du x
•*•

V d aV ~ \ d t «
)'

Again
/d^uv _/dVX«du x

Vda^J-V da.dt* )'

But by equation k, and changing u intoyX' d u

/d/X'du x _ /d/X'du v

V da -J~V dt /

/d^ux _ /d»./Xld_ux
•'•VdT'j-v dt» ;•

Thus proceeding we easily conclude generally that

• ,d°». xd"/x_du>y ''°-•x°(rt) ^ ,,.

Now, when a = 0, let

X = function of t = T
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and substitute this value of x in X and u ; and let these then become X
and u respectively. Then we shall have

d-'.Xn.^"
/d°u \ _. d_t

and

d u
d»-». X«.

•'• ^° " 2.3 ndt-^-»
^^^

which gives

, ^ dw , a* V d t/ ,
a^ v d t^ , . , .

" = " + «^-Tt + -2- dl +2:3- dT^
+&c....(p)

which is Lagrange's Theorem.

To determine the value of x in terms of t and a, we must integrate

In order to accomplish this object, we have

and substituting

we shall have

dx=(^)Sdt + Xd.!

= ^^{d(t + «X)-«(^)d.},

(^).d.(t+aX)
dx =

dXx /dxx"
>+«(d-^)rdi)

which by integration, gives

X = 9 (t +.a X) '

. '. (2)

f denoting an arbitrary function.

Hence whenever we have an equation reducible to this form x =
9 (t + a X), the value of u will be given by the formula (p), in a series of

the powers of a.

By an extension of the process, the Theorem may be generalized to the

case, when

u = function (x, x', x'', &c.)
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and

X = p (t + a X)
x' =: f {tf + a' X')

x" = ^' (f' + a" X'O

&c. = &c.

484. Given (237)

u = n t 4- e sin. u

required to develope u or any function of it according to the powers ofe.

Comparing the above form with

X = p (t + « X)
X, t, a, X become respectively

u, n t, e, sin. u.

Hence the formula (p) 483. gives

. / N . , X .// % • . e' d J-vI/' (n t) sin. * n t J^{n) = ^Knt) + e^^' (n t) sm. n t + - . -'-^^^^-^ i

+ £! d'{4/(nt)sin.3ntl

4,(„t)be,„g=14^.

To farther develope this formula we have generally (see Woodhouse's

Trig.)

6m.'(nt) =
[ 2 V —

1

) ' cos.>(nt) = ( X
j;

c being the hyperbolic base, and i any number whatever. Developing the

second members of these equations, and then substituting

cos. r n t + V — I sin. r n t, and cos. r n t— V — 1 sin. rn t

for c'"* •^~', and c"'" * V— ?, r being any number whatever, we shall

have the powers i of sin. n t, and of cos. n t expressed in sines and cosines

of n t and its multiples ; hence we jfind

6 e ^
.

P =r sin. nt+-^sin'nt + 5-5 sin. ' n t -f &c.

r= sin. n t— 5-^ . {cos. 2 n t — 1

}

e

2. 3. 4. 2

»

. {sin. 3 n t— 3 sin. n t]

( 1 4. 3 )
. < cos. 4 n t — 4 cos. 2 n t + -^ . ^j—^ >

2.3.2*

1 4. 3

+ 2. 3. 4.5. 2 ^ {'^"- ^ " '""^ '^"- ^ " ^+172 '^"-
" *}
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-23:4^»-{'=°^'«'"-«'°^-*°'+tI~^-2"'-i-t:II}

— &c.

Now multiply this function by ^' (n t), and differentiate each of its

terms relatively to t a number of times indicated by the power of e which

multiplies it, d t beuig supposed constant; and divide tliese differentials

by the corresponding power of n d t. Then if P' be the sum of the

quotients, the formula (q) will become

4 (u) = -v^n t) + e P^

By this method it is easy to obtain the values of the angle u, and of

the sine and cosine of its multiples. Supposing for example, that

•vp u = sin. i u

we have .

^ (n t) = i cos. int.

Multiply therefore the preceding value of P, by i. cos. i n t, and deve-

lope the product into sines and cosines of n t and its multiples. The
terms multiplied by the even powers of e, are sines, and those multiplied

by the odd powers of e, are cosines. We change therefore any term of

the form, K e '^ " sin. s n t, into + K e * • s '^^ sin. s n t, + or — obtaining

according as r is even or odd. In like manner, we change any term

of the form, K e^"" + ' cos. s n t, into + K e^'" + '. s'^' + '. sin. s n t, — or

-f- obtaining according as r is even or odd. The sum of all these terms

will be P' and we shall have

sin. i u = sin., i n t + e P'*

But if we suppose

•4' (u) = u;
then

^^ (n t) = 1

and we find by the same process

e*
u = n t + e sin. n t 4- ^-^ . 2 sm. 2 n t

+ £-|-22-[3*sin. 3nt — 3sin. nt] .

e*
+ Q 3

.{4»sin. 4n t — 4. 2 'sin. 2 n t]
iS» «S. 4. a

e *
f 54)

+ g g ^ g gv |5*sin.5nt— 5.3*sin.3nt+j^sin.nt|

+ &c.
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a formula -johich expresses the Excentric Anomaly in terms of the Mean
Anomaly.

This series is very convergent for the Planets. Having thus determin-

ed u for any instant, we could thence obtain by means of (237), the cor-

responding values of f and v. But these may be found directly as fol-

lows, also in convergent series.

485. Required to express g in terms of the Mean Anomaly.

By (237) we have

^ = a (1 — e cos. u).

Therefore if in formula (q) we put

4' (u) = 1 — e cos. u

we have

•vj/' (n t) = e sin. n t,

and consequently

. • o .
e' d. sin.' n t , .

1 — e cos. u = 1 — e cos. n t + e * sm. * n t + — .
• -r-— + &c.

A not
Hence, by the above process, we shall find

p e ' e *

-i- = 1 + -^ — e cos. n t — COS. 2 n t

_ a

,.{3 cos. 3 n t — 3 cos. n t]
2. 2

,4

2. 3. 2 3

® .J4*cos. 4nt — 4. 2*. cos. 2n t|

e ' r , « 6. 4 "J

__ . -j 5 ' cos. 5 n t--5. 3 ^ cos. 3 n t + y-^. cos. n t
J-

2. 3. 4. A (. 1. ^ J

— ostW* {6*cos.6nt—6. 4-* cos. 4 n t+^. 2*cos.2nt|

— &c.

486. To express the True Anomaly in terms of the Mean.

First we have (237)

V . u
sin. -^ 1 + e «'"• -2

-Vl— e*
u

cos. Y ^^' "2

/. substituting the imaginary expressions

and making

X =

-»—

1

_ /1 + e c"^^"^—

I

,

-1 + 1
- sj\— e c"V-i+ 1'

1 + V (l—e*)



Book I.] NEWTON'S PRINCIPIA. 45

we shall have

*^ _ c V X i_xc"V-i '

and therefore

— log.(l-^c—"V— »)— log.(l~Xc"V--i)
v_u-f- \^'Z:^

whence expanding the logarithms into series (see p. 28), and putting

sines and cosines for their imaginary values, we have

2 X ^ 2 X ^
.

V = u + 2 X sin. u -\—^— sin. 2 u -j ~ sin. 3 u + &c.

But by the foregoing process we have u, sin. u, sin. 2 u, &c. in series

ordered by the powers of e, and developed into sines and cosines of n t

and its multiples. There is nothing else then to be done, in order to

express v in a similar series, but to expand X into a like series.

The equation, (putting u=l + Vl — e*)

e*
u = 2—

-

u

will give by the formula (p) of No. (483)

1 __ 1 ie« . i(i + 3) e^ i(i + 3)(i + 5) _e^
u'~2'"*" 2>+2 * 2 •2'+*"^ 2.3 '2^ + ^

and since

u = 1 + V 1 — e*

we have

These operations being performed we shall find

v=nt + |2e — — e' + g^ e^j sin. n t

fl03 . 451 si . . ,

+ -960
"^^"•^"*

. 1223 6 . « ^

the approximation being carried on to quantities of the order e* in-

clusively.
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487. The nngles v and n t are here reckoned from the Perihelion ; but

if we wish to compute from the Aphelion, we have only to make e nega-

tive. It would, tlierefore, be sufficient to augment the angle n t by «r, in

order to render negative the sines and cosines of the odd multiples of n t

;

then to make the results of these two methods identical ; we have only in

tlie expressions for § and v, to multiply the sines and cosines of odd

multiples of n t by odd powers of e; and the even multiples by the even

powers. This is confirmed, in fact, by the process, a posteriori.

488. Suppose that instead of reckoning v from the perihelion, we fix

its origin at any point whatever ; then it is evident that this angle will be

augmented by a constant, which we shall call w, and which will express

the Longitude of the Perihelion. If instead of fixing the origin of t at

the instant of the passage over the perihelion, we make it begin at any

point, the angle n t will be augmented by a constant which we will call

e — w ; and then the foregoing expressions for — and v, will become
a

-^= 1+^e?—(e—I e)cos.{nt+s—z^)—{ ]:^—l e*)cos.2(nt+«—»')+ &c.

v=nt+t+(2e— -e^)sin.(nt+«—»)+( -e«—27e*)sin. 2 (nt+ s—«')+&c.

where v is the true longitude of the planet and n t + g its mean longi-

tude, these being measured on the plane of the orbit.

Let, however, the motion of the planet be referred to a fixed plane a

little inclined to that of the orbit, and <p be the mutual inclination of the

two planes, and 6 the longitude of the Ascending Node of the orbit, mea-

sured upon the fixed plane ; also let jS be this longitude measured upon

the plane of the orbit, so that 6 is the projection of jS, and lastly let v^ be

the projection of v upon the fixed plane. Then we shall have

V, — ^, V — /3,

making the two sides of a right angled spherical triangle, v — /3 being

opposite the right angle, and p the angle included between them, and

therefore by Napier's Rules

tan. (v, — d) = COS. 9 tan. (v — /S) (1)

TTiis equation gives v, in terms of v and reciprocally ; but we can ex-

press cither of them in terms of the other by a series very convergent

after this manner.

By what has preceded, we have the series

11 X* X'
- v = —u

-t-
X sin. u + ^ sin. 2 u + ~ sin. 3 u -{- &c.



Book L] NEWTON'S PRINCIPIA 4t

from

1 /l + e ^ 1
tan. 2 v=^p_^.tan.-u.

by making

^ - 1 + e

into
e

V^ + i

If we change - v into v, — d, and - u into v — jS, and ^-=

COS. f, we have
COS. p 1 .0

X = Zl_— = _ tan.«-^; (1)
COS. <p + 1 2 ^ '

The equation between -x v and - u will change into the equation be-

tween v^ — 6 and v — /3, and the above series will give

V, — ^ = v— jS — tan " - ?>. sin. 2 (v — S) + - tan. '*

-5 p. sin. 4 (v— 18)
2

"^

^ ' ' 2 2

3 2
^Uxn.^ I <p sin. 6 (v — 18) + &c (2)

v u 1 .

If in the equation between - and - , we change ^ v into v — /3 and

1 . . 1 / 1 + e • 1 1111
_ u into V, — 6, and ^ / ^i

into , we shall have
2 ' ^1 — e cos. <p

X = tan.^|f, (3)

and

V — jS = v^—^+tan. ' -g- (p. sin. 2 (v, — 6)

+ -2 tan. -^

2 ^ sin. 4 (v, — S)

+ I
tan.^! ^. sin. 6(v, — (4)

Thus we see that the two preceding series reciprocally interchange,

l.y changing the sign of tan. * ^ ?'> and by changing v, — ^, v — jS the one

for the other. We shall have v, — 6\n terms of the sine and cosine of

n't and its multiples, by observing that we have, by what precedes

v = nt + « + eQ,

Q being a function of the sine of the angle n t + « — w, and its multi-

ples; and that the formula (i) of number (482) gives, whatever is i,

sin. i (v — /3) = sin. i (n t + 1 — /3 + e Q)
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Lastly, s being the tangent of the latitude of the planet above the fixed

plane, we have
s = tan. <p sin. (v, — 6) ;

and if we call f^ the radius-vector projected upon the fixed plane, we
shall have

f,=f(i+s«r*=f{i-.is« + |s*-&c.},

we shall therefore be able to determine v^, s and ^, in converging series

of the sines and cosines of the angle n t and of its multiples.

489. Let us now consider very excentric orbits or such as are those of

the Comets.

For this purpose resume the equations of No. (237), scil.

- a( l — e')

* ~ 1 + e cos. V

n t = u— e sin. u

1 + e
tan.i V =^ J——^ . tan. i u.

In this case e differs very little from unity; we shall therefore suppose

1 — e = a

a being very small compared with unity.

Calling D the perihelion distance of the Comet, we shall have

D= u(l — e) = aa;

and the expression for ^ will become

(2 -- g) D D
s 1

—

1 r a ~i r
2 cos. * - v — a COS. V cos. '^2^1"*"

2 — «
*^"' 2 ^f

which gives, by reduction into a series

cos.* 2 V

To get the relation of v to the time t, we shall observe that the expres-

sion of the arc in terms of the tangent gives

u = 2tan. iujl— I tan.' g " + 5
^^'*

2 ^ "^ ^^'\

But
1 / a ^ 1

tan.-u=,^^:^tan. ^u;
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we therefore have

Next we have

2 tan.~ u

sin. u =
1 + tan. 2— u

— = 2 tan. -g- u| 1 —tan. ^ | + tan.* ^_ &c.
|

Whence we get

esin.u = 2(l-»)^^^tan.iv.{l_^^tan.'Av

+ {2^)' '''''
h-^-}-

Substituting these values of u, and e sin. u in the equation n t = u —
e sin. u, we shall have the time t in a function of the anomaly v, by a series

very convergent ; but before we make this substitution, we shall observe

that (237)

n =: a -s^ V m,

D = a a>

1

n
=

a m
•

_5.
n = a

and since

we have

Hence we find

If the orbit is parabolic

a =
and consequently

D
1

COS. — V

'J V . I , 1 1
|tan. - + 3tan.3_ v]^~~

v' m
which expression may also be got at once from (237).

The time t, the distance D and sum ra of the masses of the sun and

comet, are heterogeneous quantities, to compare which, we must divide

each by the units of their species. We shall suppose therefore t'nat the

mean distance of the sun from the Earth is the unit of distance, so that D
is expressed in parts of that distance. We may next observe that if T

Vol. II. D



50 A COMMENTARY ON [Sect. XI.

represent the time of a sidereal revolution of the Earth, setting off from

the perihelion ; we shall have iii the equation

n t = u — e sin. u

u = at the beginning of the revolution, and u = 2 t at the end of it.

Hence
n T = 2 ff.

But we have

n = a "" * V m = -y/ m,

,
2^

.-. V m = -^ .

The value of m is not exactly the same for the Earth as for the Comet,

for in the first case it expresses the sum of the masses of the sun and

earth ; whereas in the second it implies the sum of the masses of the sun

and comet : but the masses of the Earth and Comet being: much smaller

than that of the sun, we may neglect them, and suppose that m is the

same foi: all Planets and all Comets and that it expresses the mass of the

2 <K

sun merely. Substituting therefore for V m its value ttt in the preced-

ing expression for t ; we shall have

, D^.T/^ 1 ^1 3 1 1

/=VV-2l^-2^+ 3^"- 2M*
This equation contains none but quantities comparable with each other

;

it will give t very readily when v is known ; but to obtain v by means of

t, we must resolve a Cubic Equation, which contains only one -real root.

We may dispense with this resolution, by making a table of the values of

V corresponding to those of t, in a parabola of which the perihelion dis-

tance is unity, or equal to the mean distance of the earth from the sun.

This table will give the time corresponding to the anomaly v, in any par-

abola of which D is the perihelion distance, by multiplying by D 2'
, the

time which corresponds to the same anomaly in the Table. We also get
5

the anomaly v corresponding to the time t, by dividing t by D * , and

seeking in the table, the anomaly which corresponds to the quotient

arising from this division.

490. Let us now investigate the anomaly, corresponding to' the time t,

in an ellipse of great excentricity.

If we neglect quantities of the order a ^, and put 1 — e for a, the above

expression of t in terms of v in an ellipse, will give

D « V 2 f tan. ^ v + ^ tan.^ \ v )

Vm t+ (1 — e) tan.«^ V ^ — ^tan. *^ V -^tan. iv}/

*

Then, find by the table of the motions of the comets, the anomaly cor-

3
1)

t =
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responding to the time t, in a parabola of which D is the perihelion dis-

tance. Let U be this anomaly and U + x the true anomaly in an ellipse

corresponding to the same time, x being a very small angle. Then if we
substitute in the above equation U + x for v, and then transform the

second member into a series of powers of x, we shall have, neglecting the

square of x, and the product of x by 1 — e,

^^Dl^2j^^"--U+itan.'iU + ^^^-^ )

^ "" (+ ^—^ tan. i U {1 — tan.2 i U — I tan. ' ^ U})

But by supposition

D^ V 2
t = ^^ {tan. i U + ^ tan.= i V].

Therefore, substituting for x its sine and substituting for sin. * ^ U its

value (1 — COS. 2 i U) *, &c.

sin. X = y'^ (1 — e) tan. I U {4 — 3 cos. ^ i U — 6 cos. '^

^ U] .

Hence, in forming a table of logarithms of the quantity

jL tan. 1 U {4 — 3 cos. ^ | U — 6 cos. * i U]
it will be sufficient to add the logarithm of 1 — e, in order to have that of

sin. X ; consequently we have the correction of the anomaly U, estimated

from the parabola, to obtain the corresponding anomaly in a very excen-

tric ellipse.

491. Tofind the masses ofsuch planets as have satellites.

The equation

^ _ 2cra^

V m
gives a very simple method of comparing the mass of a planet, having sa-

tellites, with that of the sun. In fact, M representing the mass of the sun,

if fi the mass of the planet be neglected, we have

T - ^-'L'^^V M
If we next consider a satellite of any planet /«.', and call its mass p, and

mean distance from the center of /a', h, and Tits periodic time, we shall

have

T = 2 *r h
2-

V/i'+ p

.
^' + P

•• M =
^3 T^
^3 ^ 2^2'

This equation gives the ratio of the sum of the masses of the planet fi

and its satellite to that of the sun. Neglecting therefore the mass of the
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satellite, as small compared with that of the planet, ov supposing their ra-

tio known, we have the ratio of the mass of the planet to that of the sun.

492. To determine the Elements ofElliptical Motion.

After having exposed the General Theory of Elliptical Motion and

Method of Calculating by converging series, in the two cases of nature,

that of orbits almost circular, and the case of orbits greatly excentric, it

remains to determine the Elements of those orbits. In fact if we call V
the velocity of/* in its relative motion about M, we have

_ dx^ + dy' + dz'
dt^

and the last of the equations (P) of No. 478, gives

I ^ a J

To make m disappear from this expression, we shaU designate by U
the velocity which At would have, if it described about M, a circle whose

radius is equal to the unity of distance. In this hypothesis, we have

I = a = 1,

and consequently

Hence
U''= m.

If a J

This equation will give the semi-axis major a of the orbit, by means of

the primitive velocity of /* and of its primitive distance from M. But a is

positive in the ellipse, and infinite in the parabola, and negative in the

hypei'bola. Thus the orbit described by (t, is an ellipset a parabola, or %-

perbola, according as Y is <C. = or 'P'
than U ^ - . It is remarkable

that the direction of primitive motion has no influence upon the species of

conic section.

To find the excentricity of the orbit, we shall observe that if* repre-

sents the angle made by the direction of the relative motion of/* with the

radius-vector, we have

d p'
^ii_ — V^ cos ' g

dt' - ^ cos. E.

Substituting for V ^ its value m \ f » we have

d e' / 2 1 \ ,
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But by 480

a dt''
• '

.•.a(l-e)^=.^sin.= s(^_i);

whence we know the excentricity a e of the orbit.

To find V or the true anomaly, we have

- a(l — e'')

" ~ 1 + e COS. V

a (1 — e-) — ?
.•. COS. V = —^ ? .

This gives the position of the Perihelion. Equations (f ) of No. 480 will

then give u and by its means the instant of the Planet's passing its peri-

helion.

To gpt the position of the orbit, referred to a fixed plane passing

through the center of M, supposed immoveable, let
<f>
be the inclination of

the orbit to this plane, and ^ the angle which the radius f makes with the

Line of the Nodes. Let, Moreover, z be the primitive elevation of /«.

above the fixed plane, supposed known. Then we

shall have, CAD being the fixed plane, A D the

line of the nodes, A B =
f, &c. &c.

z = B D . sin. <p = g sin. /3 sin. p

;

so that the inclination of the orbit will be known

when we shall have determined /3. For this pur-

pose, let X be the known angle which the primitive

direction of the relative motion of /x makes with the fixed plane; then if

we consider the triangle formed by this direction produced to meet the

line of the nodes, by this last line and by the radius
f,

calling 1 the side

of the triangle opposite to /3, we have

e sin. Q
-

sin. (/3 + i)

Next we have

2 • ,

-J
= sm. X

s

consequently

^ _ z sm. s

g sm. X — z COS. s

The elements of the Planetary Orbit being determined by these formu-

las, in terms of g and z, of the velocity of the planet, and of the direction

of its motion, we can find the variation of these elements corresponding

D3
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to the supposed variations in the velocity and its direction ; and it will be
easy, by methods about to be explained, from hence to obtain the differ-

ential variations of the Elements, due to the action of perturbing forces.

Taking the equation

V« = U»{- — ^ }.

In tlie circle a = g and .•.

so that the velocities of the planets in different circles are reciprocally as

the squares of their radii (see Prop. IV of Princip.)

In the parabola, a = oo
,

••^ = uvf
the velocities in the different points of the orbit, are therefore in this case

reciprocally as the squares of the radius-vectors ; and the velocity at each

point, is to that which the body would have if it described a circle whose

radius = the radius-vector g, as V 2 : 1 (see 160)

An ellipse indefinitely diminished in breadth becomes a straight line,

and in this case V expresses the velocity of /t*, supposing it to descend in

a straight line towards M. Let i^ fall from rest, and its primitive dis-

tance be g ; also let its velocity at the distance g' be \'
; the above expres-

sion will give

g a I ^ a J

whence

Many other results, which have already been determined afler another

manner, may likewise be obtained from the above formula.

493. The equation

= d'^'+d y' + d"' _„,(£_!)
d t* ^

^ a /

is remarkable from its giving the velocity independently of the excentricily.

It is also shown from a more general equation which subsists between the

axis-major of the orbit, the chord of the elliptic arc, the sum of the ex-

treme radius-vectors, and the time of describing this arc.

To obtain this equation, we have

- a(l — e^)

^ ""
1 + e cos. v
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g = a (1 — ie COS. u)

t = a '^ (u — e sm. a)

;

in which suppose j, v, u, and t to correspond to the first extremity of the

elliptic arc, and that ^', v', u', t' belong to the other extremity ; so that we
also have

a(l-e^)
^ 1 + e cos. v'

f'
= a ( 1 — e COS. u')

5

t' = a* (u' — e sin. u').

Let now

then, if we take the expression of t from that of t', and observe thiit

sin. u' — sin. u = 2 sin. /S cos. /3'

we shall have

T = 2 a^ {13 — e sin. /3 cos. ^].

If we add them together takine notice that

cos. u' + COS. u = 2 cos. /3. cos. /3'

we shall get

R = 2 a (1 — e cos. ^ cos. /3').

Again, if c be the chord of the elliptic arc, we have

c^ = g ' + / 2 _ 2 J g' COS. (v — v')

but the two equations

a (1— e^)
.,

•

.= -T—

^

; e = a (1 — e cos. u)
1 + e COS. V *> ^

give these

COS. u — e . aVl — e^ sin. u
cos. V = a : sm. v =

and in like manner we have

cos. u' — e . , a VI — e^ sin. u'
COS. v' = a . ; : sm. v = -. ;

§ i

whence, we get

gf'cos. (v— v') = a^(e— cos. u) (e— cos. u')+ a'(l — e *) sin. u sin. u ;

and consequently

c' = 2a2(l— e'^)^! — sin. u sin. u' — cos. u cos. u'}

+ a "^ e * (cos. u — cos. u') *

;

D 4.
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But

sin. u sin. u' + cos. u cos. u' = 2 cos. ' ^— 1

COS. u — COS. u' = 2 sin. jS sin. /S'

.-. c« = 4 a« sin. - ^ (1 — e* COS.2 jS').

We therefore have these three equations, scil.

R = 2 a { 1 — e cos. /3 cos. /3'|

;

[

r=2a^Ji8 — e sin. ^ cos. /?'},' !

c« = 4 a^ sin. 2/3 (1 ~ e* cos. *|8).

The first of them gives

-, 2 a — R
e cos. /3' = ^r '

2 a COS. p

and substituting this value of e cos. /3' in tlie two others, we shall have

= 4a«tan.«/3|cos.2(8_ (
^ ^ ^^ | .

These two equations do not involve the excentricity e, and if in the

first we substitute for |S its value given by the second, we shall get Z* in a

function c, R, and a. Thus we see that the time T depends only on the

semi-axis major, the chord c and the sum R of the extreme ra(^us-

vectors.

If we make

_ 2 a — R + c , _ 2 a — R — cz_ ^ ;z- —
;

the last of the preceding equations will give

cos. 2 /3 z= z z' 4- \/ (1 — z^).(l —z'^) ;

whence

2 /3 = cos.
-

' z' — cos.
~

' z

(for cos. (A — B) = cos. A cos. B + sin. A sin. B).

Consequently

sin. (cos.
-

' zO—sin. (cos.
-

' z)
tan.^ = —i ,'^^ ^ i

we have also

2a~ R
z + z' = •^ a

Hence the expression of T will become, observing that if T is the du-

ration of the sidereal revolution, whose mean distance from the sun is

taken for unity, we have
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T = 2 cr,

T = -K— {cos.-' z'— COS.-* z— sin. (cos.-' z')+ sin.(cos-'z)| ... (a)

Since the same cosines may belong to many arcs, this expression is

ambiguous, and we must take care to distinguish the arcs which corre-

spond to z, z'.

In the parabola, the semi-axis major is infinite, and we have

cos.
-

' z' — sin. (cos. - ' z') = - (

—

\ ^

.

And making c negative we shall have the value of

cos.
—

' z — sin. (cos.
—

' z)

;

hence the formula (a) will give the time T employed to describe the arc

subtending the chord c, scil.

^ = ^^^' + / + ^=P(f + /- c) ^ ;

the sign — being taken, when the two extremities of the parabolic arc are

situated on the same side of the axis of the parabola.

Now T being = 365.25638 days, we have

-^-r- = 9. 688754 days.
12 ^ •'

The formula (a) gives the time of a body's descent in a straight line to-

wards the focus, beginning from a given distance; for this, it is suffi-

cient to suppose the axis-minor of the ellipse indefinitely diminished. If

we suppose, for example, that the body falls from rest at the distance 2 a

from the focus and that it is required to find the time (T) of falling to

the distance c, we shall have

R = 2a-f-f, P = 2a — c

whence

/ 1
c — a

z' = — 1, z =
a

and the formula gives

^ a«Tf -iCj-a ; 2 a c — c \T = —T— -i T — COS. - ^
f-

', 2— \ .

There is, however, an essential difference between elliptical motion to-

wards the focus, and the motion in an ellipse whose breadth is indefinite-

ly small. In the first case, the body having arrived at the focus, passes

beyond it, and again returns to the same distance at which it departed

;

but in the second case, the body having arrived at the focus immediately

returns to the point of departure. A tangential velocity at the aphelion,
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liowever small, suffices to produce this difference which has no influence

upon the time of the body's descent to the center, nor upon the ve-

locity resolved parallel to the axis-major. Hence the principles of the

7th Section of Newton give accurately the Times and Velocities, although

they do not explain all tlie circumstances of motion. For it is clear that

if there be absolutely no tangential velocity, the body having reached the

center of force, will proceed beyond it to the same distance from which it

commenced its motion, and then return to the center, pass through it,

and proceed to its first point of departure, the whole being performed in

just double the time as would be required to return by moving in the in-

definitely small ellipse.

494. Observations not conducting us to the circumstances of the pri-

mitive motion of the heavenly bodies ; by the formulas of No. 492 we

cannot determine the elements of their orbits. It is necessary for this

end to compare together their respective positions observed at different

epochs, which is the more difficult from not observing them from the

center of their motions. Relatively to the planets, we can obtain, by

means of their oppositions and conjunctions, their Heliocentric Longitude.

This consideration, togetlier with that of the smallness of the excentricity

and inclination of their orbits to the ecliptic, affords a very simple method

of determining their elements. But in the present state of astronomy,

the elements of these orbits need but very slight corrections ; and as the

variations of the distances of the planets from the earth are never so great

as to elude observation, we can rectify, by a great number of observations,

the elements of their orbits, and even the errors of which the observa-

tions themselves are susceptible. But with regard to the Comets, this is

not feasible ; we see them only near their perihelion : if the observations

we make on their appearance prove insufficient for the determination of

their elements, we have then no means of pursuing them, even by thought,

through the immensity of space, and when after the lapse of ages, they

again approach the sun, it is impossible for us to recognise them. It be-

comes therefore important to find a method of determining, by observa-

tions alone during the appearance of one Comet, the elements of its orbit.

But this problem considered rigorously surpasses the powers of analysis,

and we are obliged to have recourse to approximations, in order to obtain

the first values of the elements, these being afterwards to be corrected to

any degree of accuracy which the observations permit.

If we use observations made at remote intervals, the eliminations will

lead to impracticable calculations ; we must therefore be content to con-
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sidei- only near observations ; and with this restriction, the problem is abun-

dantly difficult.

It appears, that instead of directly making use of observations, it is

better to get from them the data which conduct to exact and simple re-

sults. Those in the present instance, which best fulfil that condition, are

the geocentric longitude and latitude of the Comet at a given instant, and

their first and second differences divided by the corresponding powers of

the element of time ; for by means of these data, we can determine rigo-

rously and with ease, the elements, without having recourse to a single

integration, and by the sole consideration of the differential equations of

the orbit. This way of viewing the problem, permits us moreover, to

employ a great number of near observations, and to comprise also a con-

siderable interval between the extreme observations, which will be found

of great use in diminishing the influence of such errors, as are due to ob-

servations from the nebulosity by which Comets are enveloped. Let us

first present the formulas necessary to obtain the first differences, of the

longitude and latitude of any number of near observations ; and then de-

termine the elements of the orbit of a Comet by means of these differences

;

and lastly expose the method which appears the simplest, of correcting

these elements by three observations made at remote intervals.

495. At a given epoch, let a be the geocentric longitude of a Comet,

and 6 its north geocentric latitude, the south latitudes being supposed ne-

gative. If we denote by s, the number of days elapsed from this epoch,

the longitude and latitude of the Comet, after that interval, will, by using

Taylor's Theorem (481), be expressed by these two series

/d ttN s
-' /d ^ a\

, o

We must determine the values of

by means of several observed geocentric longitudes and latitudes. To do

this most simply, consider the infinite series which expresses the geocen-

tric longitude. The coefficients of the powers of s, in this series, ought to

be determined by the condition, that by it is represented each observed

longitude ; we shall thus have as many equations as observations ; and i(

their number is n, we shall be able to find from them, in series, the n
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quantities a, (-5—) , &c. But it ought to be observed that s being sup-

posed very small, we may neglect all terms multiplied by s ", s " + ', &c.

which will reduce the infinite series to its n first terms ; which by n ob-

servations we shall be able to determine. These are only approximations,

and their accuracy will depend upon the smallness of the teems which are

omitted. They will be more exact in proportion as s is more diminutive,

and as we employ a greater number of observations. The theory of inter-

polations is used therefore Tofind a rational and intega'function ofs such,

that in substituting therein fiar s the number of days xsohich correspond to each

observation, it shall become the observed longitude.

Let iS, /3', ^", &c. be the observed longitudes of the comet, and by

i, i', i", &c. the corresponding numbers of days from the given epoch, the

numbers of the days prior to the given epoch being supposed negative.

If we make

I" 1

«*/3' — d«
= 33|8; &c.

1'" — 1

&c.

;

the required functions will be

^+ (s— i).a/3-|-(s— i)(s— i0.3'/3+(s— i)(s— i')(s— i'05^ft&c.

for it is easy to perceive that if we make successively s= i, s= i', s= i", &c.

it will change itself into jS, 13', ^", &c.

Again, if we compare the preceding function with this

" + ^ • (j^) + 8 • (d7-0 + «"=•

we shall have by equating coefficients of homogeneous terms.

a=iS— ia.3+i.i'.5 2/3— i.i'. i"a3/34-&c.

(^)=a/3— (i+i0 3'/3-t-(ii'+ii"+i'i'0S'/3— &c.

i(^,)=a^/3-(i+i'+i")a3/3+&c.

The higher differences of a will be useless. The coefHcients of these

expressions are alternately positive and negative ; the coefficient of 5
' /3

is, disregarding the sign, the product of r and r together of r quantities

i, i', . . . . i
^'-'5 in the value of « ; it is the sum of the products of the



Book L] NEWTON'S PRINCIPIA. 61

same quantities, r — 1 together in the value of \-t—\ ; lastly it is the sum

of the products of these quantities r — 2, together in the value of

2 VdsV*

If 7, 7', 7", &c. be the observed geocentric latitudes, we shall have the

values of 6, (j—) > ( j—
-2) > &c. by changing in the preceding expressions

for a (t— )j ( i^")' ^^* t^^^ quantities /3, 13', /3" into 7, /, 7".

These expressions are the more exact, the greater the number of ob-

servations and the smaller the intervals between them. We might,

therefore, employ all the near observations made at a given epoch, pro-

vided they were accurate ; but the errors of which they are always sus-

ceptible will conduct to imperfect results. So that, in order to lessen the

influence of these errors, we must augment the interval between the ex-

treme observations, employing in the investigation a greater number of

them. In this way with five observations we may include an interval of

thirty-five or forty degrees, which would give us very near approximations

to the geocentric longitude and latitude, and to their first and second

differences.

If the epoch selected were such, that there were an equal number of

observations before and after it, so that each successive longitude may

have a corresponding one which succeeds the epoch. This condition will

give values still more correct of a, (-r—^ and ( ,—^) , and it easily appears

that new observations taken at equal distances from either side of the epoch,

would only add to these values, quantities which, with regard to their last

A 2

terms, would be as s^ (-3—g^to a. This symmetrical arrangement takes

place, when all the observations being equidistant, we fix the epoch at

the middle of the interval which they comprise. It is therefore advanta-

geous to employ observations of this kind.

In general, it will be advantageous to fix the epoch near the middle of

this interval ; because the number of days included between the extreme

observations being less considerable, the approximations will be more con-

vergent. We can simplify the calculus still more by fixing the epoch at

the instant of one of the observatiqns ; which gives immediately the values

of a, and 0.
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When we shall have determined as above tlie values of

(di)' (d-sO' (rs)'""Md7^)

we shall then obtain as follows the first and second differences of a, and i^

divided by the corresponding powers of the elements of time. If we neg-

lect the masses of the planets and comets, that of the sun being the unit

of mass ; if, moreover, we take the distance of the sun from the earth for

the unit of distance ; the mean motion of the earth round the sun will

be the measure of the time t. Let therefore X be the number of se-

conds which the earth describes in a day, by reason of its mean sidereal

motion ; the time t corresponding to the number of days will be X s ; we

shall, therefore, have

(d a\ 1 /d a\

dly ~ T \d~s)

VdTv*" x'^VdTv*

Observations give by the Logarithmic Tables,

log. X = 4. 0394622

and also

log. X 2 = log. X -f log. R
R being the radius of the circle reduced to seconds ; whence

log.X^zr 2. 2750444;

.*. if we reduce to seconds, the values of (t—) > and of (-.—
^j , we shall

have the logarithms of ( i") » and of (g-^)by taking from the logarithms

of these values the logarithms of 4. 039422, and 2. 2750444. In like

manner we get the logarithms of ( .--) , (g-pj) j ^^er subtracting the

same logarithms, from the logarithms of their values reduced to seconds.

On the accuracy of the values of

depends that of the following results ; and since their formation is very

simple, we must select and multiply observations so as to obtain them with

the greatest exactness possible. We shall determine presently, by means

of these values, the elements of the orbit of a Comet, and to generalize

these results, we shall
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496. Investigate the motion of a system of bodies sollicited by anyforces
•whatever.

Let X, y, z be the rectangular coordinates of the first body ; x', y', z'

those of the second body, and so on. Also let the first body be sollicited

parallel to the axes of x, y, z by the forces X, Y, Z, which we shall sup-

pose tend to diminish these variables. In like manner suppose the second

body sollicited parallel to the same axes by the forces X', Y', Z', and so

on. The motions of all the bodies will be given by differential equations

of the second order

d^x
-dt^ + X; =- dt^ + ^' = d^z

dt^ +

d'x'
- dt^ + X';

;

d^ v'

- dt^ + ^ >

d^ z'

~ d t*

&c. = &c.

If the number of the bodies is n, that of the equations will be 3 n ; and

their finite integrals will contain 6 n arbitrary constants, which wUl be the

elements of the orbits of the different bodies.

To determine these elements by observations, we shall transform the

coordinates of each body into others whose origin is at the place of the

observer. Supposing, therefore, a plane to pass through the eye of the

observer, and of which the situation is always parallel to itself, whilst the

observer moves along a given curve, call r, r' r", &c. the distances of

the observer from the different bodies, projected upon the plane

;

a, a', a", &c. the apparent longitudes of the bodies, referred to the same

plane, and 6, ^, ^', &c. their apparent latitudes. The variables x, y, z

will be given in terms of r, a, ^, and of the coordinates of the observer.

In like mannei', x', y', z' will be given in functions of r', a', 6\ and of the

coordinates of the observer, and so on. Moreover, if we suppose that the

forces X, Y, Z ; X^ Y', Z', &c. are due to the reciprocal action of the

bodies of the system, and independent of attractions ; they will be given in

functions of r, r', r", &c. ; a, a', a", &c. ; d, ^', 6", &c. and of known quan-

tities. The preceding differential equations will thus involve these new

variables and their first and second differences. But observations make

known, for a given instant, the values of

"' (di)' (arrO' Mdi)' (diO' "'(df)'
^'-

There will hence of the unknown quantities only remain r, r', x"j &c.

and their first and second differences. These unknowns are in number

3 n, and since we have 3 n differential equations, we can determine them.
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At the same time we shall have the advantage of presenting the first and

second differences of r, r', v", &c. under a linear form.

The quantities os, tf, r, a', ^, r', &c. and their first differences divided by

d t, being known ; we shall have, for any given instant, the values of

X, y, z, x', y', z'. Sec. and of their first differences divided by d t. If we

substitute these values in the 3 n finite integrals of the preceding equa-

tions, and in the first differences of these integrals ; we shall have 6 n

equations, by means of which we shall be able to determine the 6 n arbi-

trary constants of the integrals, or the elements of the orbits of the dif-

ferent bodies.

497. To apply this method to the motion of the Comets,

"We first observe that the principal force which actuates them is the

attraction of the sun ; compared with which all other forces may be ne-

glected. If, however, the Comet should approach one of the greater

planets so as to experience a sensible perturbation, the preceding method

will still make known its velocity and distance from the earth ; but this

case happening but very seldom, in the following researches, we shall ab-

stain from noticing any other than the action of the sun.

If the sun's mass be the unit, and its mean distance from the earth the

unit of distance; if, moreover, we fix the origin of the coordinates

X, y, z of a Comet, whose radius-vector is g ; the equations (0) of No. 475

will become, neglecting the mass of the Comet,

d^ X

dt* ^ -^

" dt^ ^
^\

^^d^z . z

(k)

dt^ ^ e
Let the plane of x, y be the plane of the ecliptic. Also let the axis of

X be the line drawn from the center of the sun to the first point of aries,

at a given epoch ; the axis of y the line drawn from the center of the sun

to the first point of cancer, at the same epoch ; and finally the positive

values of z be on the same side as the north pole of the ecliptic. Next

call x', y the coordinates of the earth and R its radius-vector. This be-

ing supposed, transfer the coordinates x, y, z to others relative to the

observer ; and to do this let a be the geocentric longitude, and r its dis-

tance from the center of the earth projected upon the ecliptic ; then we

shall have

X = x' + r COS. a
; y = y + r sin. a ; z = r tan. 6.
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If we multiply the first of equations (k) by sin. a, and take from the re-

sult tlie second multiplied by cos. a, we shall have

d^x d^y.x sin. a — y cos. a= sm. « -^ - COS. a. ^f- + -^ ;

whence we derive, by substituting for x, y their values given above,

d ^ x' d - y' x' sin. a — y cos. a= sm. a. -^j^ _ COS. «. ^ + -^
d r\ /da\ /d^a>/a r\ /aa\ /ci^av

-^•(dT)(dT)-HdT5)-
The earth being retained in its orbit like a comet, by the attraction of

the sun, we have

which give

d^' x^ dV 2:
" ~ dt^ ^ R^' dt* ^ R =

d ^ x' d '^ y' y' cos. a — x' sin. a
sm. « -j-^ - COS. «. -^ = I

^^-3 ^

We shall, therefore, have

= (/ COS. « - X' sin. «)
I ^^_ ^} _ z (-^) . (-^^)

- r (i-^,)

.

Let A be the longitude of the earth seen from the sun ; we shall have

x' = R COS. A ; y' = R sin. A

;

therefore

y' COS. a — x' sin. a = R sin. (A — «)

;

and the preceding equation will give

/d'a\

/drx _ Rsin.(A—;a) fj \\ ^' Vdt V
(dJ= ,(a»^ -Ir^ -e) 3(d«) • • n

Now let us seek a second expression for (t— j . For this purpose we

will multiply the first of equations (k) by tan. 6 . cos. a, the second by

tan. 6 sin. a, and take the third equation from the sum of these two pro-

ducts ; we shall thence obtain

f d^ X d^ y)= tan.^|cos.«3P^ + sin.a_|^

^ X COS. a 4- y sin. a d ^ z z
+ tan. 6 . \-^ .f—

„

r .^
f' dt= f'

This equation will become by substitution for x, y, z

=tan.^|(-^ +^^)cos.a+(^V+
fO^^"'"/

Vol. II. E



66 A COMMENTARY ON [Sect. XI.

_ ^(<u)Cn) _ .GrT^^ Kr.)-^ (^")%a„.4 "

COS. - tf
(^ COS.

^ d COS. ^ ^ \a t/
j

But

CdH^ +p;^"^-^+Cdt^ + f3)si«.a=(x COS. a+/ sin. a) Q 3 -
j^,)

= Rcos.(A-«){-L-jl^^j;

Therefore,

(dl) =-i'-i 75:^7+
^31)""-''+ TdT. \

v \<i i) U J J

R sin. ^ COS. tf COS. (A — a) f 1 1 )^

"^ Vdi;

If we take this vahie of (f-j from the first and suppose

^,_ (d-t) (dT')-^rt) (a-t^)+<d-t) (?t) "'"•^+(dT)
'""•'"°-^''

^
j-^ sin. ^ COS. 6 cos. (A— ) + ( i .) sin. (A— a)

we shall have

-^•{p-i[^} (')

The projected distance r of the comet from the earth, being always po-

sitive, this equation shows that the distance g of the comet from the sun,

is less or greater than the distance R of the sun from the earth, according

as fi' is positive or negative ; the two distances are equal if /i' = 0.

By inspection alone of a celestial globe, we can determine the sign of

(jif ; and consequently whether the comet is nearer to or farther from the

Earth. For that purpose imagine a great circle which passes through

two Geocentric positions of the Comet infinitely near to one another.

Let y be the inclination of this circle to the ecliptic, and X the longitude

of its ascending node ; we shall have

tan. 7 sin. (a — x) = tan. 6
;

whence

d 6 sin. (a — x) = a a sin. 6 cos. 6 cos. (a — X).



Book L] NEWTON'S PRINCIPIA. 67

Differentiating, we have, also

» = (.Tt) (Tp)-(rt) (dT«) + Hdi^ irJ "•"•

'

d «>/a a\ •

Sin. 6 COS. ^;

d - ^^ being the value of d * 6, which would take place, if the apparent mo-

tion of the Comet continued in the great circle. The value of /j/ thus be-

comes, by substituting for d 6 its value

d a sin. S cos. 6 cos. (a— X)

sin. (a— X)
*

''=i(g)-(g)l!^^.
sin. 6 cos. 6 sin. (A — X)

The function - .

'

\ ;:' is constantly positive ; the value of u, is there-
sm. 6 cos. 6

J f i f-

((J 2 ^ /d* ^ \

TT2)— (tTz)^^^ ^^^ same or

a different sign from that of sin. (A — X). But A — X is equal to two

right angles plus the distance of the sun from the ascending node of the

great circle. Whence it is easy to conclude that (j/ will be positive or

negative, according as in a third geocentric position of the comet, inde-

finitely near to the two first, the comet departs from the great circle on

the same or the opposite side on which is the sun. Conceive, therefore,

that we make a great circle of the sphere pass through the two geocentric

positions of the comet ; then according as, in a third consecutive geocen-

tric position, the comet departs from this great circle, on the same side as

the sun or on the opposite one, it will be nearer to or farther from llie

sun than the Earth. If it continues to appear in this great circle, it will

be equally distant from both ; so that the different deflections of its ap-

parent path points out to us the variations of its distance from the sun.

To eliminate ^ from equation (3), and to reduce this equation so as to

contain no other than the unknown r, we observe that g^ = x^ + y^ + Z*

in substituting for x, y, z, their values in terms of

r, a, and ^;

and we have

f2 = x'^' + y'^+ 2rb'cos. a + y s\n. a} + -^^^ I

but we have
x' = R cos. A, y' = R sin. A

;

.-. P' = —^, + 2 R r cos. (A — a) + R';
* cos. ^ d

^

E2
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But
x' = R COS. A ; y' = R sin. A

.-.
f
* = ^

, , + 2 R r COS. (A — a) + R ^*
COS. ^6 ^ ' ^

If we square the two members of equation (3) put under this form

f'J/*'R«r + 1]= R3
we shall get, by substituting for g *,

{^d + 2 R r cos. (A - «) + ^'Y'^^'
^' ^ + ^^'= ^'

• • • ("^^

an equation in which the only unknown quantity is r, and which will rise

to the seventh degree, because a terra, of the first member being equal to

R ^, the whole equation is divisible by r. Having thence determined r,

we shall have f-,—) by means of equations (1) and (2). Substituting, for

example, in equation (1), for -j — p-, its value -^ , given by equation

(3) ; we shall have

(d-:)=-,-7^-{(^")+'''^'-(^-°)}-

The equation (4) is often susceptible of many real and positive roots j

reducing it and dividing by r, its last term will be

2 R * COS. 6 ^[/ct' R' + 3 COS. (A — a)].

Hence the equation in r being of the seventh degree or of an odd de-

gree, it will have at least two real positive roots if /i' R ^ + 3 cos. (A— a)

is positive; for it ought always, by the nature of the problem, to have

one positive root, and it cannot then have an odd number of positive

roots. Each real and positive value of r gives a different conic section,

for the orbit of the comet ; we shall, therefore, have as many cun^es

which satisfy three near observations, as r has real and positive values

;

and to determine the true orbit of the comet, we must have recourse to a

new observation.

498. The value of r, derived from equation (4) would be rigorously

exact, if

were exactly known ; but these quantities are only approximate. In fact,

by the method above exposed, we can approximate more and more, mere-

ly by making use of a great number of observations, which presents the

advantage of considering intervals sufficiently great, and of making the

errors arising from observations compensate one another. But this
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method has the analytical inconvenience of employing more than three

observations, in a problem where three are sufficient. This may be

obviated, and the solution rendered as approximate as can be wished by
' three observations only, after the following manner.

Let a and 6, representing the geocentric longitude and latitude of the

intermediate; if we substitute in the equations (k) of the preceding

No. instead of x, y, z their values x' + r cos. « ;
y' + r sin. a ; and

r tan. 6 ; they will give ( j-r2) j ( j ^ 2) ^"<1
(
j—

"2)
^^ functions of r, a, and

6, of their first differences and known quantities. If we differentiate these,

we shall have f -,—3 ^ , (-1-73) and (^t-t-s) ^ terms of r, a, 6, and of their

first and second differences. Hence by equation (2) of 497 we may eli-

minate the second difference of r by means of its value and its first differ-

(1^
3 -^ ^A 3 A

1
—

3 ) ' (tts) '

and eliminating the differences of a, and of 6 superior to second differences,

and all the differences of r, we shall have the values of

(dT'} ' (dT*) '

^^' ^" ^^^^^ °^

/d a\ /d'^ax ^ /d 6\ /d*rf\
^•'"'

(di)' (drO'^'Cdi)' (dT^)'

this being supposed, let

be the three geocentric observed longitudes of the Comet; 6^, 0, ^ its

three corresponding geocentric latitudes ; let i be the number of days

which separate the first from the second observation, and i' the interval

between the second and third observation ; lastly let X be the arc which

the earth describes in a day, by its mean sidereal motion; then by (481)

we have

a, = «-z.x(_)+ ^-^(_)-_^(^3)+ &c.;

a = « +.^x(^^)+
-^ ^ (^)+ i;2;3(dY3)+

&c.,

'' = ' -^- Hdi) +X2(drO- 1:2:3(3x0 + ^^•>

^ Vd t/ ^ 1. 2 Vd tV ^ 1.2.3 \d tV ^ ^*^'
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If we substitute in these series for

their values obtained above, we shall have four equations between the

five unknown quantities

/d ax /d * a\ /d ^\ /cl ' ^\

""'Vdl/' VdTV' Vdl;' VdTV*

These equations will be the more exact in proportion as we consider a

greater number of terms in the series. We shall thus have

KdV' VdTV' ^dl/' ^dTV

in terms of r and known quantities ; and substituting in equation (4) of

the preceding No. it will contain the unknown r only. As to the rest,

this method, which shows how to approximate to r by employing three

observations only, would require in practice, laborious calculations, and

it is a more exact and simple process to consider a greater number of ob-

servations by the method of No. 495.

499. When the values of r and (i-, ) shall be determined, we shall have

those of

^'>''"'(^)' (aT)^"^(^)'

by means of the equations

X = 11 cos. A + r cos. a

y = R sin. A + r sin. «

z = r tan. 6

and of their differentials divided by d t, viz.

iPd = C-!i^)- ^ - ^^^y- ^ + (ai)
- «-'O--

/d z\ /dr\ ^ . ,
Vd t/

The values of (-|,^) and of (i^) are given by the Theory of the

motion of the Earth :

To facilitate the investigation let E be the excentricity of the earth's
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orbit, and H the longitude of its perihelion; then by the nature of

elliptical motion we have

/dAx _ V(l--E^. 1-E'
^dT; R^ '

— rt -
1 + j^cos. (A — H)*

These two equations give

/d Rx _ E sin. (A — H)
\dt^ - V (1 — E*) *

Let R' be the radius-vector of the earth corresponding to the longitude

A of this planet augmented by a right angle ; we shall have

1 E"^
^ " 1— Esin.(A — H)'

whence is derived

-p • / A ux R' — 1 + E 2

Esm. (A— H) = ^-^ ;

/d Rn _ R^ + E ^ — 1
•*• Vdt)"" R'— V (1— .E«)*

If we neglect the square of the excentricity of the earth's orbit, which is

very small, we shall have

the preceding values of ( -^— j and (-r^) wiU hence become

/dx\ ,T»/ ,N A
sin. A /d r\ /da\ .

/^y\ /T3/ i\ • A .
COS. A

,
/dr\ .

,
/dax

R, R', and A being given immediately by the tables of the sun, thfe esti-

mate of the six quantities x, y, z, (-r—) » (dt ) ' (ht) ^^^^ ^^ ^^^^

when r and (-r—) shall be known. Hence we derive the elements of the

orbit of the comet after this mode.

The indefinitely small sector, which the projection of the radius-vector

and the comet upon the plane of the echptic describes during the element

of time d t, is o — » ^^^ ^* ^^ evident that this sector is posi-

live or negative, according as the motion of the comet is direct or retro-

grade. Thus in forming the quantity x (r^) — y (r—), it will indicate

by its sign, the direction of the motion of the comet
£4
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To determine the position of the orbit, call (p its inclination to the

ecliptic, and I the longitude of the node, which would be ascending if the

motion of the comet were direct or progressive. We shall have

z = y COS. I tan. p — x sin. I tan. p

These two equations give

tan. I =

tan. f =

M^^~^iV^)}'sm

Wherein since (p ought always to be positive and less than a right

angle, the sign of sin. I is known. But the tangent of I and the sign of

its sine being determined, the angle I is found completely. This angle

is the longitude of the ascending node of the orbit, if the motion is pro-

gressive ; but to this we must add two right angles, in order to get the

longitude of the node when the motion is retrograde. It would be more

simple to consider only progressive motions, by making vary p, the in-

clination of the orbits, from zero to two right angles; for it is evident that

then the retrograde motions correspond to an inclination greater than a

right angle.

In this case, tan. 9 has the same sign as x
(
t-^)— y (t—) , which will

determine sin. I, and consequently the angle I, which always expresses

the longitude of the ascending node.

If a, a e be the semi-axis major and the excentricity of the orbit, we

have (by 492) in making m = I,

1 _ 2 /djcx /dyx' /dz\'

a " 7 ~~\i\i) ^dt/ Vd t/
'

,(,_., = . ,_.J_{.(||) + ,(||)+.(^^)}=.

The first of these equations gives the semi-axis major, and the second

the excentricity. The sign of the function x
(j^) + y (j^^ ) + z

(j^)

shows whether the comet has already passed its perihelion ;
for it ap-

proaches if this function is negative; and in the contrary case, the comet

recedes from that point.
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Let T be the interval of time comprised between the epoch and pas-

sage of the comet over the perihelion ; the two fii'st of equations (f) (480)

will give, observing that m being supposed unity we have n = a ~2^

,

f = a (1 — e COS. u)

5.

T = a ^ (u — e COS. u).

The first of these equations gives the angle u, and the second T. This

time added to or subtracted from the epoch, according as the comet ap-

proaches or leaves its perihelion, will give the instant of its passage over

this point. The values of x, y, determine the angle which the projection

of the radius-vector § makes with the axis of x ; and since we know the an-

gle I, formed by this axis and by the line of the nodes,we shall have the

angle which this last line forms with the projection of g ; whence we derive by

means of the inclination p of the orbit, the angle formed by the line of the

nodes and the radius g. But the angle u being known, we shall have by

means of the third of the equations (f), the angle v which this radius forms

with the line of the apsides ; we shall therefore have the angle comprised

between the two lines of the apsides and of the nodes, and consequently,

the position of the pei-ihelion. All the elements of the orbit will thus be

determined.

500. These elements are given, by the preceding investigations, in terms

of r, (t-:) and known quantities ; and since f -r- ^ is given in terms of r

by No. 497, the elements of the orbit will be functions of r and known
quantities. If one of them were given, we should have a new equation,

by means of which we might determine r ; this equation would have a

common divisor with equation (4) of No. 497; and seeking this di-

visor by the ordinary methods, we shall obtain an equation of the first

degree in terms of r ; we should have, moreover, an equation of condition

between the data of the observations, and this equation would be that

which ought to subsist, in order that the given element may belong to the

orbit of the comet.

Let us apply this consideration to the case of nature. First suppose

that the orbits of the comets are ellipses of great excentricity, and are

nearly parabolas, in the parts of their orbits in which these stars are

visible. We may therefore without sensible error suppose a = oo, and

consequently - = 0; the expression for - ofthe preceding No. will there-

fore give
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^ _ 2 dx' + dy'^ + tiz''

If we then substitute for (n—\ \XJ ^"^ (tt)
^^^^^' values found in

the same No., vre sliall have after all the reductions and neglecting the

square of 11' — 1,

V. d t COS. '^ 6 J

+ 2(^)- {(R'-i)«>-(A-«)-^R—'}-'5)

Substituting in this equation for (-r—) its value

found in No. 497, and then making

+{u„...(^:)+,.n..si„.(A_«,-!%Ji}'
and

C
7?1~\

{-\—^-(R-l)cos.(A-a)}

\dtJ

+ ^(ai) {(^' - ') ''" (^ - "' + ^-^'}

.

we shall have

= Br'+Cr+ ji,-~

and consequently

r-{Br»+Cr + i-,}'=4.

This equation rising only to the sixth degree, is in that respect, more
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simple than equation (4) of No. (497) ; but it belongs to the parabola

alone, whereas the equation (4) equally regards every species of conic

section.

501. We perceive by the foregoing investigation, that the determina-

tion of the parabolic orbits of the comets, leads to more equations than

unknown quantities; and that, therefore, in combining these equations in

different ways, we can form as many different methods of calculating the

orbits. Let us examine those which appear to give the most exact re-

sults, or which seem least susceptible of the errors of observations.

It is principally upon the values of the second differences (^—^^ and

(d ^ ^\ . .

-T—2 j, that these errors have a sensible influence. In fact, to deter^iine

them, we must take the finite differences of the geocentric longitudes and

latitudes of the comet, observed during a short interval of time. But

these differences being less than the first differences, the errors of obser-

vations are a greater aliquot part of them ; besides this, the formulas of

No. 495 which determine, by the comparison of observations, the values

°*^"' ^' (dl)' (dl)' (dT^)
^"^

(dT*)
^^^'^ ^^^^ greater precision the

four first of these quantities than the two last. It is, therefore, desirable

to rest as little as possible upon the second differences of a and 6; and

since we cannot reject both of them together, the method which employs

the greater, ought to give the more accurate results. This being granted

let us resume the equations found in Nos. 497, &c.

f
" = -^ + 2 R r cos. (A — a) + R ^.

*
cos. ^6

/d_^\

/drN _ Rsin^j(A^-a) JJ l|_ ^'WtV n.

^ \Tt) vht;

d «>

Cf?-) ,. (^) sin. ^ cos. A
/d vn 1 I ^d t V , ^ /d ^n ^ .

Vd t/ f

R sin. 6 cos. 6 cos. (A — «) f 1 1 \

^(^)
rd6y

<'=(a^t)' + -a' + {«ai)'-' + ^'J}'
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4-2.(^^j{(R'-I)sin.(A-«)4-^-^^^iA^^}

+ k:^

1 2

S

d(rl o\
-5—gJ

, we consider only the first, second and fourtn

of those equations. Eliminating (t-t) from the last by means of the

second, we shall form an equation which cleared of fractions, will contain

a term multiplied by ^
® r *, and other terms affected with even and odd

powers of r and g. If we put into one side of the equation all the terms

affected with even powers of §, and into the other all those which involve

its odd powers, and square both sides, in order to have none but even

powers of §, the term multiplied by ^ ^ r * will produce one multiplied by

g" r*. Substituting, therefore, instead of ^% its value given by the first

of equations (L), we shall have a final equation of the sixteenth degree in

r. But instead of forming this equation in order afterwards to resolve it,

it will be more simple to satisfy by trial the three preceding ones.

T—jj, we must consider the first, third and fourth

of equations (L). These three equations conduct us also to a final equa-

tion of the sixteenth degree in r; and we can easily satisfy by trial.

The two preceding methods appear to be the most exact, which we can

employ in the determination of the parabolic orbits of the -comets. It is

at the same time necessary to have recourse to them, if the motion of the

comet in longitude or latitude is insensible, or too small for the errors of

observations sensibly to alter its second difference. In this case, we must

reject that of the equations (L), which contains this difference. But al-

though in these methods, we employ only three equations, yet the fourth

is useful to determine amongst all the real and positive values of r, which

satisfy the system of three equations, that which ought to be selected.

502. The elements of the orbit of a comet, determined by the above

process, would be exact, if the values of a, and their first and second

differences, were rigorous ; for we have regarded, after a very simple

manner, the excentricity of the terrestrial orbit, by means of the radius-

vector R' of the earth, corresponding to its true anomaly + a right an-

gle ; we are therefore permitted only to neglect the square of this excen-
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tricity, as too small a fraction to produce by its omission a sensible influ-

ence upon the results. But tf, « and their diflferences, are always suscep-

tible of any degree of inaccuracy, both because of the errors of observa-

tions, and because these diiferences are only obtained approximately. It

is therefore necessary to correct the elements, by means of three distant

observations, which can be done in many ways ; for if we know nearly,

two quantities relative to the motion of a comet, such that the radius-vec-

tor corresponding to two observations, or the position of the node, and

^ the inclination of the orbit ; calculating the observations, first with these

quantities and afterwards with others differing but little from them, the

law of the differences between the results, will easily show the necessary

corrections. But amongst the combinations taken two and two, of the

quantities relative to the motion of comets, there is one which ought to

produce greatest simplicity, and which for that reason should be selected.

It is of importance, in fact, in a problem so intricate, and complicated, to

spare the calculator all superfluous operations. The two elements which

appear to present this advantage, are the perihelion distance, and the

instant when the comet passes this point. They are not only easy to be

derived from the values of r and (t—) ; but it is very easy to correct them

by observations, without being obliged for every variation which they

undergo, to determine the other corresponding elements of the orbit.

Resuming the equation foimd in No. 492

a{l — e') = 2s—'- —a dt^ '

a (1 — e*) is the semi-parameter of the conic section of which a is the

semi axis-major, and a e the excentricity. In the parabola, where a is

infinite, and e equal to unity, a (1 — e^) is double the perihelion dis-

tance : let D be this distance : the preceding equation becomes relatively

to this curve

^ ^ 2 Vdtr

^-Y-T^ is equal to - . ^̂ ; in substituting for g'^its value ^+2RrX

^d Rn , /d A>
cos. (A — a) + R% and for (-j-r) and (-,

—

\ their values found in

No. 499, we shall have
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+ r {(R> - 1) COS. (A _ «) - !!MA-«)|

+ r R (-^^) sin. (A - a) + R (R' - 1).

Let P represent this quantity ; if it is negative, the radius-vector de-

creases, and consequently, the comet tends towards its pei'ihelion. But

it goes off into the distance, if P is negative. We have then

the angular distance v of the comet from its perihelion, will be determined

from the polar equation to the parabola,

cor.^-v = _;

and finally we shall have the time employed to describe the angle v, by

the table of the motion of the comets. This time added to or subtracted

from that of the epoch, according as P is negative or positive, will give

the instant when the comet passes its perihelion.

603. Recapitulating these different results, we shall have the following

method to determine the parabolic orbits of the comets.

General method of determining the orbits of the comets.

This method will be divided into two parts ; in the first, we shall give

the means of obtaining approximately, the perihelion distance of the comet

and the instant of its passage over the perihelion ; in the second, we shall

determine all the elements of the orbit on the supposition that the former

are known.

Approximate determination of the Perihelion distance of the comet, and

the instant of its passage over the perihelion.

We shall select three, four, five, &c. observations of the comet

equally distant from one another as nearly as possible ; with four obser-

vations we shall be able to consider an interval of 30° ; with five, an in-

terval of 36°, or 40° and so on for the rest ; but to diminish the in-

fluence of their errors, the interval comprised between the observations

must be greater, in proportion as their number is greater. This being

supposed.

Let /3, /3', jS", &c. be the successive geocentric longitudes of the comet,

7, y\ y" the corresponding latitudes, these latitudes being supposed positive

or negative according as they are north or south. We shall divide the dif-

ference ^' — /S, by the number of days between the first and second ob-

servation ; we shall divide in like manner the difference /3" — /? by the
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number of days between the second and third observation ; and so on.

Let 3 iS, a /3', d /3", &c. be these quotients.

We next divide the difference 8 &' — 3/3 by the number of days be-

tween the first observation and the third ; we divide, in like manner, the

difference 5/3"— d ^' by the number of days between the second and

fourth observations ; similarly we divide the difference 3 /3"'— 8 /S" by the

number of days between the third and fifth observation, and so on. Let

a^ ^, 3 2 ^', 3^/3", &c. denote these quotients.

Again, we divide the difference 3^/3' — 3*j8by the number of days

which separate the first observation from the fourth ; we divide in like

manner 3 * /S" — 3 '^ j8' by the number of days between the second obser-

vation and the fifth, and so on. Make 3 ^ jS, 3 ^ j8', &c. these quotients.

Thus proceeding, we shall arrive at 3°— ^ ^, n being the number of obser-

vations employed.

This being done, we proceed to take as near as may be a mean epoch

between the instants of the two extreme observations, and calling i, i', i'\

&c. the number of days, distant from each observation, i, i', i'', &c. ought

to be supposed negative for the "observations made prior to this epoch;

the longitude of the comet, after a small number z of days reckoned from

the Epoch will be expressed by the following formula

:

|3_ i 3 /3 + i i' 3 2 /3 — i i' i" 3 3 /3 + &c.

\ +z{3 ^— (i+ i')3 2/3+ (i i'+i i''+i' i")3^i8— (i i' i"+i i' i"'+ii''i"'+. . (p)

ii'i''i"0 3*/3 + &c.5

'+z2^32/3— {i+ i'+i'0 5'/3+(ii'+ ii''+ii'''+i'i'"+i"+*OS*^— &c.|

The coefficients of — 3 /3, + 3 * /3, — 3^/3, &c. in the part independent

of z are 1st the numbers i and i', secondly the sum of the products two

and two of the three numbers i, i', i" ; thirdly the sum of the products

three and three, of the four numbers i, i', V\ M", &c.

The coefficients of — 3^/3, + 3 *
j8, — 3 ^

j8, &c. in the part multiplied

by z *, are first, the sum of the three numbers i, i', i" ; secondly of the

products two and two of the four numbers i, i', i'', M" \ thirdly the sum of

the products three and three of the five numbers i, i', i", i"', i'"', &c.

Instead of forming these products, it is as simple to develope the func-

tion 3 + (z — i) 3 /3 + (z _ i) (z — i') 32 /3 + (z— i) (z— iO (z— i'O

X 3 ^ /3 + &c. rejecting the powers of z superior to the square. This

gives the preceding formula.

If we operate in a similar manner upon the observed geocentric lati-

tudes of the comet ; its geocentric latitude, after the number z of days

from the epoch, will be expressed by the formula (p) in changing /3 into

y. Call (q) the equation (p) thus altered. This being done,
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a will be the part independent of z in the formula (p) ; and 6 that in the

formula (q).

Reducing into seconds the coefficient of z in the formula (p), and

takino- from the tabular logarithm of this number of seconds, the logarithm

4,0394622, we shall have the logarithm of a number which we shall de-

note by a.

Reducing into seconds the coefficients of z * in the same formula, and tak-

ing from the logarithm of this number of seconds, the logarithm 1.9740144,

we shall have the logarithm of a number, which we shall denote by b.

Reducing in like manner into seconds the coefficients of z and z ^ in

the formula (q) and taking away respectively from the logarithms of these

numbers of seconds, the logarithms, 4,0394622 and 1,9740144, we shall

have the logarithms of two numbers, which we shall name h and 1.

Upon the accuracy of the values of a, b, h, 1, depends that of the

method; and since their formation is very simple, we must select and

multiply observations, so as to obtain them with all the exactness which

the observations will admit of. It is perceptible that these values are only

the quantities (-r^) , (jri) j ( j-;) > (tTs) ' ^^"*^^ ^^ ^^^^ express-

ed more simply by the above letters.

If the number of observations is odd, we can fix the Epoch at the

instant of the mean observation ; which will dispense with calculating the

parts independent of z in the two preceding formulas ; for it is evident,

that then these parts are respectively equal to the longitude and latitude

of the mean observation.

Having thus determined the values of a, a, b, &, h, and 1, we shall de-

termine the longitude of the sun, at the instant we have selected for the

epoch, R the corresponding distance of the Earth from the sun, and R'

the distance which answers to E augmented by a right angle. We shall

have the following equations

p« = -^, — 2 Rxcos. (E — a) + R* . . . ^ . . (1)
* cos. ^ &

sin. (E — «) f 1 _Ll_bx ..y-^ 2l IT^— RT'J 2^ ^^^

f

,

, 1 . a * sin. d . cos. O -v

y = -x|l.tan.^+2-3;+ 2h i\ ... (3)R sin. 6 COS. 6 ,„ % f 1 1 1 I
*

+
2Ti

COS. (E- a) I ^3 -pi )

/ h X \* ^ f sin. (E — a)
= y' + a'x'+(ytan.« + j3j^^) + 8 5{--4j '
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— (R' — 1) COS. (E — a)} — 2 a X -[(R' — 1) sin. (E — a) +

^^^4=^}+^---: w
To derive from these equations the values of the unknown quantities

X, y, f,
we must consider, signs being neglected, whether b is greater or

less than 1. In the first case we shall make use of equation (1), (2), and

(4). We shall form a first hypothesis for x, supposing it for instance

equal to unity; and we then derive by means of equations (1), (2), the

values of § and of y. Next we substitute these values in the equation (4)

;

and if the result is 0, this will be a proof that Hi i value of x has been

rightly chosen. But if it be negative we must augment the value of x,

and diminish it if the contrary. We shall thus obtain, by means of a

small number of trials the values of x, y and f.
But since these unknown

quantities may be susceptible of many real and positive values, we must

seek that which satisfies exactly or nearly so the equation (3).

In the second case, that is to say, if 1 be greater than b, we shall use

the equations (1), (3), (4), and then equation (2) will give the verifi-

cation.

Having thus the values of x, y, f,
we shall have the quantity

^ = ^^-^y + ^ "^ ^^"' ^^~ ^ y '''''' ^^ ~~ "^

+ X {^^^|-=^'-(R'— l)cos. (E—a)} — Eax.«=in(E-«)

+ R.(R'— 1).

The Perihelion distance D of the comet will be

the cosine of its anomaly v will be given by the equation

, 1 D
cos ^ — V = —

2

and hence we obtain, by the table of the motion of the comets, the time

employed to describe the angle v. To obtain the instant when the comet

passes the perihelion, we must add this time to, or subtract it from the

epoch according as P is negative or positive. For in the first case the

comet approaches, and in the second recedes from, the perihelion.

Having thus nearly obtained the perihelion distance of the comet, and

the instant of its passage over the perihelion ; we are enabled to correct

them by the following method, which has the advantage of being inde-

pendent of the approximate values of the other elements of the orbit

Vol. ir. F
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An exact DeietTnination of the elements of the orbit, 'when we know ap-

proximate values of the perihelion distance of the comet, and of the instant

of itspassage over the perihelion.

We shall first select three distant observations of the comet ; then

taking tlie perilielion distance of the comet, and the instant of its crossing

the perihelion, determined as above, we shall calculate the three anomalies

of the comet and the corresponding radius-vectors corresponding to the

instants of the three observations. Let v, v', v'' be tliese anomalies, those

which precede the passage over the perihelion being supposed negative.

Also let f, g'

f" be the corresponding radius-vectors of the comet; then

v' — v, V — v will be the angles comprised by g and ^ and by §, §'\

Let U be the first of these angles, U' the second. Again, call a, a' a" the

three observed geocentric longitudes of the comet, referred to a fixed

equinox ; ^, ^, ^' its three geocentric latitudes, the south latitudes being

negative. Let |3, /3', /3'' be the three corresponding heliocentric longi-

tudes and =r, tt, zt", its three heliocentric latitudes. Lastly call E, E', YI'

the three corresponding longitudes of the sun, and R, R', R'' its three

distances to the center of the earth.

Conceive that the letter S indicates the center of the sun, T that of the

eaTth, and C that of the comet, 0/ that of its projection upon the plane

of the ecliptic. The angle S T C is the difference of the geocentric lon-

gitudes of the sun and of the comet. Adding the logarithm of the cosine

of this angle, to the logarithm of the cosine of the geocentric latitude of

the comet, we shall have the logarithm of ihe cosine of the angle S T C.

"We know, therefore, in the triangle S T C, the side S T or R, the side

S C or
f,
and the angle S T C, to find the angle C S T. Next we shall

have tlie heliocentric latitude « of the comet, by means of the equation

_ sin. ^ sin. C S T
sm. C i i>

The angle T S C is the side of a spherical right angled triangle, of

which the hypothenuse is the angle T S C, and of which one of the sides

is the angle »•. Whence we shall easily derive the angle T S C, and con-

sequently the heliocentric longitude /3 of the comer.

We shall have after the same manner t/, i3'; J', ^" ; and the values of

/3, ^', jS" will show whether the motion of the comet be direct or retro-

grade.
'

If we imagine the two arcs of latitude », «', to meet at the pole of die

ecliptic, they would make there an angle equal to ^' — /3 ;
and in the
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spherical triangle formed by this angle, and by the sides — nr, - — -,/

T being the semi-circumference, the side opposite to the angle jS' — |S

will be the angle at the sun comprised between the radius-vectors e, and

f'. We shall easily determine this by spherical Trigonometry, or by the
formula

sin. ^ ~ Y = cos. ^ — (w -f-
w') — cos " - - (/3'— /3) cos. w cos. »',

in which V represents this angle ; so that if we call A the angle of which

the sine squared is

cos * — (j8' — /3) COS. « . cos. w',

and which we shall easily find by the tables, we shall have

sin.^ i V = COS. (^^+lr.'+ A) COS. (1 ., + 1 «'_A).

If in like manner we call V the angle formed by the two radius-vectors

f, ^', we have

sin.'l V- = cos.(l ,+ i .' + A')cos.(l ,+ |-'-A')

A' being what A becomes, when w', /S' are changed into »'', ^'\

If, however, the perihelion distance and the instant of the comet's

crossing the perihelion, were exactly determined, and if the observations

were rigorously exact, we should have

V = U, V = U';

But since that is hardly ever the case, we shall suppose

m = U — V; m' = U' — v.

We shall here observe that the revolution of the triangle S T C, gives

for the angle C S T two different values : for the most part the nature

of the motion of the comets, will show that which we ought to use, and

the more plainly if the two values are very different ; for then the one will

place the comet more distant from the earth, than the other, and it will

be easy to judge, by the apparent motion of the comet at the instant of

observation, which ought to be preferred. But if there remains any un-

certainty, we can always remove it, by selecting the value which renders

V and V least different from U and U'.

We next make a second hypothesis in which, retaining the same pas-

sage over the perihelion as before, we shall suppose the perihelion dis-

tance to vary by a small quantity ; for instance, by the fiftieth part of

F2
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its value, and we shall investigate on this hv^jothesis, the values of U—V,
U' — v. Let then

n = U — V ; n' = U' — v.
Lastly, we shall frame a third hypothesis, in which, retaining the same

periheUon distance as m the first, we shall suppose the instant of the pas-

sage over the perihelion to vary by a half-day, or a day more or less. In

this new hypothesis we must find the values of

U — VandofU' — V;
which suppose to be

p = U - V, p' = U' — v.
Again, if we suppose u the number by which we ought to multiply the

supposed variation in the perihelion distance in order to make it the

true one, and t the number by which we ought to multiply the supposed

variation of the instant when the comet passes over the perihehon in

order to make it the true instant, we shall have the two following equa-

tions:

(m — n ) u + (m — p ) t = m j

(m'— n') u + (m'— p') t = m';

whence we derive u and t and consequently the perihelion distance cor-

rected, and the true instant of the comet's passing its perihelion.

The preceding corrections suppose the elements determined by the

first approximation, to be sufficiently near the truth for their errors to be

regarded as infinitely small. But if the second approximation should

not even suffice, we can have recourse to a third, by operating upon the ele*

ments already corrected as we did upon the first ; provided care be taken to

make them undergo smaller variations. It will also be sufficient to calculate

by these corrected elements the values of U— V, and of U'— V. Call-

ing them M, M', we shall substitute them for m, m' in the second mem-

bers of the two preceding equations. We shall thus have two new equa-

tions which will give the values of u and t, relative to the corrections of

these new elements.

Thus having obtained the true perihelion distance and the true instant

of the comet's passing its perihelion, we obtain the other elements of the

orbit in this manner.

Let j be the longitude of the node which would be ascending if the

motion of the comet were direct, and f the inclination of the orbit. We
shall have by comparison of the first and last observation,

. _ tan. « sin. ^' — tan. V sin. j8 ^

^^"* J - tan. u COS. )S" — tan. ^' cos. ^
'
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tan. xf"
tan. (p = -. jr^, rr .

.

sin. {^" — j)

Since we can compare thus two and two together, the three observa-

tions, it will be more correct to select those which give to the above frac-

tions, the greatest numerators and the greatest denominators.

Since tan. j may equally belong to j and <? + jj j being the smallest of

the positive angles containing its value, in order to find that which we
ought to fix upon, we shall observe that p is positive and less than a right

angle ; and that sin. (/3" — j) ought to have the same sign as tan. xi".

This condition will determine the angle j, and this will be the position

of the ascending node, if the motion of the comet is direct ; but if retro-

grade we must add two right angles to the angle j to get the position of

the node.

The hypothenuse of the spherical triangle whose sides are ^" — j and

w'', is the distance of the comet from its ascending node in the third ob-

servation; and the difference between v" and this hypothenuse is the

interval between the node and the perihelion computed along the orbit.

If we wish to give to the theory of a comet all the precision which ob-

servations will admit of, we must establish it upon an aggregate of the best

observations ; which may be thus done. Mark with one, two, &c. dashes

or strokes the letters m, n, p relative to the second observation, the third,

&c. all being compared with the first observation. Hence we shaH form

the equations

(m — n)u + (m — p)t = m
(m' — n' ) u + (m' — p' ) t = m'

(m''— n'') u + (m'^ — p") t = m''

&c. = &c.
Again, combining these equations so as to make it easier to determine

u and t, we shall have the corrections of the perihelion distance and of the

instant of the comet's passing its perihelion, founded upon the aggregate

of these observations. We shall have the values of

|3, &, &', &C. «r, r>', ^", &C.,

and obtain

. _ tan, zf (sin. & + sin. ^" + &c.) — sin. /3 (tan. «/ + tan, rs" + &c.)
"*•' ~ tan. « (cos. /3' + cos. /3" + &c.)— cos. /3 (tan. zr' + tan. «r" + &c.)

_ tan. w + tan. w'' -}- &c.
*^°- ^ - sin. (/3'— j) + sin. ifi"— j) + &c.

"

504. There is a case, very rare indeed, in which the orbit of a comet

can be determined rigorously and simply ; it is that where the comet has

been observed in its two nodes. The straight line which joins these

F3
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two observed positions, passes through the center of the sun and coincides

with tlie line of the nodes. The length of this straight line is determined

by the time elapsed between the two observations. Calling T this time

reduced into decimals of a day, and denoting by c the straight line in

question, we shall have (No. 493)
3

rp2

~ 2N\(9.688724) 2*

Let /3 be the heliocentric longitude of the comet, at the moment of tlie

first observation ; g its radius-vector ; r its distance from the earth ; and a

its geocentric longitude. Let, moreover, R be the radius of the terrestrial

orbit, at the same instant, and E the corresponding longitude of the sun.

Then we shall have

g sin. /3 = r sin. a— R sin. E

;

g COS. jS = r COS. a— R cos. E.

Now ff + /S will be the heliocentric longitude of the comet at the in-

stant of the second observation ; and if we distinguish the quantities ^, «,

r, R, and E relative to this instant by a dash, we shall have

o' sin. B — W sin. E'— r' sin. a/
;

^' cos. S = R' COS. E'— r' cos. a'.

These four equations give

_ r sin a— R sin. E _ r^ sin, of— R^ sin. E^ ^
^

^^'^ - rcos.a— Rcos.E ~ r' cos. «'— R' cos. E'

'

whence we obtain

, _ R R^ sin. (E— EQ — R r sin. («— EQ
~~

r sin. {a'— a)— R sin. (a'— E)

We have also

{i + g') sin. /3 = r sin. «— x' sin. a' — R sin. E + R' sin. E'

(? + s') COS. /3 = r cos. a— r' cos. a.'— R cos. E + R' cos. E'.

Squaring these two equations, and adding them together, and substitut-

ing c for f + f',
we shall have

c2 = R2— 2RR'cos.(E'— E) + R''

+ 2 r JR' cos. (a __ EO— R cos. (a_ E)}

+ 2 r' {R COS. {a'_ E) — R' cos. (a'— E')|

+ r*^— 2rr'cos. (a'— a)-\-v'\

If we substitute in this equation for r' its preceding value in terms of r,

we shall have an equation in r of the fourth degree, which can be resolved

by the usual methods. But it will be more simple to find values of r, r'

by trial such as will satisfy the equation. A few trials will suffice for tliat

puipose. rf.
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By means of these quantities we shall have /3, § and /. If v be the

angle which the radius j makes with the perihelion distance called D

;

«r— V will be the angle formed by this same distance, and by the radius g'.

"VYe shall thus have by the equation to the parabola

D
,

D
S = i

—

'> S =
1 ' *

. 1
cos. '' — V sm. ^ "5 V

which give

tan.

We shall therefore have the anomaly v of the comet, at the instant of

the first observation, and its perihelion distance D, whence it is easy to

find the position of the perihelion, at the instant of the passage of the

comet over that point. Thus, of the five elements of the orbit of the co-

met, four are known, namely, the perihelion distance, the position of the

perihelion, the instant of the comet's passing the perihelion, and the posi-

tion of the node. It remains to learn the inclination of the orbit; but for

that purpose it will be necessary to have recourse to a third observation,

which will also serve to select from amongst the real and positive roots of

the equation in r, that which we ought to make use of.

505. The supposition of the parabolic motion of comets is not rigorous

;

it is, at the same time, not at all probable, since compared with the cases

that give the parabolic motion, there is an infinity of those which give the

elliptic ot hyperbolic motions. Besides, a comet moving in either a para-

bolic or hyperbolic orbit, will only once be visible; thus we may with

reason suppose these bodies, if ever they existed, long since to have dis-

appeared ; so that we shall now observe those only which, moving in or-

bits returning into themselves, shall, after greater or less incursions into

the regions of space, again approach their center the sun. By the follow-

ing method, we shall be able to determine, within a few years, the period

of their revolutions, when we have given a great number of very exact

observations, made before and after the passage over the perihelion.

Let us suppose we have four or a greater number of good observations,

which embrace all the visible part of the orbit, and that we have deter-

mined, by the preceding method, the parabola, which nearly satisfies these

observations. Let v, v', v", v"', &c. be the corresponduig anomalies;

Si i'> i"i i"i ^^* ^^® radius-vectors. Let also

v' — v = U, v" — V = U', y'" — v = U", &c.

F4



88 A COMMENTARY ON [Sect. XI.

Then we shall estimate, by the preceding method with the parabola

already found, the values of U, U', U", &c., V, V, V", &c. Make
m = U — V, m' = U' — V, m" = U" — V", &a.

Next, let the perihelion distance in this parabola vary by a very small

quantity, and on this hypothesis suppose

n = U — V; n' = U' — V; n" = U" — \", &c.

We will form a third hypothesis, in which the perihelion distance re-

maining the same as in the first, we shall make the instant of the comet's

passing its perihelion vary by a very small quantity ; in this case let

p = U — V; p' = U' — V; p'' = U'^ — M"i &c.

Lastly, we shall calculate the angle v and radius
f,

witli the perihelion

distance, and instant over the perihelion on the first hypothesis, supposing

the orbit an ellipse, and the difference 1 — e between its excentricity and

unity a very small quantity, for instance jq. To get the angle v, in this

hypothesis, it will suffice (489) to add to the anomaly v, calculated in the

parabola of the first hypothesis, a small angle whose sine is

-i (l--e)tan. iv {4—3eos.«i v— Gcos.-^^ v}.

Substituting afterwards in the equation

D f, l_e „ 1

g
=

cos. ^ — v
A'.

for V, this anomaly, as calculated in the ellipse, we shall have the corre-

sponding radius-vector ^. After the same manner, we shall obtain v', f

,

v", f", &c. Whence we shall derive the values of U, U', U'', &c. and

(by 503) of V, V, V", &c.

In this case let

q = U — V; q' = U' — V; q" = U" — V^ &c.

Finally, call u the number by which we ought to multiply the supposed

variation in the perihelion distance, to make it the true one ; t the number

by which we ought to multiply the supposed variation in the instant over

the perihelion, to make it the true instant; and s that by which we should

multiply the supposed value of 1 — e, in order to get the true one
;
and

we shall obtain these equations

:

(m — n) u + (m — p) t + (m — q'; s = m

;

(m' — n') u + (ra' — p') t + (m' — q') s = m ;

(m" — n'O u + (m" — p") t + (m" — q") s = m";

(m'"— n'") u + (m'"— p'") t + {^" — q'") s = m'";

&c.



Book I.] NEWTON'S PRINCIPIA. 89

We shall determine, by means of these equations, the values of u, t, s

;

whence will be derived the true perihelion distance, the true instant over

the perihelion, and the true value of 1 — e. Let D be the periheHon

distance, and a the semi-axis major of the orbit; then we shall have

a = Tj ; the time of a sidereal revolution of the comet, will be expressed

by a number of sidereal years equal to a or to f^j j*, the mean

distance of the sun from the earth being unity. We shall then have

(by 503) the inclination of the orbit and the position of the node.

Whatever accuracy we may attribute to the observations, they will

always leave us in uncertainty as to the periodic times of the comets. To
determine this, the most exact method is that of comparing the observa-

tions of a comet in two consecutive revolutions. But this is practicable,

only when the lapse of time shaU bring the comet back towards its peri-

heUon.

Thus much for the motions of the planets and comets as caused by the

action of the principal body of the system. We now come to

506. General methods of determining by successive approximatio7is, the

motions of the heavenly bodies.

In the preceding researches we have merely dwelt upon the elliptic

motion of the heavenly bodies, but in what follows we shall estimate them

as deranged by perturbing forces. The action of these forces requires only

to be added to the differential equations of elliptic motion, whose integrals

in finite terms we have already given, certain small terms. We must deter-

mine, however, by successive approximations, the integrals of these same

equations when thus augmented. For this purpose here is a general me-

thod, let the number and degree of the equations be what they may.

Suppose that we have between the n variables y, y', y", &c. and the

time t whose element d t is constant, the n diflferential equations

d' v'

&c. = &c.

Pj Qj P^ Q'j &c. being functions of t, y, y', &c. and of the differences to

the order i — 1 inclusively, and a being a very small constant coefficient,

which, in the theory of celestial motions, is of the order of the perturb-

ing forces. Then let us suppose we have the finite integrals of those
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equations when Q, Q', &c. are nothing. Differentiating each i — 1

times successively, we shall form with their differentials i n equations by

means of wliich we shall determine by elimination, the arbitrary constants

c, c', c'', &c. in functions of t, y, y', y'', &c. and of their differences to the

order i — 1. Designating therefore by V, V, V, &c. these functions

we shall have

c = V; e = V; c" = ^"\ &c.

These equations are the i n integrals of the (i — 1)^ order, which the

equations ought to have, and which, by the elimination of the differences

of the variables, give their finite integrals.

But if we differentiate the preceding integrals of the order i — 1, we

shall have

= dV; = dV'; = d V"; &c.

and it is clear that these last equations being differentials of the order i

without arbitrary constants, they can onlv be the sums of the equations

d> v'

= &c.

each multiplied by proper factors, in order to make these sums exact dif-

ferences. Calling, therefore, F d t, F' d t', &c. the factors which ought

respectively to multiply them in order to make = d V ; also in like

manner making H d t, H' d i', &c. the factors which would make = d V,
and so on for the rest, we shall have

dV = Fdt{iU+p} + Fdt|i^-t-F}+&c.

dV'=Hdt{^ + p} + H'dt{^y/+F}+&c.

&c.

F, F', &c. H, H', &c. are functions of t, y, y', y", &c. and of their dif-

ferences to the order i— 1 . It is easy to determine them when V, V, &c.

d ' y
are known. For F is evidently the coefficient of -r--4 in the differential

d ' v'
of V; F' is the coeiSicient of -p^ in the same differential, and so on.

^

d ' V d ' v'
In like manner, H, H', &c. are the coefficients of -j— j , -,-

j , &c. in the

differential of V. Thus, since we may suppose V, V, &c. known, by dif-
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ferentiating with regard to
^ ^._\ , . ._\ , &c. we shall have the

factors by which we ought to multiply the diiFerential equations

= |i| + p, = ^y; + F, &c.

in order to make them exact diiferences.

Now resume the diiFerential equations

= ^f + P+«.Q; o = i^^y-+F + «.Q', &c.

If we multiply the first by F d t, the second by F' d t, and so on, we

shall have by adding the results

= dV + adtfFQ+FQ' + &C.1,

In the same monner, we shall have

= dV' + adt{HQ+H^Q' + 8cc.|

&c.

whence by integration

c — «/d t JF Q + F Q' + &c.} = V;

c' — a/d t {H Q + H' Q' + &c.} = V;
&c.

We shall thus have i n differential equations, which will be of the same

form as in the case when Q, Q', &c. are nothing, with this only differ-

ence, that the arbitrary constants c, c', c'', &c. must be changed into

c_a/dtlFQ+ FQ'+&c.}, c _a/dt^HQ + H'Q'+&c.]&c.

But if, in the supposition of Q, Q', &c. being equal to zero, we eliminate

from the i n integrals of the order i — 1, the differences of the variables

y, y', &c. we shall have n finite integrals of the proposed equations. We
shall therefore have these same integrals when Q, Q', &c. are not zero, by

changing in the first integrals, c, c\ &c. into

c _ a/d t JF Q + &c.}, c'— a/d t{UQ+ &c.^&c.

507. If the differentials

d t [F Q + F Q' + &c.}, d t JH Q + H' Q' + kc.]kc.

are exact, we shall have, by the preceding method, finite integrals of the

proposed differentials. But this is not so, except in some particular cases,

of which the most extensive and interesting is that in which they are

linear. Thus let P, P', &c. be linear functions of y, y', &c. and of their

differences up to the order i — 1, without any term independent of these

variables, and let us first consider the case in which Q, Q', &c. are no-

thing. The differential equations being linear, their successive integrals
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are likewise linear, so that c = V, c' = V, &c. being the i n integrals of

the order i — 1, of tlie linear differential equations

- ii-y + p- - ^' + F- &c

V, V, &c. may be supposed linear functions of y y', &c. and of their dif-

ferences to the order i — 1. To make this evident, suppose that in the

expressions for y, y', &c. the arbitrary constant c is equal to a determinate

quantity plus an indeterminate 3 c; the arbitrary constant c' equal to a

determinate quantity plus an indeterminate 3 c' &c. ; then reducmg these

expressions according to the powers and products of 5 c, h c', &c. we shall

have by the formulas of No. 487

y = Y + ^c(||)+ac'(i|)+&c.

^ = Y'+*«(^') + ^^(^') + ^^-

+ 17^ (-d^) + ^^-

&c.

Y, Y', {-^—j , &c. being functions oft without arbitrary constants. Sub-

stituting those values, in the proposed differential equations, it is evident

that 5 c, 5 c', &c. being indeterminate, the coefficients of the first powers

of such of them ought to be nothing in the several equations. But these

equations being linear, we shall evidently have the terms affected with the

first powers of 3 c, h c', &c. by substituting for y, y', &c. these quantities

respectively

/d Yn , .
/d Yn , , . ^

These expressions of y, y', &c, satisfy therefore separately the proposed

equations ; and since they contain the i n arbitraries 3 c, 3 c', &c. they are

complete integrals. Thus we perceive, that the arbitraries are under a

linear form in the expressions of y, y', &c. and consequently also in their

differentials. Whence it is easy to conclude that the variables y, y', &c.

and their differences, may be supposed to be linear in the successive inte-

grals of the proposed differential equations.

d ' y d ' y
Hence it follows, that F, F', &c. being the coefficients of y-j , -TTi

»
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&c. in the differential ofV ; H, H', &c. being the coefficients of the same

differences in the differential of V, &c. these quantities are functions ot

variable t only. Therefore, if we suppose Q, Q', &c. functions of t alone,

the diffei'entials

d t {F Q + F Q' + &c.^ ; d t {H Q + H' Q' + &c.} ; &c.

will be exact.

Hence there results a simple means of obtaining the integrals of any

number whatever n of linear differential equations of the order i, and

which contain any terms a Q, a Q', &c. functions of one vai'iable t, having

known the integrals of the same equations in the case where Q, Q', &c.

are supposed nothing. For then if we differentiate their n finite integrals

i — 1 times successively, we shall have i n equations which will give, by

elimination, the values of the i n arbitrary constants c, c\ &c. in functions

of t, y, y', &c. and of their differences to the i— 1'** order. We shall thus

form the i n equations c = V, c' = V, &c. This being done, F, F', &c.

will be the coefficients of t-—;—f , , ^. v> &c. in V: H, H', &c. will

be the coefficients of the same differences in V, and so on. We shall,

therefore, have the finite integrals of the linear differential equations

= |^ + P + «Q; =^ + F + aQ'; &c.

by changing, in the finite integrals of these equations deprived of their last

terms a Q, a Q', &c. the arbitrary constants c, c', &c. into

c— a/dt JFQ+FQ'+&cl, c— a/dt[HQ + H'Q'+&c.l&c.

Let us take, for example, the linear equation

d^ v0=^+P^y + aQ.

The finite integral of the equation

d" V

is (found by multiplying by cos. a t, and then by parts getting

d^v dy „. dy,^ ^dy,
/ COS. a t . -j-^ = COS. a t -3-^ + a / sm. a t , f- . d t = cos. a t . ^-f +'^ dt dt*^ dt at

a sin. a t . y — a.^f cos. a t . y .'. c = a cos. a t . ^-p + a sin. a t
. y, &c.)

c . c'
y = — sm. a t + — cos. a t,•'a a

c, c' being arbitrary constants.
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This integral gives by differentiation

d y / • » "

-Y^ = c COS. at — c sin. a t.

at

If we combine this with tlie integral itself, we shall form two integrals

of the first order

c = a y sin. a t + -r^ cos. at;

dy .

c' = a y cos. at r-^ sin. a t

;

^ d t

and therefore shall have in this case

F = cos. at; H = — sin. a t,

and the complete integral of the proposed equation will therefore be-

c . " c' a sin. a t ^^ ,

y = — sin. a t + — cos. at J Q d t cos, a t
3 3* 2i

a cos. a t ^f^ J * •

H y Q d t sin. a t.

Hence it is easy to conclude that if Q is composed of terms of the form

sin.K . * (m t + s) each of these terms will produce in the value of y the

corresponding term

a K sin.
, ^ , .

m * — a ^ COS. ^

Sill
Ifm be equal to a, the term K ' (m t + «) will produce in y, 1st. the

term — -j—^ . * (a t + e) which being comprised by the two terms
^ a cos*

c . c' cc "K. t cos.— sin. a t -| COS. at,maybe neglected ; 2dly. the term + —— . . \a.i-\- e),
a a ic a sm.

+ or — being used according as the term of Q is a sine or cosine. We
thus perceive how the arc t produces itself in the values of y, y', &c. with-

out sines and cosines, by successive integrations, although the differentials

do not contain it in that form. It is evident this will take place when-

ever the functions F Q, F', Q', &c. H Q, H' Q', &c. shall contain con-

stant terms.

508. If the differences

d t JF Q + &c.}, d t JH Q + &c.}

are not exact, the preceding analysis will not give their rigorous integrals.

But it affords a simple process for obtaining them more and more nearly

by approximation when a is very small, and when we have the values of
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y, y', &c. on the supposition of a being zero. Differentiating these values,

i — 1 times successively, we shall form the differential equations of the

order i — 1, viz.

c = V; c' - V^&c.

d i y d ' v'
The coefficients of j—y , ,—"V j &c. in the differentials of V, V'', &c.d t ^ d t

»

' '

being the values of F, F', &c. H, H', &c. we shall substitute them in the

differential functions

d t (F Q + F Q' + &c.) ; d t (H Q + H' Q' + &c) ; &c.

Then, we shall substitute in these functions, for y, y', &c. their first

approximate values, which will make these differences functions of t and of

the arbitrary constants c, c', &c.

Let T d t, T d t, &c. be these functions. If we change in the first

approximate values of y, y', &c. the arbitrary constants c, c', &c. re-

spectively into c — ay T d t, c' — ay T d t, &c. we shall have the

second approximate values of those variables.

Again substitute these second values in the differential functions

d t . (F Q + &c.) ; d t (H Q + &c.) &c.

But it is evident that these functions are then what T d t, T' d t, &c.

become when we change the arbitrary constants c, c', &c. into c— ctfT d t,

c' — a/T' d t, &c. Let therefore T,, T/, &c. denote what T, T, &c.

become by these changes. "We shall get the third approximate values of

y, y', Sec. by changing in the first c, c', &c. respectively into c— ^yT, d t,

c —/T; d t, 8s:c.

Calling T/^, T^/, in like manner, what T, T', &c. become when

we change c, c, &c. into c — af T/ d t, c' — «yT/ d t, &c. we shall

have the fourth approximate values of y, y', &c. by changing in the first

approximate values of these variables into c— ^f^i, d t, c'— ayT/ d t,

&c. and so on.

We shall see presently that the determination of the celestial motions,

depends almost always upon differential equations of the form

d 2 V= 2-^?+ a^y + aQ,

Q being a rational and integer function of y, of the sine and cosine of

angles increasing proportionally with the time represented by t. The

following is the easiest way of integrating this equation.

First suppose « nothing, and we shall have by the preceding No. a first

value of y.

Next substitute this value in Q, which will thus become a rational and
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entire function of sines and cosines of angles proportional to the time.

Then integrating the differential equation, we shall have a second value

ofy approximate up to quantities of the order a inclusively.

Again substitute this value in Q, and, integrating the differential equa-

tion, we shall have a third approximation of y, and so on.

This way of integrating by approximation the differential equations of

the celestial motions, although the most simple of all, possesses the dis-

advantage of giving in the expressions of the variables y, y', &c. the arcs

of a circle (symbols sine and cosine) in the very case where these arcs

do not enter the rigorous values of these variables. We perceive, in

fact, that if these values contain sines or cosines of angles of the order a t,

these sines or cosines ought to present themselves in the form of series, in

the approximate values found by the preceding method ; for these last

values are ordered according to the powers of a. This developement

into series of the sine and cosine of angles of the order a t, ceases to be

exact when, by lapse of time, the arc a t becomes considerable. The ap-

proximate values of y, y', &c. cannot extend to the case of an unlimited

interval of time. It being important to obtain values which include both

past and future ages, the reversion of arcs of a circle contained by the

approximate values, into functions which produce them by their develope-

ment into series, is a delicate and interesting problem of analysis. Here

follows a general and very simple method of solution.

609. Let us consider the differential equation of the order i,

= ^+ P + aQ
dy d '~W

a being very small, and P and Q algebraic functions of y, -r^ , . . . . , ^ _x ,

and of smes and cosines of angles increasing proportionally with the time.

Suppose we have the complete integral of this differential, in the case of

a = 0, and that the value of y given by this integral, does not contain the

arc t, without the symbols sine and cosine. Also suppose that in inte-

grating this equation by the preceding method of approximation, when a

is not nothing, we have

y = X + t Y -1- t^ Z + t^ S + &c.

X, Y, Z, &c. being periodic functions of t, which contain the i arbitraries

c, c', c", &c. and the powers of t in this expression of y, going on to in-

finity by the successive approximations. It is evident the coefficients

of these powers will decrease with the greater rapidity, the less is a.

In the theory of the motions of the heavenly bodies, « expresses the order

of perturbing forces, relative to the principal forces which animate them.
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d' y
If we substitute the preceding value of y in the function t—^ + P+c^Q,

it will take the form k + k' t + k" t- + &c., k, k', k'', &c. being perio-

dic fimctions of t ; but by the supposition, the value of y satisfies the dif-

ferential equation

= ^+ P + aQ;
d t

'

we ought therefore to have identically

= k + k' t + k" 1 2 + &c.

If k, k', k", &c. be not zero this equation will give by the reversion of

series, the arc t in functions of sines and cosines of angles proportional to

the time t. Supposing therefore a to be infinitely small, we shall have t

equal to a finite function of sines and cosines of similar angles, which is

impossible. Hence the functions k, k', &c. are identically nothing.

Again, if the arc t is only raised to the first power under tlie symbols

sine and cosine, since that takes place in the theory of celestial motions,

the arc will not be produced by the successive differences of y. Substi-

tuting, therefore, the preceding value of y, in the function Ji+ P+ °' • Q>

the function of k -f- k' t + &C' ^o which it transforms, will not contain

the arc t out of the symbols sine and cosine, inasmuch as it is already con-

tained in y. Thus changing in the expression of y, the arc t, without the

periodic symbols, into t — 6, 6 being any constant whatever, the function

k + k' t + &c. will become k + k' (t — ^) + &c. and since this last

function is identically nothing by reason of the identical equations k =
k' = 0, it results that the expression

y = X + (t — Y + (t — ^)2 Z + &c.

also satisfies the differential equation

d' V
o = ^? + P + «Q-

Although this second value of y seems to contain i + 1 arbitrary con-

stants, namely, the i arbitraries c, c, c", &c. and tf, yet it can only have i

distinct ones. It is therefore necessary that by a proper change in the

constants c, c', &c. the arbitrary 6 be made to disappear, and thus the

second value of y will coincide with the first This consideration will fur-

nish us with the means of making disappear the arc of a circle out of the

periodic sj^mbols.

Give the following form to the second expression for y

:

y = X + (t - . R.
Vot. TI. O
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Tlien supposing 6 to disappear from y, we have

(rl)
=

»

and consequently

Differentiating successively this equation we shall have

'dRx /d°Xx . , ,, /d2R>

whence it is easy to obtain, by eliminating R and its differentials, from the

preceding expression of y,

y = X+ (t-^)(-^) + ^-3;^. (^ + 4-3^.(-g^) + &C.

X is a function of t, and of the constants, c, c', c", &c. and since these

constants are functions of 6, X is a function of t and of 6, which we can

represent by <p (t, 6). The expression of y is by Taylor's Theorem

the developement of the function p (t, ^ + t— 6), according to the powers

of t — 6. We have therefore y = ^ (t, t). Whence we shall have y by

changing in X, ^ into t. The problem thus reduces itself to determuie

X in a function of t and 6, and consequently to determine c, c', c", &c.

in functions of ^.

To solve this problem, let us resume the equation

y = X + (t — ^) . Y + (t — ^)^ Z + &c.

Since the constant 6 is supposed to disappear from this expression of y,

we shall have the identical equation

"^O-Y+c-') {(a4H4 +('-')'{ (^)-«4 +^^- •• '="

Applying to this equation the reasoning which we employed upon

= k + k't + k" t^ + &c.

we perceive that the coefficients of the successive powers of t — 6 ought

to be each zero. The functions X, Y, Z, &c. do not contain ^, inasmuch

as it is contained in c, c', &c. so that to form the partial differences

(-5— ^
, (-3—^ , (-r-T-) > &c. it is sufficient to make c, c', &c. vary in

these functions, which gives

/d Xx _ /d Xx d c
,

/d Xn d c' .
/d Xx d c"

VdT) - \d~c)dJ + Vd~c'>''d7 + VdV'JTT "* ^''*
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/dYx _ /d Yxdc ,
/d Y^dc'^ /d Yx dc'' „

&C. = &C. !

Again, it may happen that some of the arbitraiy constants c, c', c", &c.

multiply the arc t in the periodic functions X, Y, Z, &c. The differentia-

tion of these functions relatively to 6, or, which is the same thing, relatively

to these arbitrary constants, will develope this arc, and bring it from without

the symbols of the periodic functions. The differences (jt)» \rj)^

Cy-r ^ , &c. will be then of this form

:

(tit) = Y' + ' Y";

&C.

X', X'', Y', Y", Z', Z'', &c. being periodic functions of t, and containing

moreover the arbitrary constants c, c', c", &c. and their first differences

divided by d 6, differences which enter into these functions only under a

linear form ; we shall have therefore

&c.

Substituting these values in the equation (a) we shall have

= X' + ^ X" — Y
+ (t — ^) ^ Y' + ^ Y'' + X'' — 2 ZJ

+ (t ~ ^)MZ' + ^ Z" + Y" — 3^} + &c.;

whence we derive, in equalling separately to zero, the coefficients of the

powers of t — ^,

= X' + ^ X" — Y
= Y' + ^ Y" + X'^ — 2 Z
= Z' + ^Z" + Y" — 3S;

&c.

G2
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If we differentiate the first of these equations, i — 1 times successively

relatively to t, we shall thence derive as many equations between the

quantities c, c', c'', &c. and their first differences divided by d 6. Then
integrating these new equations relatively to ^, we shall obtain the con-

stants in terms of d.

Inspection alone of the first of the above equations will almost always

suffice to get the differential equations in c, c', c", &c. by comparing se-

parately the coefficients of the sines and cosines which it contains. For

it is evident that the values of c, c', &c. being independent of t, the dif-

ferential equations which determine them, ought, in like manner, to be in-

dependent of it The simpUcity which this consideration gives to the pro-

cess, is one of its principal advantages. For the most part these equations

will not be integrable except by successive approximations, which will

introduce the arc 6 out of the periodic symbols, in the values of c, c', &c.

at the same time that this arc does not enter the rigorous integrals. But

we can make it disappear by the following method.

It may happen that the first of the preceding equations, and its i — 1

differentials in t, do not give a number i of distinct equations between the

quantities c, c', c'', &c. and their differences. In this case we must have

recourse to the second and following equations.

When we shall have thus determined c, c', c", &c. in functions of 6,

we shall substitute them in X, and changing afterwards 6 into t, we shall

obtain the value of y, without arcs of a circle or free from periodic symbols,

when that is possible.

510. Let us now consider any number n of differential equations.

» = rn + P + "«=

= ^^r + P' + " Q'

;

&c.

P, Q, P', Q' being functions of y, y', &c. of their differentials to the order

i ij and of the sines and cosines of angles increasing proportionally

with the variable t, whose difference is constant. Suppose the approximate

integrals of these equations to be

y = X -t- t Y + t^ Z + t' S + &c.

y' = X, -I- t Y, -I- t' Z, + t^ S, + &c.

X, Y, Z, &c. X,, Y,, Z^, &c. being periodic functions of t and containing

i n arbitrary constants c, c', c", &c. We shall have as in the preceding

No.
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= X' + ^X" — Y;
= Y' + ^Y" + X'' — 2Z;
= Z' + Z" + Y" — 3 S

;

&c.

The value of y' will give, in like manner, equations of this form

= X/ + Qx;' -Yr,
= Y/ + ^ Y/' + X/' — 2 Z,

;

&c.

The values of y''', y'", &c. will furnish similar equations. We shall

determine by these different equations, selecting the most simple and

approximable, the values of c, c', c", &c. in functions of d. Substituting

these values in X, X', &c. and then changing 6 into t, we shall have the

values of y, y', &c. independent of arcs free from periodic symbols when

that is possible.

511. Let us resume the method already exposed in No. 506. It thence

results that, if instead of supposing the parameters c, c', c", &c. constant,

we make them vary so that we have

d c = — a d t JF Q + F Q' + &cj

;

dc' = — adtJHQ + H'Q' + &c.}

;

we shall always have the i n integrals of the order i — 1,

c = V; c' = V; c" - V"; &c.

as in the case of a = 0. Whence it follows that not only the finite in-

tegrals, but also all the equations in which these enter the differences

inferior to the order i, will preserve the same form, in the case of

a= 0, and in that where it is any quantity whatever ; for these equations

may result from the comparison alone of the preceding integrals of the

order i — 1. We can, therefore, in the two cases equally differentiate

i — 1 times successively the finite integrals, without causing c, c', &c. to

vary ; and since we are at liberty to make all vary together, there will

thence result the equations of condition between the parameters c, c', &c.

and their differences.

In the two cases where a = 0, and a = any quantity whatever, the

values of y, y', &c. and of their differences to the order i — 1 inclusively,

are the same functions of t and of the parameters c, c', &c. Let Y be any

function of the variables y, y', y", &c. and of their differentials inferior to

the order i — 1, and call T the function of t, which it becomes, when we

substitute for these variables and their differences their values in t. We
can differentiate the equation Y = T, regarding the parameters c, c', &c.

constant ; we can only, however, take the partial difference of Y relatively

G3
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to one only or to many of the variables y, y', &c. provided we suppose

what varies with these, to vary also in T. In all these difterentiations, the

parameters c, c', c", Sec. may always be treated as constants ; since by
substituting for y, y', &c. and their differences, their values in t, we shall

have equations identically zero in the two cases of « nothing and of a any

quantity whatever.

When the differential equations are of the order i.— 1, it is no longer

allowed, in differentiating them, to treat the parameters c, c', &c. as con-

stants. To differentiate these equations, consider the equation p = 0, p

being a differential function of the order i — 1, and which contains the

parameters c, c', c", &c. Let d f be the difference of this function taken

in regarding c, c', &c. constant, as also the differences d ' ~ ^ y, d '
~ ^ y', &c.

Let S be the coefficient of -j—r^ in the entire difference of <p. Let S'
d t'~'

d • V .

be the coefficient of j—j-^ in this same difference, and so on. The c; na-

tion f = when differentiated will give

= .,+(^)dc+(^^,)dC + &e.

d ' V . r d ' v' .

Substituting for -^—r^-j its value — d t tP + a Q? ; for j—r-^, its value

— d t {P' + a Q'J &c. we shall have

— d t ^S P + S' F + &c.} _ a d t {S Q -f S' Q' + &c.} . (t)

In the supposition of a = 0, the parameters c, c', c", &c. are constant.

We have thus

= 3
f>
— d t JS P + S' F + &c.}

If we substitute in this equation for c, c', c", &c. their values V, V, V,
&c. we shall have differential equations of the order i — 1, without arbi-

traries, which is impossible, at least if this equation is to be identically

nothing. The function

3?) — dt JS P + S' F + &c.]

becoming therefore identically nothing by reason of equations c = V,

cf = V, &c. and since these equations hold still, when the parameters

c, c', c", &c. are variable, it is evident, that in this case, the preceding
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fiinction is still identically nothing. The equation (t) therefore will be-

come

«=(rD''=+(dv)'i '' + «'«•

— a d t JS Q + S' Q' + &c.} (x)

Thus we perceive that to differentiate the equation p = 0, it suffices to

vary the parameters c, c', &c. in p and the differences d ^ ~ ^ y, d '
~ ^ y',

&c. and to substitute after the differentiations, for — a Q, a Q', &c. tlie

. . d' y" d' y o •
quantities j-^ , -—^ , &c.

Let -vj/ = 0, be a finite equation between y, y', &c. and the variable t. If

we designate by 5 4, 6 ^ -vp, &c. the successive differences of -^z, taken in

regarding c, c', &c. as constant, we shall have, by what precedes, in that

case where c, c', &c. are variable, these equations

:

-^ = 0; b-^ = Q; 52-v}/ = h''-'^ -^ = 0;

changing therefore successively in the equation (x) the function f into -v}/,

3 -v]/, 6 * -vj/, &c. we shall have

rd-vI/>

Thus the equations -4/ = 0, -vj^' = 0, See. being supposed to be the n

finite integrals of the differential equations

d' v'

'

&c.

we shall have i n equations, by means of which we shall be able to de-

termine the parameters c, c', c'\ &c. without which it would be necessary

for that purpose to form the equations c = V, c = V, &c. But when
the integrals are under this last form, the determination will be more
simple.

612. This method of making the parameters vary, is one of great utility

G3 '
,
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in anal^'sis and in its iipplications. To exhibit a new use of it, let us take

the differential equation

P being a function of t, y, of their differences to the order i — ], and of

the quantities q, q', &c. which are functions of t. Suppose we have the

finite integral of this differential equation of the supposition of q, q', &c.

being constant, and represent by p = 0, this integral, which shall contain

i arbitraries c, c', &c. Designate by d (p, 8^
(p, d^ (p, &c. the successive differ-

ences of <p taken in regarding q, q', &c. constant, as also the parameters

c, c', cf', &c. If we suppose all these quantities to vary, the differences of

p will be

^^ + (d-!)<''=+(d-|)'''='+^- + ©O') + 0<"i'+«'-
making therefore

3 <p will be still the first difference of (p in the case of c, c', &c. q, q', &c.

being variable. If we make, in like manner,

8'
f, d^ (p, 3 ' f will likewise be the second, third, &c. differences of

<p when c, c', &c. q, q', &c. are supposed variable.

Again in the case of c, c', &c. q, q', &c. being constant, the differential

equation

is the result of the elimination of the parameters c, c', &c. by means of

the equations p = 0, d <p = 0, d»p = 0, ....d«f» = 0. Thus, these

last equations still holding good when q, q', &c. are supposed variable, the

equation p = will also satisfy, in this case, the proposed differential

equation, provided the parameters c, c', &c. are determined by means

of the 1 preceding differential equations ; and since their integration

gives i arbitrary constants, the function <p will contain these arbitraries,

and the equation p = will be the complete integral of the proposed

equation.
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This method, the variation of parametei's, may be employed with ad-

vantage when the quantities q, q', &c. vary very slowly. Because this

consideration renders the integration by approximation of the differential

equations which determine the variables c, c', c", &c. in general much

easier.

513. Second Approximation of Celestial Motions.

Let us apply the preceding method to the perturbations of celestial

motions, in order thence to obtain the most simple expressions of their

periodical and secular inequalities. For that purpose let us resume the

differential equations (1), (2), (3) of No. 471, which determine the relative

motion of ^ about M. If we make

^ __ im' (X x^ + y / + z zQ
_^

tJ-"{^^"'\'yy" ^z^")

(x'2 + y'2 + z'^)8. (x''*^ + y'"^ + z"^)^

>.

+ &c.
/i

X being by the No. cited equal to

T + ij' K:

+

-x) ^+ (y'-y) *+ {2f—z) '} 2 j(x''_ x)H (y"— y) ^+ (z''-z) '\

'

Ui (L

we shall have

{ (x"—^T + {y" —y'r + (z" -- z') '}
^

If, moreover, we suppose M + i"- = ni aiid

i = V x*+ y* + z*

g' = Vx'«"+ f- + z'^

0-113 + ^BJE+fU^V
dt^ + e +Vdx>'

_ d°-y my
,
/dR\

^ - dl^ + 1^ + \dj)
m z /d R\

T + &C-

=

(P)

dt' ^•

The sum of these three equations multiplied respectively by d x, d y, d z

gives by integration

dx^+dys + dz^ 2m . m=
cl t'

^-^ + ^ + ^fd'R (Q)

the differential d R being only relative to the coordinates x, y, z of the

body /ti, and a being an arbitrary constant, which, when R = 0, becomes

by No. 499, the semi-axis major of the ellipse described by /* about

M.
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The equations (P) multiplied respectively by x, y, z and added to the

integral (Q) will give

_ , d^e* m . m , _ ^ ,r> , ^^^\ , f^^\ ,
/^Rx

o=^-H^-y +V+2/^^ + ^(dT) + ndl?) + HdT)' W
We may conceive, however, the perturbing masses /i', /j,", &c. multi-

plied by a coefficient a, and then the value of § will be a function of the

time t and of «. If we develope this function according to the powers of a,

and afterwards make a = 1, it will be ordered according to the powers

and products of the perturbing masses. Designate by the characteristic

d when placed before a quantity, this differential of it taken relatively to a,

and divided by d a. When we shall have determined 3 f in a series or-

dered according to the powers of «, we shall have the radius
f by multi-

plying this series by d «, then integrating it relatively to a, and adding to

the integral a function of t independent of «, a function which is evidently

the value of § in the case where the perturbing forces are nothing, and

where the body fi describes a conic section. The determination of § re-

duces itself, therefore, to forming and integrating the differential equation

which determines d §.

For that purpose, resume the differential equation (R) and make for the

greater simjjlicity

differentiating this relatively to a, we shall have

0=%l±S- +^' + 2fSdR + i.sn' (S)

Call d v the indefinitely small arc intercepted between the two radius-

vectors f apd § + d s; the element of the curve described by fi around M
will be V ds^ + §^d\K We shall thus have

dx2 + dy2 + dz2 = dg2_j.g2dv^
and the equation (Q) will become

Eliminating— from this equation by means of equation (R) we shall

have
dv2 pd

dt^ d t'
s

r^+^ + fR'

whence we derive, by differentiating relatively to a,

2g'dv.dav _ gd^ag— agd^g 3m^
J-fe

- dT^ p— +f3K — R dg.
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m p 8 p ,

If we substitute in this equation for —^j—^ its value derived from equa-

tion (S), we shall have

d3,.^
d(dg3g + 2gciag)+dtq3/a^R+2g3R^+R^ag}

g^ d v ^ ^

By means of the equations (S), (T), we can get as exactly as we wish the

values of 5 g and of 3 v. But we must observe that d v being the angle

intercepted between the radii § and g + d g, the integral v of these angles

is not wholly in one plane. To obtain the value of the angle described

round M, by the projection of the radius-vector f upon a fixed plane, de-

note by v^ , this last angle, and name s the tangent of the latitude of /* above

this plane ; then g ( I + s ')
'^ will be the expression of the projected ra-

dius-vector, and the square of the element of the curve described by /«,

will be

g^dv/
•

g'ds«
^

1 + s^^ "^ + (1 + s^)2'

But the square of this element is also g^dv'^ + dg*; therefore we have,

by equating these two expressions

d v . = == .

' V 1 + s^

We shall thus determine d v, by means of d v, when s is known.

If we take for the fixed plane, that of the orbit of /* at a given epoch,

d s
s and -J— will evidently be of the order of perturbing forces. Neglecting

therefore the squares and the products of these forces, we shall have

V = v^ . In the Theory of the planets and of the comets, we may neglect

these squares and products with the exception of some terms of that

order, which particular circumstances render of sensible magnitude, and

which it will be easy to determine by means of the equations (S) and (T).

These last equations take a very simple form, when we take into account

the first power only of the disturbing forces. In fact, we may then con-

sider d g and a v as the parts of g and v due to these forces ; 5 R, 5. g R'

are what R and g R' become, when we substitute for the coordinates of

the bodies their values relative to the elliptic motion : We may designate

them by these last quantities when subjected to that condition. The

equation (S) thus becomes.
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The fixed plane of x, y being supposed that of the orbit of /«, at a given

epoch, z will be of the order of perturbing forces : and since we may
neglect the square of these forces, we can also neglect the quantity

(d R
-1— j. Moreover, the radius ^ differs only from its projection by quan-

tities of the order z '. The angle which this radius makes with the axis

of X, differs only from its projection by quantities of the same order.

This angle may therefore be supposed equal to v and to quantities nearly

of tlie same order

X = g cos. V
J y = ^ sin. v

;

whence we get

/d Rx . /dRx /d Rx
'^(dT)+nd7)=Kli7)'

and consequently g . R' = ^ (—,—j . It is easy to perceive by differentia-

tion, that if we neglect the square of the perturbing force, the preceding

differential equation will become, by means of the two first equations (P)

/x d y — y d x >^

V ~dl )

In the second member of this equation the coordinates may belong to

elliptic motion ; this gives ~rr constant and equal to V m a(l— e *),

a e being the excentricity of the orbit of /«-. If we substitute in the ex«

pression of ^ 3 g for x and y, their values g cos. v and g sin. v, and for

^ ~" ^
, the quantity V /* a ( I — e '') ; finally, if we observe that

by No. (480)
m = n * a ^

we shall have

C a COS. vyn d t . g sin. v 4 2fd R + g (-j—) >

(^—a sin. vyn d t . g cos. v I 2/ ^ ^ + i ( a) \

^g = m VI — e^

The equation (T) gives by integration and neglecting the square of

perturbing forces,

—2 r-^j

—

-—= + — ffn dt.dR-i jn at. pi -,—

)

J a^ndt ^ m •^'^ ^ m*^ 'Vdg/ .,,vdv=
J

(\)
V 1— e*

x

\

(X)
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This expression, when the perturbations of the radius-vector are known,

will easily give those of the motion of /x in longitude.

It remains for us to determine the perturbations of the motion in lati-

tude. For that purpose let us resume the third of the equations (P)

:

integrating this in the same manner as we have integrated the equation

(S), and making z = g 3 s, we shall have

a cos. vyn d t . g sin. v (—,— \— a sin. v^n d t . g cos. vf ^—

j

3 s = —

"

; (Z)
m V 1— e^ ^

5 s is the latitude of /* above the plane of its primitive oibit : if we wish

to refer tlie motion of <«. to a plane somewhat inclined to this orbit, by

calling s its latitude, when it is supposed not to quit the plane of the

orbit, s + 3 s will be very nearly the latitude of /* above the proposed

plane.

514. The formulas (X), (Y), (Z) have the advantage of presenting the

perturbations under a finite form. This is very useful in the Cometary

Theory, in which these perturbations can only be determined by quad-

ratures. But the excentricity and inclination of the respective orbits of

the planets being small, permits a developement of their perturbations

into converging series of the sines and cosines of angles increasing pro-

portionally to the time, and thence to make tables of them to serve for

any times whatever. Then, instead of the preceding expressions of 8 ^,

8 s, it is more commodious to make use of differential equations which

determine these variables. Ordering these equations according to the

powers and products of the excentricities and inclinations of the orbits,

we may always reduce the determination of the values of 5 g, and of 3 s

to the integration of equations of the form

equations whose integrals we have already given in No. 509. But we

can immediately reduce the preceding differential equations to this simple

form, by the following method.

Let us resume the equation (R) of the preceding No., and abridge it

by making

It thus becomes
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In the case of elliptic motion, where Q = 0, g Ms by No. (488) a func-

tion of e COS. (n t + « — '')» a e being the excentricity of the orbit, and

n t + e — « the n)ean anomaly of the planet [i. Let e cos. (n t -|- «— ^)

= u, and suppose f
* = p (u) ; we shall have

In the case of disturbed motion, we can still suppose g^ =z <{> (u), but

u will no longer be equal to e cos. (n t + « — «). It will be given by

the preceding differential equation augmented by a term depending upon

the perturbing forces. To determine this term, we shall observe that if

we make u = -4/ (g*) we shall have

d-u d*. p* Xp^ Ap^

"¥ (?*) being the differential of -vj/ (g*) divided by d.f ^ and 4^' (g*^) the

d^e^
differential of 4'' (§^) divided by d.f^ The equation (R') gives \

-

equal to a function of g plus a function depending upon the perturbing

force. If we multiply this equation by 2 ^ d f, and then integrate it, we

shall have -
, f

equal to a function of
g plus a function depending upon

the perturbing force. Substituting these values of ' "^ and of ^-^—|- in

the preceding expression of -i

—

~ + n * u, the function of
f,

which is in-

dependent of the perturbing force will disappear of itself, because it is

identically nothing when that force is nothing. We shall therefore have

d^u . (\.^. p^ p^ d p^
the value of -^

—

- + n^ u by substituting for —j

—

-
, and —^—|-, the parts

of their expressions which depend upon the perturbing force. But re-

garding these parts only, the equation (R') and its integral give

i^--20.

^^ = -8/Q,d,
Wherefore

^ + nMi = -2Q4' (g^) - 8 r {s')/Q. s d {.

Again, from the equation u = <p (p ^), we derive d u = 2 g d f
4'

(S ') f

this ^* = p (u) gives 2 g d g = d u. f' (u) and consequently
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Differentiating this last equation and substituting 9' (u) for —^—? , we

shall have

_ 9" (u)

9' (u)
•^'"{n =-:;z7;;v3.

<p" (u) being equal to —'

,

, in the same way as f' (u) is equal to

', ^ . This being done : if we make
d u o '

u = e COS. (n t + £ — w) + 5 u,

the differential equation in u will become

dt^ p'(u)3«^^ f (u)

and if we neglect the square of the perturbing force, u may be supposed

equal to e cos. (n t + £ — »), in the terms depending upon Q.

The value of - found in No. (485) gives, including quantities -of the

order e ^

g = a|l + e^— u(l — |e^)— u^-|u^|

whence we derive

§2 =a«|l+2e'—2u(l— ie^) _u«— u^lrr p(u).

If we substitute this value of f (u) in the differential equation in b u,

and restore to Q its value 2 f d K {• ^ {—,
—\ , and e cos. (n t + £ — «r)

for u, we shall have including quantities of the order e ^,

—a^{ ^ "*"
i ^'~^cos. (nt + £-—•!»•)—-e^ COS. (2nt+ 2 e— 2^)1

— ?|/ndt[sin. (nt+£-^) U+ ecos.(nt+£-*)l |2/JR+g(^) }]{X0

When we shall have determined b u by means of this differential equa-
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tion, we shali have ^
f by differentiating the expression of j, relative to

the characteristic 3, which gives

f 3 9 13g=—a3u< 1 +7e*+2ecos. (nt+ g—w)+ -e* cos.(2nt+2£—2tir) l.

This value of 3 ^ will give that of 6 v by means of formula (Y) of the

preceding number.

It remains for us to determine d s ; but if we compare the formulas (X)

and (Z) of the preceding No. we perceive that 5 g changes itself into d s

by substituting (-T—J for 2/d R + g (^i— ) in its expression. Whence

it follows that to get 3 s, it suffices to make this change in the differential

equation in d u, and then to substitute the value of 5 u given by this equa-

tion, and which we shall designate by 8 u', in the expression of d g. Thus

we get

— ||/ndt|sin.(nt + s-^)U+ecos.(nt + .--)}.(^)|;(ZO

^s=—a3u'|l + ^e* +2ecos.(nt + «—»)+ — e*cos.(2nt+2e—2«')|

The system of equations (X'), (Y), (Z') will give, in a very simple

manner, the perturbed motion of /t in taking into account only the first

power of the perturbing force. The consideration of terms due to this

power being in the Theory of Planets very nearly sufficient to determine

their motions, we proceed to derive from them formulas for that purpose.-

515. It is first necessary to develope the function R into a series. If

we disregard all other actions than that of .<* upon fi', we shall have by (513}

j^ __ /^'(xx^+ y/+ zzQ j«/

(x' * + y' ^ + 2' «# {(X'— x)« + (/— y)^ + (z'— z)»i^

*

This function is wholly independent of the position of the plane of x,

y ; for the radical V {x' — x) * + (y' — y)'^+ (z' — z) \ expressing the

distance of /», /i', is independent of the position ; the function x ' + y

'

+ z** + x' * + y' '^ + z"— 2 X x'— 2 y y' — 2 z zMs in like manner in-

dependent of it. But. the squares x* + y * + z'^ and x'^ + y" + z'^

of the radius-vectors, do not depend upon the position ; and therefore the

(juantity x x' + y y' + z z' does not depend upon it, and consequently
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R is independent of the position of the plane of x, y. Suppose in this

function

X = f COS. V
; y = f sin. v

;

x' = g' COS. v'
; y' = ^ sin. v'

;

we shall then have

P _ l^'\l i COS. (v'—v)+ z t!\ a/

{^ * + z")
'"

f
'—2

% i COS. (v'— v)+ g' '^+ (z'—z) ^\ ^
'

The orbits of the planets being almost circular and but little inclined

to one another, we may select the plane of x, y, so that z and z' may be

very small. In this case g and / are very little different from the semi-

axis-majors a, a' of the elliptic orbits, we will therefore suppose

g = a(l + uj; |' = a'(l + u/);

u^ and u/ being small quantities. The angles v^ v' differing but little

fiom the mean longitudes n t + s, n' t + ^'j we shall suppose

V = n t + « + V, ; v' = n' t -f »' + v/

;

v' and v/ being inconsiderable. Thus, reducing R into a series ordered

according to the powers and products of u^, v^, z, u/, v/, and 2', this series

will be very convergent. Let

— cos. (n' t— n t + «'_ g) _{a '— 2 a a' cos. (n' t— n t -f 1'—O+a'*}"^

= i A w +A (^^ COS. (n' t— n t 4- »'— + A ® cos. 2 (n' t— n t +«'— e)

+ A ® COS. 3 (u' t — n t + 6' — «) + &c.

;

We may give to this series the form ^ 2 A ^'^ cos. i (n' t— n t -f t'—s),

the characteristic 2 of finite integrals, being relative to the number i, and

extending itself to all whole numbers from i = — oo to i = ao ; the value

i rr 0, being comprised in this infinite number of values. But then we

must observe that A ^~'^=A ^^\ This form has the advantage of serving

to express after a very simple manner, not only the preceding series, but

also the product of this series, by the sine or the cosine of aiiy angle

f t + 0-; for it is perceptible that this product is equal to

^2AW^^"' Ji(n't— nt+ t —i) +ft + t^l.
cos. ' ^ '

This property will furnish us with very commodious expressions for

the perturbations of the planets. Let in like manner

fa* — 2 a a' cos. (n t — n t -ft' — t) + a'^]~^

= ^ 2 B ' cos. i (n t — n t + £ —t)

;

Bf"*') being equal to B ^''. This being done, we shall have by (483)

Vot. II. H-
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K = ^- . 2 A <o COS. i (n' t — n t + e' — t)

n! /d A ('\

*" 2'"'^'*( j^-)cos. i(n't — nt + s' — s)

,
yl , ,/d A«\ .

, , , ,

+ T "' ('dT')*^^^- 1 (n' t — n t + t^ —

— -9" ^^'' — ^'^ 2
.

i A <') sin. i (n' t — n t + t' — «)

+ -^'
. u/. 2.a«(^^A!l)cos. i (n' t — n t + s' — i

jti' /d'^A^'K+ -- U/ u/ 2 a a'
( J—J—

, ) COS. i (n' t — 11 t + g' —
1

a > a a d a /

A(.' /d* A ^'\

+ -^ «/^ 2 a' «(^^^)cos. i („' t - n t + .' ~ .

(if ' /d A Wx—^ (v/— vj u, 2 . i a f -^ \ sin. i (n' t — n t +

,/dA('\ .

-0

—^ (v/— V,) u/ 2. i a' ( -^^-) sin. i (n' t - n t + .' —

—
-J-

(v/— V,) 2
. 2 . i 2 A ''' COS. i (nM — n t + f' —

+—/3 2^/4 COS. (n' t — n t + «' —

+
'^'^^'~^)'

2 B ^•) COS. i (n' t— n t + a' _
+ &c.

If we substitute in this expression of R, instead of u^, u/, v^, v/, z and z',

their values relative to elliptic motion, values which are functions of sines

and cosines of the angles n t + e, n' t + g' and of their multiples, R will

be expressed by an infinite series of cosines of the form ^' k cos. (i n' t

— i n t 4- A), i and i' being whole numbers.

It is evident that the action of a'''',
/«.'", &c. upon fi will produce in R

terms analogous to those which result from the action of /*', and we shall

obtain them by changing in the preceding expression of R, all that relates

to /i, in the same quantities relative to /*'', /*'", &c.

Let us consider any term /j/ k cos. (i' n' t — i n t + A) of the expres-

sion of R. If tlie orbits were circular, and in one plane we should

have i' = i. Therefore i' cannot surpass i or be exceeded by it, except

by means of the sines or cosines of the expression for u^, v^, z, u/, v/, z'

which combined with the sines and cosines of the angle n' t— n t + t'— s
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and of its multiples, produce the sines and cosines of angles in which i'

is different from i.

If we regard the excentricities and inclinations of the orbits as veiy

small quantities of the first order, it will result from the theorems of

(481) that in the expressions of u,, v^, z or ^ s, s being the tangent of the

latitude of /*, the coefficient of the sine or of the cosine of an anorle such

as f. (n t + s), is expressed by a series whose first term Ls of the order f ;

second term of the order f + 2; third term of the order f + 4 and so

on. The same takes place with regard to the coefficient of the sine or of

the cosine of the angle f (n' t + e') in tlie expressions of u/, v/, z'. Hence

it follows that i, and V being supposed positive and i' greater than i, the

coefficient k in the term m' k cos. (i' n' t — i n t + A) is of the ordar

i' — i, and that in the series which expresses it, the first term is of the

order i' — i the second of the order i' — i + 2 and so on ; so that the

series is very convergent. If i be greater than i', the terms of the series

will be successively of the orders i — i', i — 1^ + 2, &c.

Call w the longitude of the perihelion of the orbit of fi and 6 that of its

node, in like manner call »' the longitude of the perihelion of /«.', and ^

that of its node, these longitudes being reckoned upon a plane inclined

to that of the orbits. It results from the Theorems of (481), that in the

expressions of u^, v^, and z, the angle n t + « is always accompanied by

— w or by— 6; and that in the expressions of u/, v/, and z', the angle

n' t + e' is always accompanied by — v', or by — 6^ ; whence it follows

that the term /«.' k cos. (i' n' t — i n t + A) is of the form

At'kcos. (in't— int + V s — is— gw— g' w'— g" &— g"' <^),

g, g', g^', ^" being whole positive or negative numbers, and such that

we have

= i' - i — g — g' — g'' — g"'.

It results also from this that the value of R, and its different terms are

independent of the position of the straight line from which the longitudes

are measured. Moreover in the Theorems of (No. 481) the coefficient of

the sine and cosine of the angle «r, has always for a factor the excentricity e

of the orbit of /i ; the coefficient of the sine and of the cosine of the angle

2 ar, has for a factor the square e ^ of this excentricity, and so on. In like

manner, the coefficient of the sine and cosine of the angle 6, has for its

factor tan. ^ <p, (p being the inclination of the orbit of /a upon tlie fixed

plane. The coefficient of the sine, and of the cosine of the angle 2 6, has for

its factor tan.^ ^ p, and so on. Whence it results that the coefficient k has for

its factor, e «. e' «'. tan. «"
(^ p) tan. «"' (i p') ; the numbers g, g', g", g'" being

H2
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taken positively in tlie exponents of this factor. If all these numbers are

positive, tliis factor will be of the order i' — i, by virtue of the equation

but if one of them such as g, is negative and equal to — g, this factor

will be of the order i' — i + 2 g. Preserving, therefore, amongst the

terms of R, only those which depending upon the angle i' n' t— i n t are of

the order i' — i, and rejecting all those which depending upon the same

angle, are of the order i' — i + 2, i' — i -|- 4, &c. j the expression of

R will be composed of terms of the form

H e 8. e' s' tan. ^" {k<p) tan. s'".
( i ?^) cos. (i' n' t— i n t + V t'

_ i , _ g.. _ g'. ^' _ g/^ ^ _ g//^. ^'),

H being a coefficient independent of the excentrjcities, and inclinations
.

of the orbits, and the numbers g, g', g'', ^" being all positive, and such

that their sum is equal to i' — i.

If we substitute in K, a (1 + u^), instead off, we shall have

/d Rx /d Rx
Kd7) = n-dr)-

If in this same function, we substitute instead of u', v' and z, their values

given by the theorems of (481), we shall have

/d Rn _ /d Rx

provided that we suppose e — w, and s — d constant in the differential of

R, taken relatively to e ; for then u^, v^ and z are constant in this differ-

ential, and since we have v = n t + e + v^, it is evident that the preced-

ing equation still holds. We shall, therefore, easily obtain the values

of gT-i—V and of (--.—V which enter into the differential equations of

the preceding numbers, when we shall have the value of R developed

into a series of angles increasing proportionally to the time t. The dif-

ferential clRit will be in like manner easy to determine, observing to vary

in R the angle n t, and to suppose n' t constant ; for d U is the difference

of R, taken in supposing constant, the coordinates of f/^',
which are func-

tions of n' t.

516. The difficulty of the developement of R into a series, may be

reduced to that of forming the quantities M'^\ B ^% and their differences

taken relatively to a and to a'. For that purpose consider generally the

function

(a * — 2 a a' cos. tf + a' «)

~

'
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and develope it according to the cosine of the angle 6 and its multiples.

If we make —7 = k, it will become
a

a' . i 1 — 2 a cos. ^ + »
*|

Let

(1 — 2 a cos. ^ + a «)

"' = A b 0^ + b "' COS. & + b ® COS. 2 &

S 6 S

+ b ^3: COS. 3 ^ + &c.
s

b^% b^'', h^~\ &c. being functions of a and of s. If we take the logarith-

mic diflferences of the two members of this equation, relative to the vari*-

able df we shall have
. — b^'^sin. ^— 2b(^)sin. 2^— &c.— 2 s a sin. 6

\ —2a COS. ^ + a 2 ^ b W 4. b (!) cos. <>+

b

^^'^ COS. 2 ^+ &c.

'

S S 8

Multiplying this equation crosswise, and comparing similar cosines, we
find generally

(i_ 1) (1 4. «2)b"-»^ — (i + s— 2)ab(i-2)

b « = '-^. ^ .-2 ... (a)
(I —-5). a ^

^

We shall thus have b^% b'^^, &c. when b^*^^ and b^**' are known.
8 8

If we change s into s + 1, in the preceding expression of (1 — 2 a cos. 6

— s

+ a^) , we shall have

(1—2 a cos. d+a^)
~'~^ = ^ b (o^+b w cos. ^+b(2) cos.2 6+h^^^ cos.3<J4-&c.

8+1 8+1 8+1 8+1

Multiplying the two members of this equation, by 1 — 2 a cos. tf + a%

and substituting for (1 — 2 a cos. ^ + a*) its value in series, we shall

have

^b») + b^i) COS. ^ + b(2) COS. 2 ^ + &c.
8 8 8

= (1— 2 a cos. d-\-a^)\ b^o) + b^') cos. 6 -f b^2) cos. 26 + Sccj
8 + 1 S+ I S+1

whence by comparing homogeneous terms, we derive

bW = (1 +a2)b»)— ab»-J5 — abC'+ i).

8 8+1 S + 1 8 + 1

The formula (a) gives

i(l + a^)bW — (i + s)ab^'-^)

b P+i) = .. ,
« + ' '' ^^ L±-L

;

s+1 (1 — s).a

The preceding expression of b ^'^ will thus become
8 *

2s.ab^-^)— s(l + a«)b«')

8 1 —

s

H3
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Changing i into i -f- I in this equation we sliall have

2s«bW— s(l + a2)b('+i)

\^ (i + I) — ___»±i 8+ 1

i — s+ 1

and if we substitute for b ('+^^ its preceding value, we shall have
8 + 1

s(i + s)a(I + a «)b (•-')+ sf2(i— s)a2_i(l4.a«)2]bW
b P+ 1) =z '-^\ ^±i
I (l — s) (i — s + l)a

These two expressions of b ^'^ and b (' + '^ give
a 8

^l^t^.(l + a«)b«— 2.1-^l±-^ab^l+>)

substituting for b (' + ') its value derived from equation (u), we shall have
s

b CO — ? • ^ «
. (c)

an expression which may be derived from the preceding by changing i

into — i, and observing that b ^'^ = b^~'^. We shall therefore have by

means of this formula, the values of b (% b ^^\ b ^^\ &c. when those of
i^i 84. 1 84.1

b(o), b^i), b(2), &c. areknown.
8 •

Let X, for brevity, denote the function 1 — 2 a cos. ^ + a '. If we

differentiate relatively to a, the equation

X -« = ^ b W + b (1) cos. ^ + b ® COS. 2 ^ + &c.
8 8 8

we shall have

dbW) dbW db(2)

— 2 s (a— COS. ^) X -«- 1 = i . —? \- -f— COS. 6 + —,^— cos. 2 ^ + &c.
^ ' ^ da ' da da

But we have

— a + COS. S r= ^
;

2 a

We shall, therefore, have

/, .^ .-8 db^o) db('^

MJ_ZlfLJx-«->— 5A_ = i_^+ _. cos.^ + &c.
a a '^ d a ' d a

whence generally we get

dbw sb«
_J>_ = ^(1— '')

b 0) !-.

.

da a 8 + 1
'^

Substituting for b ^'^ its value given by the formula (b), we shall have

'^^^'_
i + (i + 2s)a' , 2(1^3+1) ,,^,

d« - a(l_a^) • , l_a« *, *
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If we differentiate this equation, tve shall have

d « h P) d h <')

_i+(i+2s)a' "^
.
f2(i+s)(l +a') i

d a* ~ a (1 —a') ' d

d b ^'+ ')

8(i-s+ l) 1? 4(i-s + !)« .,.„
I_a2 • da (l_a2)2 "

Again differentiating, we shall get

d 3 b ('^ d * b (') d b ^>'

""
: _ i4-(i+2.s) a"- "^

r gf (i + s)(i + «'') i >/r
da« - a(l_a2) • j^a i" ^

| (1?— a^ a^ j da

j- 4(i + s)«(3 + «')
,
2i| , 2(i— s+1)

^'^^'"^^

"•\ (!—«')' "^a'/" 1 — a^ • da^

8(i-s+ l)a
^1'^''*"''

4(i— s+l)(l+3«'') , ,

(l_a2)2 • da (l_a2)3 ^

Thus we perceive that in order to determine the values of b and oi
s

its successive d ifferences, it is sufficient to know those of b ^°^ and of b ^^\

8 8

We shall determine these two as follows :

If we call c the hyperbolic base, we can put the expression of X — * un-

der this form

X-" = (1 — ac*-^'— 1)-«(1 — a c — «V^— !)-».

Developing the second member of this equation relatively to the powers of

c 9 V—1, and c — ^ '^"^ it is evident the two exponentials c ^ ^ V—i, c— ' * V—

i

will have the same coefficient which we denote by k. The sum of the

two terms k . c ^ * v — i and kc — J*v^— Ms2k cos. i 6. This will be the

value of b ^'^ cos. i d. We have, therefore, b ^'^ = 2 k. Again the ex-
s s

pression of X— * is equal to the product of the two series

1 + sac* -1 + lil+lla^c^^V-i 4- &c.
i m l£

1 + sac-«V-l + L(L+Jla2c-2»V_I + Sac;

multiplying therefore these two together, we shall have when i =

k = l +S^a^ + (?-(^-±ii)'a'^ + &C.;

and in the case of i = 1,

wherefore

H 4
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That these series may be convergent, we must have « less than unity,

which can always be made so, unless a = a' ; « being = —7 , we have only

to take the greater for the denominator.

In the theory of the motion of the bodies a, fi\ (il', &c. we have occasion

to 4cnow the values of b ^"^ and of b ^*^ when s = ^ and s = f . In these
( 8

two cases, these values have but little convergency unless a is a small

fraction.

The series converge with greater rapidity when s r= — |, and we have

^, -^ r 2.4" 4*2.4.6 "4.6-2.4.6.8'' "4.6.8* 2:37:710 i
" +^'^*

"" i

In the Theory of the planets and satellites, it will be sufficient to take

the sum of eleven or a dozen first terms, in neglecting the following

terms or more exactly in summing them as a geometric progression whose

common ratio is 1 — o *. When we shall have thus determined b ^"^ apd

b f"), we shall have b ^ in making i = 0, and s = — ^ in the formula (b),

-\ \

and we shall find

(1 + a2)bW + 6ab<'>

KW) — zi zi.

2

If in the formula (c) we suppose i = 1 and s = — | we shall have

2ab(o^ + 3 (1 + a2)b">

b (1) = -^ ^ .

(1 — a^)«
t

By means of these values of b^^^ and of b^'^ we shall have by the pre-

\ i

cedinf forms the values of b ^''> and of its partial differences whatever may

be the number i ; and thence we derive the values of b ^'^ and of its dif-

f

ferences. The values of b ^^^ and of b ^') may be determined very simply,

I I
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by the following formulae

b (") b (')

b W = HI • b ('^ — 3 ~-^

I (i-^n^s ~ -(i-a^)^-
2 2

Again to get the quantities A ^"\ A '^^, &c. and their diiferences, we

must observe that by the preceding No., the series

^ A (") + A (1) COS. 6 + A ^'^ cos. 2 () + &c.

results from the developeraent of the function

t^^ _ (a^ — 2 a a' cos. 9 + a'')~K
Si

into a series of cosines of the angle 6 and of its multiples. Making —; = a,

this same function becomes

h h h

which gives generally

AW = _l.b<»);
2

when i is zero, or greater than 1, abstraction being made of the sign.

In the case of i = 1, we have

A« = -^ - h^^K
a'* a I

We have next

db«)
/dA«N_ 1!^ ^ /d^x

I d a y ~ a' • d a Vl J'

But we have -r— = ~; ; therefore
da a:

db«
/d_AWx _ __ J i_
Wa>/~a''^*da'

and in the case of i = 1, we have

dbfi)

V da ;~ a'« 1 da J

Finally, we have, in the same case of i = 1

d^b^'>

/d^AW x _ _ J_ L,
\ d a^ / ~ 3'="' da' *
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/d«A»\ _ _ 1 i

«
V daW~ a'** da» '

&c.

To get the differences of A ''^ relative to a', we shall observe that A ^'^

being a homogeneous function in a and a', of the dimension — 1, we

have by the nature of such functions,

whence we get

zdM^x _ o/dA^x /d*A('\

f(\ * A W» /A A 0). ,(] 2 A (')x

^'^(-d4r)=2A0) + 4a(ij^)+a^(^.-);

, 3 /d ^ A Wx _ . p. „ /dA Wx _
, fd'A «v 3 /d^A «x

.

&c.

We shall get B ^'^ and its differences, by observing that by the No. pre-

ceding, the series

-I
B(") + BW cos. ^ + B(2) cos. 2 ^ + &c.

is the developement of the function

a' -3 (1 — 2 a COS. 6 + a^)"^

according to the cosine of the angle & and its multiples. But this function

thus developed is equal to

a'-s ci\^io) ^ b") COS. ^ + b(2) COS. 2 6 + &c.)

l"l i I i'

therefore we have generally

B(0 = ~b«;

Whence we derive

db('^ d«b(') 2
3 ; &c.

/d B (')n _ J_ _|_ ; /d ' B W . _ 2
V da /~ a'** da V daW~ a'^' da«

Moreover, B ^'' being a homogeneous function of a and of a', of the

dimension — 3 we have
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whence it is easy to get the partial differences of B ^'^ taken relatively to

a' by means of those in a.

In the theory of the Perturbations of ^a', by the action of (i, the "values

of A ^') and of B W, are the same as above with the exception ofA ^'^ which

a' 1
in this theory becomes 2 > ^ ^'^* Thus the estimate of the values of

a a ]

2

A ^'\ B ^'\ and their differences will serve also for the theories of the two

bodies /^ and fif.

517. After this digression upon the developement of R into series, let

us resume the differential equations (X'), (Y), (Z') of Nos. 513, 514; and

find by means of them, the values of 3 ^, 5 v, and b s true to quantities

of the order of the excentricities and inclinations of orbits.

If in the elliptic orbits, we suppose

^ = a(l + u,); /=a'(H-u/);
V = n t + g + v^ ; v' = n' t — «' + v/

;

we shall have by No. (488)

u^ = — e cos. (n t + g — w) ; u/ = — e' cos. (n' t + s' — «r')

;

v, = 2 e sin. (n t + £ — w) ; \f = 2 e' sin. (n' t + g' — w')
J

n t + g, n' t + g' being the mean longitudes of a*, /*' ; a, a' being the serai-

axis-majors of their orbits ; e, e' the ratios of the excentricity to the semi-

axis-major; ^ and lastly «r, w' being the longitudes of their perihelions. All

these longitudes may be referred indifferently to the planes of the orbits,

or to a plane which is but very little inclined to the orbits ; since we ne-

glect quantities of the order of the squares and products of the excen-

tricities and inclinations. Substituting the preceding values in the ex-

pression of R in No. 515, we shall have

R = -5- 2 A ^'5 cos. i (n' t — n t 4- «' —

4-Md A ^'\ 1

e cos.U (n' t — nt+i' — g) + n t + g — v\

e' cos.[i (n' t — n t + g' — g) + n t -H e — «^l;

the symbol 2 of finite integrals, extending to all the whole positive and

negative values of i, not omitting the value i = 0.

Hence we obtain
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At' r /d^A('\ /dAW\ /rlA(i)% 1-¥{-'&) + ^''(Tr) +24^) + *A»'}..'cos.(nt+,W)

e COS. Ji(n't-nt+ s'-s)+ nt+ «-w|

(n-n')-n i v d a / ) J

+ n t + ^ — «'J;

the integral sign 2 extending, as in what follows, to all integer positive

and negative values of i, the value i = being alone excepted, because

we have brought from without this symbol, the terms in which i= : /i' g
is a constant added to the integraiy^? R. Making therefore

^ , 3/d'A(0) ^ , ^ 2/dA(0)x^-

2ii (n — n) — n| t V da / n — n' J

i(n — n') — n(. \da/ J

nm 1 . ,/d'A"-'\ ,. ,, ,/dA('-"v

taking then for unity the sum of the masses M + /"» and observing that

(237) ^L+Jf = n ^ the equation (X') will become

„ i'.iu
, ,, „ , ,

n'p,' ,/d A»v

_!i;^',|a.(iA^) +^^a A <4cos. i (n't-n t+ ,'-.)
2 iNda/n-^n J

^
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+ n* At' C e COS. (n t + s — t?)

+ n * /»' D e' COS. (n t + £ — r,')

4- n V' s C « e COS. {i (n' t — n t + e' — «) + n t + « — t»l

+ nV 2 D « e' cos.{i (n' t — n t + £' — j) -1- n t + e — t^'l;

and integrating

ul ^ I V d a / n— n/ J • , i . * , / \— -^ n « 2 . r—

^

7.-r 5 -— cos. 1 (n' t — n t + f' —
2 1 - (n — n')'— n-

+ At' f^ e cos. (n t + e — ») + /«,' f/ e' sin. (n t + e — »')

— -^ C . n t . e sin. (n t + s — ^) —— D . n t. e' sin. (n t + i — n>')

"^ '''^'
{i (n— nO— np'^ITlT'

^ ^"^'^^ (n^ t— n t + ^'— + nt+«—«r]

+ ^'^
(i(n--nO-lr-n'

'^'''°'-^'^'''^"""^'^'~'^'^"^"^'~"'^'

f^ and f/ being two arbitraries. The expression of 3 ^ in terms 3 u, found

in No. 514 will give

+ fn'..{
\da^ "-°

,
-}cos.i(n't-nt + .'-0

-s '^ 1 * (n n ) * — n * ^

— /*' f e cos. (n t + £ — zr) — yl {' ^ cos. (n t + « — '='')

+ ^ /i' C n t e sin. (n t+ «— -ar) + ^ a*-'D « t e' sin. (n t + s — ^)

+ /* *» 2
. -/

j i.(n_n')^ — n== U (n-n')-nj «— n
''J

>

V. X e cos. Ji (n' t— nt+s'— £) + nt+j

—

a\ )I
DW— /.' . n '^ 2 . _-_,^__-p-_^e' cos. Ji(n' t-n t+ a'—«)+n t+s—^'j.

f and f ' being arbitrary constants independent of f^, f/.

This value of 6 ^, substituted in the formula (Y) of No. 513 will give 8 v

or the perturbations of the planet in longitude. But we must observe that

n t expressing the mean motion of (i, the term proportional to the time,

ought to disappear from the expression of 6 v. This condition determines

the constant (g) and we find

1 /dA(o)x

g = - 3
''^

("dir)-
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We might have dispensed with introducing into the value of 3 ^ the

arbitraries f^ f/, for they may be considered as comprised in the elements

e and tr of elliptic motion. But then the expression of 8 v would include

terms depending upon the mean anomaly, and which would not have

been comprised in those which the elliptic motion gives : that is, it is more

commodious to make these terms in the expression of the longitude dis-

appear in order to introduce them into the expression of the radius-vector

»

we shall thus determine f, and f/ so as to fulfil this condition. Then if we

/d A^'-'\. /d A ^-^\
substitute for af

—

-.
—

j—jits value — A^'~^^— af

—

-r- -j, we shall

have

D = aA<..-a>(^)-i.(-4;i'),

n — 1 (n — n') n — i (n — n') \ d a /

/d^ A^'-^K

'd AW\
. ,

,/d2Af°'

Moreover let

E 0> = _ -«i^, a A <" + i'("-n;).in+i(n-n^)j^3n;
n— n' 1 * (n — n ) ^ — n *

1 n

(i_l)n
i^Mn+i(n-nO?_3n

G^*) =

« — IX i2(n — nO' — n'

r , /d A ^\ .
2 n . (.) 2 n ^ E t')

/d A('-'\
(i _ ]) (2 i- 1) n a A('-») + (i — 1) n a« (—5^—)

2 Jn — i (n — n')]

2 n ^ D »)
.

i^i— Jn— i (n— n')]''
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and we shall have

£ /d A«\
.

2n

a^e^V'daJ"^ 2^ * {^(n — nO*— n^
^

COS. i (n' t — n t + e' — i)

— /i' f e COS. (n t + 1-\-«)—/f e' cos. (n t + ? — w')

+ l/C.ntesin. (nt+ g— w) +^/Dn te'sin. (n t + t— .r')

E (')
c

-jrp^ e COS. ii (n' t—n t+ 1'—t)+ n t+ e— ^\

+ n*/i'« //-^
n2-{n-i(n-n')|

,
r

^ 2n3{a^(^-^) + ^iLaA4| . .

_^' J n" .
^i,_^

t \da/'n— n^ J_
J-

sin. i

''-2 ^ti(n— nO'^ '+ i(n — n').U%(n — nO' — n"-r)

(n' t — n t + e" —
+ fjk' . C . n t . e COS. (n t + s — or) + <«,' D . n t . e' cos. (n t + s — J)

r FW . c -I
r- r. esin. ii(n't— n t + e'— e) + n t+f — =r?

n — 1 (n— n')
^ '

' ' *
I

+ "^'M GO) M
In — i (n— nO

^'^"'-^^("'^~"^+ ''~'^ "^"^+'~"U
the integral sign 2 extending in these expressions to all the whole positive

and negative values of i, with the value i = alone excepted.

Here we may observe, that even in the case where the series represent-

ed by

2. A ^') cos. 5 (n' t — n t + f' — e)

is but little convergent, these expressions of — and of b v, become con-
3.

vergent by the divisors which they acquire. This remark is the more

important, because, did this not take place, it would have been impossible

to express analytically the mutual perturbations of the planets, of which

the ratios of their distances from the sun are nearly unity.

These expressions may take the following form, which will be useful to

us hereafter. Let

h = e sin. w ; h' = e' sin. ?/

;

1 = e COS. w ; 1' = e' COS. w'

;

then we shall have

a 6 Vda/^2 \ i2(n— n')^— n* i
^ '

— /*'(hf+h'f')cos.{nt + — /*'(lf+l'n sin. (n t + »)
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+ ^ U C+ 1' D] n t sin. (n t+ — ^'
{h C+h'D}n t cos. (n t+ a)

2 ti(n— nO* i(n— n') U^ (n— nQ *— n^] J

sin. i (n' t — n t + i' — s)

+/{hC+li'D}.nt.sin.(nt+6)+/tqi.C+l'.D}nt.cos.(nt+£)

(n iln
» sin.fiKt-nt+ s'~0+nt+.} )

) hF^'^+ h'G^'^ t(~ n— i(n— nO^'^-^'^"'^~"^+''~^^+"^+^U
Connecting these expressions of 3 ^ and 3 v with the values of g and v

relative to elliptic motion, we shall have the entire values of the radius-

vector of Ao, and of its motion in longitude.

518. Now let us consider the motion of fi in latitude. For that pur-

pose let us resume the formula (Z') of No. 614. If we neglect the pro-r

duct of the inclinations by the excentricities of the orbits it will become

. d^au' ^ 2 , , 1 /d Rn

the expression of R of No. 515 gives, in taking for the fixed plane that

of the primitive orbit of /i,

the value of i belonging to all whole positive and negative numbers in-

eluding also i = 0. Let y be the tangent of the inclination of the orbit

of fji,', to the primitive orbit of fiy and n the longitude of the ascending

node of the first of these orbits upon the second ; we shall have very

nearly

z' = a' 7 sin. (n' t + «' — II)

;

which gives

(4^) = /- . y. sin. (n' t+g'— n)—^ . a' B « y sin.(n t+£— n)

^a'sB^'-^'ysin. {i (n' t— n t+ s'—O+n t+s—nj

the value here, as in what follows, extending to all whole positive and

negative numbers, i = being alone excepted. The diiferential equation
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in 3 a' will become, therefore, when the value of (-i— \ is multiplied by

n* a^, which is equal to unity,

,12/),,/ rt

= "-"r + n'du' — fi'n\4-«y sin. (u' t + ^' — n)
d t

^ a' '
' ^

+ ^^ a a' B ") 7 sin. (n t + s — n)

+ ^^'aa'sB^'-i'ysin. {i (n' t— nt+s'— + n t+s— n)] ;

whence by integrating and observing that by 514

8 s = — a 3 u',

fj/ n^ a ^
• , , , N

d s = 2 n • -7-2 7 sin. (n' t + «' — n)
n — n^ a^ ^ '

'-J B <')
. n t . 7 COS. (n t + £ — n)

/I'n^ a^a' B <'
— ^>

' 2.-^-^—^^——,.-^7sin.{i(n't-nt+s'-0+nt^-^-^^
2 n*_^n—i{n—nOF

To find the latitude of ^ above a fixed plane a little inclined to that of

its primitive orbit, by naming p the inclination of this orbit to the fixed

plane, and 6 the longitude of its ascending node upon the same plane ; it

will suffice to add to 5 s the quantity tan. p sin. (v — 6), or tan. tp sin. (n t

4- s — 6), neglecting the excentricity of the orbit. Call f/ and ^ what p
and 6 become relatively to /*'. If /j, were in motion upon the primitive

orbits of /ct', the tangent of its latitude would be tan. <p' sin. (n t + £ — 6');

this tangent would be tan. <p sin. (n t + e — ^)j if A^ continued to move in

its own primitive orbit. The difierence of these two tangents is very

nearly the tangent of the latitude of fi, above the plane of its primitive

orbit, supposing it moved upon the primitive orbit of /m' ; we have there-

fore

tan. f sin. (n t+s— ^)— tan.
f>

sin. (n t+e— ^)= 7 sin. (n t+e— n).

Let

tan. <p sin. ^ = p ; tan. <p sin. ^ = p'

;

tan. p COS. ^ = q ; tan. ^ cos. ^ = q'

;

we shall have

7 sin. n = p' — p ; 7 COS. n = q' — q
and consequently if we denote by s the latitude of /x above the fixed plane,

we shall very nearly have

s= q sin. (n t + g) — p cos. (n t + s)

— ^
^ (p' —p) B f') n t sin. (n t +

Vol. II I
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— '^

^
^

(q' -r- q) B t'> n t cos. (n t + e)

— n^TZ-F^ • h ^("1' ~ "l) """• (''' t + eO — (p' — p) COS. (n' t + 0|

/
ct'n'. a'a\ Jn^—Jn—i(n—n')|'

'^ ^ ^t^ T5f

) ~^P'~.P^^^'7w2 - cos.[i(n't-nt+8'--3)+nt+€} (

519. Now let us recapitulate. Call (g) and (v) the parts of the radius-

vector and longitude v upon the orbit, which depend upon the elliptic

motion, we shall have

g = (^) + a^; V = (v) + av.

The preceding value of s, will be the latitude of /a above the fixed plane.

But it will be more exact to employ, instead of its two first terms, which

are independent of /«.', the value of the latitude, which takes place in the

case where /i quits not the plane of its primitive orbit. These expressions

contain all the theory of the planets, when we neglect the squares and the

products of the excentricities and inclinations of the orbits, which is in

most cases allowable. They moreover possess the advantage of being

under a very simple form, and which shows the law of their different

terms.

Sometimes we shall have occasion to recur to terms depending on the

squares and products of the excentricities and inclinations, and even to

the superior powers and products. We can find these terms by the pre-

ceding analysis, the consideration which renders them necessary will al-

ways facilitate their determination. The approximations in which we

must notice them, would introduce new terms which would depend upon

new arguments. They would reproduce again the arguments, which the

preceding approximations afford, but with coefficients still smaller and

smaller, following that law which it is easy to perceive from the deve-

lopement of R into a series, which was given in No. 515 ; an argument

i^hichf in the successive approximations^ isfoundfor tliejtrst time among the

quantities of any order iiohatever r, and is reproduced only by quantities oj

the orders r+2, r+4', &c.

Hence it follows that the coefficients of the terms of the form

t . ' . (n t + s), which enter into the expressions of f,
v, and s, are ap-

cos. ^

proximated up to quantities of the third order, that is to say, that the

approximation in which we should have regard to the squares and pro-
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ducts of the excentricities and inclinations of the orbits would add nothing

to their values ; they have therefore all the exactness that can be desired.

This it is the more essential to observe, because the secular variations of

the orbits depend upon these same coefficients.

The several terms of the perturbations of g, v, s are comprised in the

form

sm
k . fi (n' t — n t + e' —j) + r n t + r ??,

COS. ' ^
' i»

r being a whole positive number or zero, and k being a function of the

excentricities and inclinations of the orbits of the order r, or of a superior

order. Hence we may judge of what order is a term depending upon a

given angle.

It is evident that the motion of the bodies /ji.'', ijJ", &c. make it neces-

sary to add to the preceding values of
f,

v, and s, terms analogous to

those which result from the action of (jI ; and that neglecting the square of

the perturbing force, the sums of all these terms will give the whole va-

lues of ^i V and s. This follows from the nature of the formulas (X'),

(Y), (Z'), which are linear relatively to quantities depending on the dis-

turbing force.

Lastly, we shall have the perturbations of /i', produced by the action of

(I by changing in the preceding formulas, a, n, h, 1, £, zf, p, q, and /t' into

a', n', h', Yf s', ^', p\ q', and /i and reciprocally.

THE SECULAR INEQUALITIES OF THE CELESTIAL MOTIONS.

520. The perturbing forces of elliptical motion introduce into the expres-

sions of gj J :7 9 and s of the preceding Nos. the time t free from the sym-

bols sine and cosine^ or under the form of arcs of a circle, which by in-

creasing indefinitely, must at length render the expressions defective. It

is therefore essential to make these arcs disappear, and to obtain the

functions which produce them by their developement into series. We
have already given, for this purpose, a general method, from which it re-

sults that these arcs arise from the variations of elliptic motion, which are

then functions of the time. These variations taking place very slowly

have been denominated Secular Inequalities. Their theory is one of the

most interesting subjects of the system of the world. We now proceed to

expound it to the extent which its importance demands.

12
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By what has preceded we have

pi — h sin. (n t + s) — 1 cos. (n t + «) — Sac.-y

^^^\ + ^n-C + y.Bl.nt. sin. (n t + I

[_— ~{h . C + h' . D} . n t . COS. (n t + e) + / S.J

d V
-7- = n + 2 n h sin. (n t + «) + 2 n 1 cos. (n t + «) + &c.

— /*' U C + r Dl n * t sin. (n t + s)

+ fi [h C -^ h' B] n"" t COS. (n t + i) + /*' T

;

s = q sin. (n t + — P cos. (n t + «) + &c.

— ^ a 2 a' (p — p) B ^1). n t . sin. (n t + f)

— ^ a'^ a' (q' — q) B ^^\ n t. cos. (n t + s) + /i' %;

S, T,
;)(;
being periodic functions of the time t. Consider first the expres-

sion of -1— , and compare it with the expression of y in 510. The arbi-

trary n multiplying the arc t, under the periodic symbols, in the expres-

d V
sion of ^— ; we ought then to make use of the following equations found

in No. 510,

= X' 4- ^. X" — Y;
= Y' + 6.Y" +X"~2 Z;

Let us see what these X, X', X'', Y, &c. become. By comparing the ex-

d V
pression of t— with that of y cited above, we find

X = n + 2 n h sin. (n t + + 2 n 1 cos. {n t + t) + /m' T
Y z=fj/n^{hC+ h'T>] cos. (nt+0— /n»{lC+FDl sin. (nt+0-

If we neglect the product of the partial differences of the constants by

the perturbing masses, which is allowed, since these differences are of the

order of the masses, we shall have by No. 510,

X' = (i^) U + 2 h sin. (n t + s) + 2 1 cos. (n t + 01

-f- 2 n
( Y^)

[h COS. (n t + g) — 1 sin. (n t + t)}

+ 2 n(^)sin. (n t + i) + 2 n(^-)cos. (n t + ;

X'' = 2 n(^) {h COS. (n t -j- — 1 sin. (n t + *)]
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The equation = X' + ^ X" — Y will thus become

= (^) U + 2 h sin. (n t + + 2 1 cos. (n t + i)}

+ 2n(^)sin. (n t + + 2 n(j-Jcos. (n t + e)

+ 2n {^ (^) + (^) }. Uicos.(nt+0-lsin.(nt+01

—/i'n^hC+h'Dlcos. (nt+O+A^' n* U C+FD] sin.(n t+t).

Equating separately to zero, the coefficients of like sines and cosines, we

shall have

If we integrate these equations, and if in their integrals we change S

into t, we shall have by No. 510, the values of the arbitraries in functions

of t, and we shall be able to efface the circular .arcs from the expressions

d V
of -i— and of g. But instead of this change, we can immediately change

6 into t in these differential equations. The first of the equations shows

us that n is constant, and since the arbitrary a of the expression for g de-

pends upon it, by reason of n '^ = —3 , a is likewise constant. The two

other equations do not suffice to determine h, 1, e. We shall have a new

d v
equation in observing that the expression of -^— , gives, in integrating,

yn d t for the value of the mean longitude of /i. But we have supposed

this longitude equal to n t+ £ ; we therefore have nt+E =:yndt, which

gives

! d t ^ d t
'

and as we have -:;— = 0, we have in like manner t— = 0. Thus the two
d t

' d t

arbitraries n and i are constants ; the arbitraries h, 1, will consequently be

determined by means of the differential equations,

^ = -^{\C + YT)]; (I)

ni
= '2-lhC + h'D}; (2)

13
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The consideration of the expression of -r— having enabled us to deter-

mine the values of n, a, h, 1, and s, we perceive a priori, that the differen-

tial equations between the same quantities, which result from the expres-

sion of
f,

ought to coincide with those preceding. This may easily be

shown a posterioriy by applying to this ejcpression the method of 610.

Now let us consider the expression of s. Comparmg it with that of y
citeif above, we shall have

X = q sin. (n t + s) — p cos. (n t + + z"-' %

Y =^ . a« a' B(i) (p — pO sin. (n t + «)

+ !^. a« a' Bf)
(q — q') cos. (n t + 0,

n and «, by what precedes, being constants; we shall have by No. 510,

X' = {^) sin. (n t + _ (if) cos. (n t + s)

X" = 0.

The equation = X' + tf X'' — Y hence becomes

° = (d^) ''"• (" * + '^ "" dl ''*''• ("* + *)

—^ a» a' B(i) (p — p') sin. (n t +

—^ a« a' B^i) (q — q') cos. (n t + ;

whence we derive, by comparing the coefficients of the like sines and co-

sines, and changing 6 into t, in order to obtain directly p and q in

functions of t,

^ = -^.a«a'Bn).(q-qO; (3)

^^ = ^.a«a'B(Mp-pO; (4)

When we shall have determined p and q by these equations, we shall

substitute them in the preceding expression of s, effacing the terms which

contain circular arcs, and we shall have

s = q sin. (n t + e) — p cos. (n t + g) + a^' %.

r\ n
521. The equation ^ = 0, found above, is one of great importance

in the theory of the system of the world, inasmuch as it shows that the

mean motions of the celestial bodies and the major-axes of their orbits are

unalterable. But this equation is approximate to quantities of the order
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/*' h inclusively. If quantities of the order iil h *, and following orders,

d V
produce in t— , a term of the form 2 k t, k being a function of the ele-

ments of the orbits of^ and (jI\ there will thence result in the expression of

V, the term k t^, which by altering the longitude of /i, proportionally to

the time, must at length become extremely sensible. We shall then no

longer have

dt - "'

6ut instead of this equation we shall have by the preceding No.

^" = 2k;
d t

'

It is therefore very important to know whether there are terms of the

form k . t ^ in the expression of v. We now demonstrate, that if

"we retain only thejirstpcmer ofthe perturbing masses, howeverJar maypro-

ceed the approximation, relatively to the powers of the excentricities and

inclinations of the orbits, the expression v mil not contain such terms.

For this object we will resume the formula (X) of No. 513,

acos.v/ndt^sin.v -| 2fdR+^\-^— j \ -asin.v/hdt.gcos.v ! 2/6?R+gf-T— ) r

3 3= i— ^
^ m V l— Q-

Let us consider that part of 5 g which contains the terms multiplied by t \

or for the greater generality, the terms which being multiplied by the sine

or cosine of an angle a t + /3, in which a is very small, have at the same

time a^ for a divisor. It is clear that in supposing a = 0, there will re-

sult a term multiplied by t ^, so that the second case shall include the first.

The terms which have the divisor a \ can evidently only result from a

double integration ; they can only therefore be produced by that part of

h
J which contains the double integral signyi Examine first the term

2 a COS. vyn d t (^ sin. \/d R)

m V (1 —e^)
•

If we fix the origin of the angle v at the perihelion, we have

a(l-e»)
1 + e cos. v

'

and consequently

a(l— e^)— gcos. V = —^ ?

;

eg

whence we derive by differentiating,

p ^ d V . sm. V = —^ ' .dp;
e

14
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but we have,

g* d V = d t V m a (1 — e'') =a*. n d t V 1 — c*;

we shall, therefore, have

a n d t ^ sin. v _ g d
g

The term

2 a COS. vy n d t . {(; sin. vyrf Rj

m V 1 — e''

will therefore become

^f^/(f d g/rf R), orH^ Jp^rf R -/g«. rf R^.

It is evident, this last function, no longer containing double integrals,

there cannot result from it any term having the divisor a \

Now let us consider the term

2 a sin. vyn d t ff cos. v/d R]

ra v^ 1 — e*

of the expression o?d g. Substituting for cos. v, its preceding value in ^,

this term becomes

2 asm.v/n d t. {g — &{l —e^)] .fdR
me V 1 — e*

We have

g = a {l+ie' + ex'h

^ being an infinite series of cosines of the angle n t + i, and of its multi-

ples; we shall therefore have

JjlAl
Jg _ a (1 —e')]/d R = a/n d t {i e + x']fd R.

Call ^' the integral y';i/ n d t ; we shall have

a/n d t. {Ie + X']fdn= ^ a e/n d t/d R + a%"/rf R—^/z'' • ^R-

These two last terms not containing a double integral sign, there can-

not thence result any term having a » for a divisor; reckoning only terms

of this kind, we shall have

___ 2 a sin, v/n d t fg cos , yfd R] _ 3 a'e sin, v/n dtfdR
m V 1 — e*

~
m V 1 — e»

^l±.^-^fudt/dR;
n d t m"^ -^

(f)+(„-dt)-^Vndt./rfR;

and the radius j will become

dg \ 3 a
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—i^j being the expressions of ^ and of——- , relative to the el-

h'ptic motion. Thus, to estimate in the expression of the radius-vector,

that part of the perturbations, which is divided by a ^, it is sufficient to

3 a
augment by the quantity— . xyndt.yfiR, the mean longitude

n t + 'a
of this expression relative to the elliptic motion.

Let us see how we ought to estimate this part of the perturbations in

the expression of the longitude v. The formula (Y) of No. 516 gives by

substituting — . — - .J'n d tfd R for 5 g and retaining only the terms

divided by a %

f2gdY+dg' 1

5 V = l-^IiililLJl-L. ?^/n d t/^ R;
V 1 — e

^~ m

But we have by what precedes

1 ae.ndt.sin. V ,
i * ./-i o

d e = ==^= ; p^dv = a^ndt v 1 — e-;
^ V 1 — e^ '

^

whence it is easy to obtain, by substituting for cos. v its preceding value

in^,

2gd«g + dg«
a^n^d t^ "^ _ d V

.

V 1 — e* " d t' *

in estimating therefore only that part of the perturbations, which has the

divisor a', the longitude v will become

(v) andf—T-^ being the parts of v and —-p , relative to the elliptic mo-

tion. Thus, in order to estimate that part of the perturbations in the ex-

pression of the longitude of /u-, we ought to follow the same rule which we

have given with regard to the same in the expression of the radius-vector,

that is to say, we must augment in the elliptic expression of tlie true

3 a
longitude, the mean longitude n t -j- e by the quantity—fn d tj'd R.

The constant part of the expression of (—t— ^ developed into a series

of cosines of the angle n t + £ and of its multiples, being reduced (see

488) to unity, there thence results, in the expression of the longi-
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tude, the term — /ndt/t/R. U d R contain a constant term

k ^'
. n c] t, this term will produce in the expression of the longitude v,

3 a /i'
the following one, -^ . k n * 1 1 To ascertain the existence of such

terms in this expression, we must therefore find whether d R contains a

constant term.

When the orbits are but little excentric and little inclined to one ano-

ther, we have seen, No. 518, that R can always be developed into an in-

finite series of sines and cosines of angles increasing proportionally to the

time. We can represent them generally by the term

k fi' . COS. Ji' n' t -f- i n t -I- A},

i and V being whole positive or negative numbers or zero. The differen-

tial of this term, taken solely relatively to the mean motion of fi, is -

— i k . /M,' . n d t . sin. {i' n' t -f i n t H- A^;

this cannot be constant unless we have = i' n' -H i n, which supposes

the mean motions of the bodies /* and ft' to be parts of one another ; and

since that does not take place in the solar system, we ought thence to con-

clude that the value of c? R does not contain constant terms, and that in

considering only the first power of the perturbing masses, the mean mo-

tions of the heavenly bodies, are uniform, or which comes to the same thing,

T— = 0. The value of a being connected to n by means of the equation

n * = -^ , it thence results that if we neglect the periodical quantrties, the
a

major-axes of the orbits are constant.

If the mean motions of the bodies /a and fi/, without being exactly com-

mensurable, approach, however, very nearly to that condition, there will

exist in the theory of their motions, inequalities of a long period, and

which, by reason of the smallness of the divisor a,\ will become very sen-

sible. We shall see hereafter this is the case with regard to Jupiter and

Saturn. The preceding analysis will give, in a very simple manner, that

part of the perturbations which depend upon this divisor. It hence re-

sults that in this case it is sufficient to vary the mean longitude n t + «

3 a
oryn d t by the quantity —/n d t/d R; or, which is the same, to aug-

3 a n
ment n in the integraiyn d t by the quantity /d R; but consider-
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ing the orbit of /* as a variable ellipse, we have n * = —3 ; the preceding

variation of n introduces, therefore, in the semi-axis-major a of the orbit,

. . 2aV^R
the variation ,m

d V
If we carry the approximation of the value -r— , to quantities of the

order of the squares of the perturbing masses, we shall find terms propor-

tional to the time; but considering attentively the differential equations of

the motion of the bodies /<*, /«,', &c. we shall easily perceive that these terms

are at the same time of the order of the squares and products of the ex-

centricities and inclinations of the orbits. Since, however, every thing

which affects the mean motion, may at length become very sensible, we

shall now notice these terms, and perceive that they produce the secular

equations observed in the motion of the moon.

522. Let us resume the equations (1) and (2) of No. 520, and suppose

(ti'.n.C f^;-^ /.n.D
(0,1) =_!:__-; |0,1

they will become

dh^ = (o,i)]-iMi';

dl^^=-(0,l)h + |0,l|h\

The expression of (0, 1) and of |0, 1] may be very simply determined in

this way. Substituting, instead of C and D, their values determined in

No. 517, we shall have

(0,l) = ~^{a«(^) + xa3(d-^)};

nm /^'n/ Am 2/dAWx ,(^1A!^\\

We have by No. 516,

db^o5 d^b^")

,/dAWx
. ,

a/d'^A^oK 2 i j^ 3 t_.
^ (-dT-) + ^^'^ (-dT^)=-" -dT-^'^ --d^'

db^») d^b^o)

and we shall easily obtain, by the same No. -^ and -g-^ in functions

of b^") and b^^^; and these quantities are given in linear functions of b^*^hi -a
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and of b^'V this being done, we shall find

Sa'b^i)

^ ^ da ; + ^^ V-di^J -2(1 — «')^'

wherefore

3/tt'.n.a«.b"?

(0,1)= ^
4 (1 _a^)2 •

Let

(a* — 2 a a' cos. 6 + a'^) «= (a, a') + (a, a')' cos. ^+(a, a')'' cos. 2 H&c.
we shall have by No. 516.

(a, a') = i a', b W ; (a, a')' = a', b (D, &c.

We shall, therefore, have

. _ 3/^^ na«a^ (a, aQ^
^"' -^^

-
4(a'2_a^)«

•

Next we have, by 516,

db») d'b(')

2

Substituting for b ^^'> and its differences, their values in b ^°) and b ^'), we
h

'

shall find the preceding function equal to

1 .
~i ~2 j

(1-a^)^

therefore

Sa.^'n r(l + a«)bW+
I
a.b(0)\

•i -.^

IM = - 2(i-«r
or

_ 3 /i', a n|(a'+ a^') (a> a')^ + a a^ (a, a')}

2 {a'^ — a^)IM
We shall, therefore, thus obtain very simple expressions of (0, 1) and

of [O, 1[, and it is easy to perceive from the values in the series of b ^°) and

of b^^), given in tlie No. 516, that these expressions are positive, if n is

positive, and negative if n is negative.

Call (0, 2) and 10, 2|, what (0, 1) and jO, Ij become, when we change a'
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and /i' into a" and /»''. In like manner let (0, 3), and (0, 3) be what the

same quantities become, when we change a' and [if into a"' and iiJ" ; and

so on. Moreover let h", 1" ; h'"'', Y'\ &c. denote the values of h and 1

relative to the bodies yl', (jf", &c. Then, in virtue of the united actions of

the different bodies /«,', fi'\ /Lt'", &c. upon ix, we shall have

^ ={(0, 1) + (0, 2) + (0, 3) + &C.11 - W}\.\ — M.r'- &c.

;

dl
Y^

= —[(0, 1) + (0,2)+ (0, 3) + &C.1 h + [OJll.h' + ^|. h"+&c.

d h' d 1' d h'' d \"
It is evident that -j— , , -

; -j-— , -^— ; &c. will be determined bydtdtdtdt •'

expressions similar to those of-r— and of -t— ; and they are easily obtam-

ed by changing successively what is relative to /* into that which relates

to /a', (//\ &c. and reciprocally. Let therefore

(1,0),|170]; (1,2), [ITU; &c.

be what

(0,1), JOH]; (0,2),j0g; &c.

become, when we change that which is relative to «, into what is relative

to At' and reciprocally. Let moreover

(2,0), g0[; (2,1), 1511; &c.

be what

(0,2), joTl!; (0, l),j^i; &c.

become, when we change what is relative to im into what is relative to fjf'

and reciprocally; and so on. The preceding differential equations re-

ferred successively to the bodies ij^, /«,', {j/', &c. will give for determining

h, 1, h', r, V, 1", &c. the following system of equations,

^ = HO, 1) + (0, 2) + &C.1 1 - IM- 1' - Ml'- &c.

dl
^^ = _J(0, 1)+ (0,2) + &c.}h+ [0,l|h' + |0,2|V^+&c.

dh'^ = J(l, 0) + (1, 2) + &c.]l' — [1^. 1 — |1,2 F —

&

&c.

dl'~ = —^1, 0) + (1, 2) + &c.?h'+ |V0|. h + jl^|.li"+ &c.

dh''

Y^ = U2, 0) + (2, 1) + &c.] \" — \2^\. 1 — IM- 1' — &c-

dV
jj = —{{2, 0) + (2, 1) + &c.l.h''+ |2,0lh-H2, l|h'+&c.

&C

(A)
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The quantities (0, 1) and (1, 0), |0, 1[ and [1, 0| have remarkable rela-

tions, which facilitate the operations, and will be useful hereafter. By

what precedes we have

m 1\ - — 3^\n a».a^(a,aO^
^"'^^~

4.(a'« — a^)^ •

If in this expression of (0, 1) we change ij! into jOt, n into n', a into a'

and reciprocally, we shall have the expression of (1, 0), which will con-

sequently be

___
3^.n-a^^a (a/ a/ ^

biit we have (a, a')' = (a', a)', since both these quantities result from th

developement of the function (a * — 2 a a' cos ^ -}- a' *) ^ into a series or-

dered according to the cosine of ^ and of its multiples. We shall, there-

fore, have

(0, 1). fi. n' a' = (1, 0). (iJ. n a.

But, neglecting the masses ;», /«-', &c. in comparison ,with M, we have

a' a'^

Therefore

(0, 1)/A ^/a = (1,0)/*' Va';
an equation from which we easily derive (1, 0) when (0, 1) is determined.

In the same manner we shall find.

0, 1| At V a = |1^ lil V a'.

These two equations will also subsist in the case where n and n' have

different signs ; that is to say, if the two bodies /a, /a' circulated in different

directions ; but then we must give the sign of n to the radical V a, and

the sign of n' to the radical V af.

From the two preceding equations evidently result these

(0, 2) ((* V a = (2, 0) //' V a"; (og /* V a = jaTo]. iif' V a"; &c.

(1, 2) /*' V a'= (2, 1) II." V Q."; T72| ft' V a! = [271 1. /*'' V a"', &c.

523. To integrate the equations (A) of the preceding No., we shall

make
h = N. sin. (g t + /3) ; 1 = N. cos. (g t + /S)

;

h' = N'. sin. (g t + /3) ; r = N' cos. (g t + /3) ;

'

&c.

Then substituting these values in the equations (A), we shall have

N g = {(0, 1) + (0, 2) + &C.1N — 0, 1 . N' — |0^1 N'' — &c.

N' g={{h 0) + (1, 2) + &c.]N' — ig. N — 12^1 N" — &c.
J^

; (B)

N"g = [(2, 0) + (2, 1) + &C.JN''— [gOl- N — gril N' — &c.if
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If we suppose the number of the bodies /a, (j!^ //', &c. equal to i ; these

equations will be in number i, and eliminating from them the constants

N, N', &c., we shall have a final equation in g, of the degree i, which we
easily obtain as follows

:

Let p be the function

N^^ Vafg— (0,1) — (0,2) — &c.}

+ N' >' -/ a'Jg — (1, 0) — (1, 2) — &c.}

+ &c.

+ 2 N ^ V a JIOTT] N' + 103 N" + &c.}

+ 2 N>' >/ a {|Tr2[ N^' + |I73| N'''+ &c.|

+ 2 N'V V a" Jig N'"+ &C.J

+ &c.

The equations (B) are reducible from the relations given in the pre-

ceding No. to these

Considering therefore, N, N', N", &c. as so many variables, <p will be

a maximum. Moreover, <p being a homogeneous function of these varia-

bles, of the second dimension ; we have

we have, therefore, p = 0, in virtue of the preceding equations.

Thus we can determine the maximum of the function f . We shall first

differentiate this function relatively to N, and then substitute in p, for N,

its value derived from the equation (-r-^) = 0, a value which will be a

linear function of the quantities N', N'', &c. In this manner we shall

have a rational function whole and homogeneous of the second dimension

in terms of N', N'', &c. : let p ^^^ be this function. We shall differentiate

<p
^') relatively to N', and we shall substitute in p ^^) for N' its value derived

from the equation i , \^, \ = : we shall have a homogeneous function

of the second dimension in N'', N% &c. : let <p ^^ be this function. Con-

tinuing thus, we shall arrive at a function p (> — ^^ of the second dimension,

in N ^i~ ') and which will consequently be of the form (N ^'- ^^)-. k, k being

a function of g and constants. If we equal to zero, the differential of

p^'~'' taken relatively to N^'-^^, we shall have k = 0; which will give

an equation in g of the degree i, and whose different roots will give as

many different systems for the indeterminates N, N', N", &c. : the inde-
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terminate N^»~') will be the arbitrary of each system; and we shall im-

mediately obtain, the relation of the other indeterminates N, N', &c. of

the same system, to this one, by means of the preceding equations taken

in an inverse order, viz.,

/df»-iK ^ /d^«-3)x ^ g

(d-R-^) = ^' (dW^) = 0' &<^-

Let g, gi> g2> &c- be the i roots of the equation in g : let N, N', N'', &c.

be the system of indeterminates, relative to the rootg: letN^, N/, N/', &c.

be the system of indeterminates relative to the root gi, and so on : by the

known theory of linear differential equations, we shall have

h = N sin. (g t + /3) + Ni sin. (gi t + /S^) + Ng (ga t + (3,) + &c.

;

h' = N' sin. (g t + /3) + Ni' sm. (gi t + ^i) + Ng (gs t + (S.^) + &c.

;

W'zz N"sin. (g t + /3) + Ni^'sin. (gi t + ^i) + N2''(g2 1 + /3,) + &c.

;

&c.

ft jSi, iSg, &c. being arbitrary constants. Changing in these values of

h, h', h", &c. the sines into cosines ; we shall have the values of 1, 1', 1'', &c.

These different values contain twice as many arbitraries as there are roots

g, gi, g2, &c. ; for each system of indeterminates contains an arbitrary,

and moreover, it has i arbitraries ^, jSj, /Sg, &c. ; these values are conse-

quently the complete integrals of the equations (A) of the preceding

No.

It is necessary, however, to determine only the constants N, Nj, &c.

;

N,' N/, &c. ; iS, jSi, &c. Observations will not give immediately the con-

stants, but they make known at a given epoch, the excentricities e, e', &c.

of the orbits, and the longitudes «, w', &c. of their perihelions, and conse-

quently, the values of h, h', &c., 1, 1', &c. : we shall thus derive the values

of the preceding constants. For that purpose, we shall observe that if

we multiply the first, third, fifth, &c. of the differential equations (A) of

the preceding No., respectively by N. At. V a, N'. /u/. V a', &c. ; we
shall have in virtue of equations (B), and the relations found in the pre-

ceding No. between (0, 1) and (1, 0), (0, 2), and (2, 0), &c.

"KT d h , .
- -, d h' , , . XT// d h'' „ , ,,N . -J— /x V a + N . -5— jx' V a + N". -5— fi" V a" + &c.at at at

= g {N. 1 . /i. V a + N'. r. /*'. V a' + N". 1". /c.". V a" + &c.|

If we substitute in this equation for h, h', &c. 1, 1', &c their preceding

values ; we shall have by comparing the coefficients of the same cosines

= N . Ni . A6 V a + N'. Ni'. /j/ V a' + N". N/'. /*"• V a" + &c. ;

= N. N2. /i V a + N'. Ng. /*' V &' + N". Ng". ^t*". V a" + &c.



Book L] NEWTON'S PRINCIPIA. 145

Again, if we multiply the preceding values of h, h', &c. respectively by

N./i. V a, N'. /i'. V a', &c.

we shall have, in virtue of these last equations,

N.fji.h.V a+W fj/.h'.V a'+ N". fi" W. V a" + &c.

= {N2. ^ . V a + N'^ fi\ V a' + W\ it!'. V a" + &c.} sin (g t + /3)

In like manner, we have

N . /^ 1 . V a + N'. /a' F. V a' + N'^ /' \". V a!' + &c.

= {N^ /i . V a + N' 2. /. V a' + N''^. fj.". V a." + &c.} cos. (g t + jS).

By fixing the origin of the time t at the epoch for which the values of

^> J> l^'j I'j &C' are supposed known ; the two preceding equations give

R - N . h /x V a + N^ h^ im'. V a'-k- W. h" im". V a" + &c.
an. j6 - N. 1 ^. \/ a + NMV. V a' + N". \" iil'. V a" + &c.

*

This expression of tan. ^ contains no indeterminate ; for although the

constants N, N', N'^, &c. depend upon the indeterminate N ^' ~ '^\ yet, as

their relations to this indeterminate are known by what precedes, it will

disappear from the expression of tan. |S. Having thus determined )8, we
shall have N ^' ~ ^\ by means of one of the two equations which give tan. /S

;

and we thence obtain the system of indeterminates, N, N', N", &c. rela-

tive to the root g. Changing, in the preceding expressions, this root into

gi> g-25 gsj &c. we shall have the values of the arbitrages relative to each

of these roots.

If we substitute these values in the expressions of h, 1, h', 1', &c. ; we

hence derive the values of the excentricities e, e', &c. of the orbits, and

the longitudes of their perihelion s, by means of the equations

e'^ = h^ + r-; e'- = h'2 + 1'^; &c.

h , , h'
tan, w =

-J-
; tan. w = -p- ; &c.

we shall thus have

e^ = N=^ + Ni^ + Na'^ + &c. + 2 N N; cos. {(gi — g) t + ^, — /31

+ 2 N N2 cos. {{g^g) t + /3,-8) } + 2 Ni N2 cos. Ug2-gi) t+ZS^-^i} +&c.

This quantity is always less than (N + Ni + N2 + &c.) \ when the

roots g, gi, &c. are all real and unequal, by taking positively the quanti-

ties N, Ni, &c. In like manner, we shall have

tan u = N sin, (g t + /g) + Ni sin, (gi t + ^Q + Ng sin, (gg t + ^2) + &c.

N cos. (g t + ^) + Ni cos. (gi t + /3i) + N2 cos. (ga t + /S^) + &c.

whence it is easy to get,

tan (^-cr^-B\- ^1 s'"- Ugi-g) t + ^1-^1 + N2 sin. Ug.-^) t + /3.-/31 + &c.
« -t ^'^-^^-N+NiCos.{(gi-g)t+^,-/3| + N2Cos.Ug2-g)t+^^/3R&c

Vol. ir. K



146 A COMMENTARY ON [Sect. XL

Whilst the sum Ni + Ng + &c. of the coefficients of the cosines of

the denominator, all taken positively, is less than N, tan*, (w — g t — |3)

can never become infinite ; the angle w — g t — /3 can never reach the

quarter of the circumference ; so that in this case the true mean motion

of the perihelion is equal to g t.

524. From what has been shown it follows, that the excentricities of

the orbits and the positions of their axis-majors, are subject to considera-

ble variations, which at length change the nature of the orbits, and whose

periods depending on the roots g, gi, g2, &c., embrace with regard to the

planets, a great number of ages. We may thus consider the excentrici-

ties as variably elliptic, and the motions of the perihelions as not uniform.

These variations are very sensible in the satellites of Jupiter, and we shall

see hereafter, that they explain the singular inequalities, observed in the

motion of the third satellite.

But it is of importance to examine whether the variations of the excen-

tricities have limits, and whether the orbits are constantly almost circular.

We know that if the roots of the equation in g are all real and unequal,

the excentricity e of the orbit of ii is always less than the sum N + Ni

+ N2 + &c. of the coefficients of the sines of the expression of h taken

positively ; and since the coefficients are supposed very small, the value

of e will always be inconsiderable. By taking notice, therefore, of the

secular variations only, we see that the orbits of the bodies /x, //, ij/', &c.

will only flatten more or less in departing a little from the circular form ;

but the positions of their axis-majors will undergo considerable variations.

These axes will be constantly of the same length, and the mean motions

which depend upon them will always be uniform, as we have seen in No.

521. The preceding results, founded upon the smallness of the excentricity

of the orbits, will subsist without ceasing, and will extend to all ages past

and future ; so that we may affirm that at any time, the orbits of the

planets and satellites have never been nor ever will be very excentric, at

least whilst we only consider their mutual actions. But it would not be

the same if any of the roots g, gi, g2, &c. were equal or imaginary : the

sines and cosines of the expressions of h, 1, h', F, &c. corresponding to

these roots, would then change into circular arcs or exponentials, and

since these quantities increase indefinitely with the time, the orbits would

at length become very excentric ; the stability of the planetary system

would then be destroyed, and the results found above would cease to

take place. It is therefore highly important to show that g, gu gg> &c.

are all real and unequal. This we will now demonstrate in a very simple
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manner, for the case of nature, in which the bodies ^tj /^'j i^"y &c. of the

system, all circulate in the same direction.

Let us resume the equations (A) of No. 528. If we multiply the first

by /i . V a . h ; the second, by /ti . V a . 1 ; the third by (jf. V a!, h! ; the

fourth by [i'. V a'. F, &c. and afterwards add the results together ; the

coefficients of h 1, h' Y, h" 1", &c. will be nothing in this sum, the coeffi-

cients of h' 1 — h 1' will be joTTj. /* . V a— \\^. ijf. V a', and this will

be nothing in virtue of the equation |0, 1|. /x . V a = [l, 0[ . ijf. V a' found

in No. 522. The coefficients of \x"'U- h 1", h" 1' — h' 1", &c. will be

nothing for the same reason ; the sum of the equations (A) thus prepared

will therefore be reduced to

hdh + ldl , .
hMh^ + Fdr ,^.,0,, _n.

j^ ./i.Va+ g-^
./a'. Va'+ &G. = 0;

and consequently to

= e d e . /i . V a + e' d e'. /. V a'+ &c.

Integrating this equation and observing that {No. 521) the semi-axis-

majors are constant, we shall have

e *. (i V a + e' 2. /i'. -v^ a' + e." ". ij!'. V s!'+ &c. = constant
; (a)

The bodies /i, fi/, ijf\ &c. however being supposed to circulate in the

same direction, the radicals V' a, V a', V a'', &c. ought to be taken po-

sitively in the preceding equation, as we have seen in No. 522; all the

terms of the first member of this equation are therefore positive, and con-

sequently, each of them is less than the constant of the second member.

But by supposing at any epoch the eccentricities to be very small, this

constant will be very small ; each of the terms of the equation will, there-

fore, remain always very small and cannot increase indefinitely ; the orbits

will always be very nearly circular.

The case which we have thus examined, is that of the planets and

satellites of the solar system ; since all these bodies circulate in the same

direction, and at the present epoch their orbits have little excentricity.

That no doubt may exist as to a result so important, we shall observe

that if the equation which determines g, contained imaginary roots, some

of the sines and cosines of the expressions of h, 1, h', F, &c. would trans-

form into exponentials ; thus the expression of h would contain a finite

number of terms of the form P . c^', c being the number of which the

hyperbolic logarithm is unity, and P being a real quantity, because h or

e sin. ar is a real quantity. Let

Q . c f
S P'. c f

S Q'. c f
S P". c f ^ &c.

be the corresponding terms of 1, h', T, h", &c. ; Q, P', Q', P'', &c. being
K2
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also real quantities : the expression of e- will contain the term (P*^ +Q')
c '

f
' ; the expression of e' ^ will contain the term (P"^ + Q' ^) c ^ ^ % and

so on ; the first member of the equation (u) will therefore contain the

term

J(P-+Q')/*. Va+(F«+Q' *)/»''/ a'+(F'«+Q" «)/.'' >/a"+&c.le2f«.

If, therefore, we suppose c ^ ^ to be the greatest of the exponentials

which contain h, 1, h', V, &c. that is to say, that in which f is the most

considerable, c*^^ will be the greatest of the exponentials which contain

the first member of the preceding equation : the preceding term cannot

therefore be destroyed by any other term of this first member ; so tliat for

this member to be reduced to a constant, the coefficient of c^^^ must be

nothing, which gives

= (P«+Q«) fi V a+(P'H Q'2) f,W a' + (P''^ ^ Qf'')/^'W a" + &c.

When V &} V a', V a", &c. have the same sign, or which is tantamount,

when the bodies fi, (if, /x'', &c. circulate in the same direction, this equa-

tion is impossible, provided we do not suppose P = 0, Q = 0, P' = 0, &c.;

whence it follows that the quantities h, 1, h' 1', &c. do not contain expo-

nentials, and that the equation in g does not contain imaginary roots.

If this equation had equal roots, the expressions of h, 1, h', \\ &c. would

contain as we know, circular arcs and in the expression of h, we should

have a finite number of terms of the form P t ^ Let Q t % P' t , Q' t % &c.

be the corresponding terms of 1, h^ F, &c. P, Q, P', Q', &c. being real

quantities; the first member of the equation (u) will contain the term

{(PHQ')/^ v'a+(FHQ'')/«'Va'+ (P''^ ^ Q"^) /i" V a'' + &c.}.t^^

Iff is the highest power of t, contained by the values of h, 1, h' F, &c.

;

t*' will be the highest power of t contained in the first member of the

equation (u) ; thus, that this member may be reduced to a constant, we

must have

= (P^+Q'^)/* \/a + (F2+ Q'-)/ Va' + &c.
.

which gives

P = 0, Q = 0, P' = 0, Q' = 0, &c.

The expressions of h, 1, h', 1', &c. contain therefore, neither exponen-

tials nor circular arcs, and consequently all the roots of the equation in g
are real and unequal.

The system of the orbits of a^, A^'j t^"^ &c. is therefore perfectly stable

relatively to their excentricities ; these orbits merely oscillate about a

mean state of ellipticity, which they depart from but little by preserving

the same major-axis : their excentricities are always subject to this condi-
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tion, viz. that the sum of their squares multiplied respectively hy the masses

of the bodies and by the square roots of the major-axes is always the same.

525. When we shall have determined, by what precedes, the values of

e and of « ; we shall substitute in all the terms of the expressions of j^

and -T- , given in the preceding Nos., effacing the terms which contain

the time t without the symbols sine and cosine. The elliptic part of these

expressions will be the same as in the case of an orbit not disturbed, with

this only difference, that the excentricity and the position of the perihe-

lion are variable ; but the periods of these variations being very long, by

reason of the smallness of the masses (J', (j^', y^''^ &c. relatively to M ; we

may suppose these variations proportional to the time, during a great

interval, which, for the planets, may extend to many ages before and

after the given epoch.

It is useful, for astronomical purposes, to obtain under this form, the

secular variations of tiie excentricities and perihelions of the orbits : we

may easily get them from the preceding formulae. In fact, the equation

e ^ = h * + P, gives ede = hdh+ Idl; but in considering only the

action of /a', we have by No. 522,

dh^= (0,1)1 -IMF;

^^=-(0, i)h+Iori[-h';

wherefore

ede = 10, 11. {hM - h W;
dt

but we have liM — hi' = e e' sin. (ar' — w) ; we, therefore, have

de~ = |(M!. e'sin. K— -);

thus, with regard to the reciprocal action of the different bodies it!^ /*", &c.

we shall have

~ = [M|. e' sin. (^'— r.) + ig. q" sin. {^' — ^) + &c.

~ = [1^ e sin. (^ — r^') + \h2_ e" sin. {^" — z,') + &c.

^ = gg e sin. {^ — -r") + gT) e' sin. (^' — ^') + &c.

&c.
K3
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The equation tan. t* = y , gives by differentiating

eMt» = ldh — hdl.

With respect only to the action of /*', by substituting for d h and d 1

their values, we shall have

e'^d
-g^ = (0, 1) (h= + P) - IM . {h h' + 1 V];

which gives

^= (0,l)_|oril. I^COS.^-^);

we shall, therefore, have, through the reciprocal actions of the bodies

Atj /j /">"» &c.

g-^ = (0,1)+ (0,2)+&C.— O^j. —COS.(«r'—«r)_|0r2l.-^COS.(.r''—»)_&€.

1 e"

^j- =(l,0)+ (l,2)+&c.—|l,0|.^.cos.(^-.V)—[172;-- cos.(z.''—0-&e

dz^' _.v ..»,,.. iTr^e
jj. =(2,0)+(2,l)+&c.—|2rolg^cos.(^—^0—IM-^ ccs.(^_0-&c.

&c.

Ifwe multiply these values of-,— , -y—- , &c. y— , -r—- , &c. by the time t

;

we shall have the differential expressions of the secular variations of the

excentricities and of the perihelions, and these expressions which are only

rigorous whilst t is indefinitely small, will however serve for a long in-

terval relatively to the planets. Their comparison with precise and distant

observations, affords the most exact mode of determining the masses of the

planets which have no satellites. For any time t we have the excentricity

e, equal to

de . t^ d^e , „

" + '-di + T:^-dT^ + ^"-

e, -J— , T

—

I
, &c being relative to the origin of the time t or to the given

d e
epoch. The preceding value of -r—• will give, by differentiating it^ and

d* e d' e
observing that a, a', &c. are constant, the values of -7—5 , ^-r-3 , &c. ; we

can, therefore, thus continue as far as we wish, the preceding series, and

by the same process, the series also relative to v : but relatively to the

planets, it will be sufl&cient, in comparing the most ancient observations
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which have come down to us, to take into account the square of the time,

in the expressions of the series of e, e', &c. w, »', &c.

526. We will now consider the equations relative to the position of the

orbits. For this purpose let us resume the equations (3) and (4) of

No. 520,

^P = -^.a«a'B<...(q-q')i

^ = !^.a<a'B<.).(p-p').

By No. 616, we have

and by the same No.,

3b(i)

b (1) — i •

We shall therefore have
3/i'.n. a^b")

— a* a' B (1) = — ^t

.

4 4 (1 — a'-)^

The second member of this equation is what we have denoted by (0, 1)

in 522 ; we shall hence have

i| = (0, 1) (q' - q) ;

i3 = (o,l)(p_pO;

Hence, it is easy to conclude that the values of q, p, q', p', &c. will be

determined by the following system of differential equations :

^ = m 1) + (0, 2) + &c.} . p - (0, 1) p'— (0, 2) p" -^ &c.

1-^ =— 1(0, l)+ (0, 2) +&C.I . q + (0, 1) q' + (0, 2) q'' + &c.

dq'_
-^ = Ul, 0) + (1, 2) + Sec] . p'- (1, 0) p — (1, 2) p''— &c.

^' = — J(l, 0)+ (I, 2) + &c.} . q' + (1, 0) q + (1, 2) q" + &c.

ii' = 1(2,0) + (2, 1) + &c.} .
p''— (2, 0) p— (2, 1) p'— &c.

^' = — {{2, 0)+ (2, l)+ &c.] . q" +(2, 0) q + (2, 1) q' + &C.

&c.
K4

; (C)
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This system of equations is similar to that of the equations (A) of No.

522: it would entirely coincide with it, if in the equations of (A) M'e were

to change h, 1, h', 1', &c. into q, p, q', p', &c. and if we were to suppose

IM = (0,1);

|1,0| = (1,0)?

&c.

Hence, the process which we have used in No. 528 to integrate the

equations (A) applies also to the equations (C). We shall therefore

suppose

q =N GOS.(gt+/3)+ NiCos. (g,t+/3,)+ N2 cos. (g2t+/5,)+&c.

p =N sin. (gt+/3)+ Ni sin. (g, t+/3i)-f Ng sin. (g2t+/32)+&c.

q'rrN'cos. (gt +/3)+ N/ cos, (gi t+/3,)+N2' cos. (g2 t+^2)+&c.

p'=N'sin. (gt+^)+N/sin. (git+ft)+ N2'sin. (g2t+/32)+&c.

&c.

and by No. 523, we shall have an equation in g of the degree i, and whose

different roots will be g, gi, ga, &c. It is easy to perceive that one of

these roots is nothing ; for it is clear we satisfy the equations (C) by sup-

posing p, p', p'', &c. equal and constant, as also q, q', q", &c. This

requires one of the roots of the equation in g to be zero, and we can

thence depress the equation to the degree i — 1. The arbitraries

N, Ni, N', &c. /9, iSj, &c. will be determined by the method exposed in

No. 523. Finally, we shall find by the process employed in No. 524.

const. =: {p~ + q-) fi V a + (p'^ + q'") fJi'' V a' + &c.

Whence we conclude, as in the No. cited, that the expressions of p, q,

p', q', &c. contain neither circular arcs nor exponentials, when the bodies

fly /j/, /i", &c. circulate in the same direction : and that therefore the equa-

tion in g has all its roots real and unequal.

We may obtain two other integrals of the equations (C). In fact, if

we multiply the first of these equations by At. V a, the third by // V a',

the fifth by //' V a''', &c. we shall have, because of the relations found in

No. 522,

= ^ /. V a -H ^[ ^' V a' + &c.;

which by integration gives

constant =z q /m V a + q' fi' V a' + Sec. . . . ^. (1)

In the same manner we find

constant z= p fj> V a + ])' fi' V a' + Sic (2)

Call ^ the inclinatior of the orbit of /u- to the fixed plane, and 6 the Ion-
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gitude of the ascending node of this orbit upon the same plane ; the lati-

tude of /A will be very nearly tan.
<f>

sin. (n t + s — 6): Comparing this

value with q sin. (n t + — p cos. (n t + i), we shall have

p = tan. f sin. ^ ; q = tan. f cos. 6
;

whence we obtain

tan. p = V (p« + q") ; tan. ^ = £-;

We shall, therefore, have the inclination of the orbit of /tt, and tne po-

sition of its node, by means of the values of p and q. By marking suc-

cessively with one dash, two dashes, &c. relatively to /O-', («.", &c. the values

of tan. <p, tan. ^, we shall have the inclinations of the orbits of [jf it!\ &c.

and the positions of their nodes by means of p', q', p", q'^, &c.

The quantity V p ^ + q ^ is less than the sum N + Ni -f N2 + &c. of

the coefficients of the sines in the expression of q ; thus, the coefficients

being very small since the orbit is supposed but little inclined to the fixed

plane, its inclination will always be inconsiderable ; whence it follows, that

the system of orbits is also stable, relatively to their inclinations as also to

their excentricities. We may therefore consider the inclinations of the

orbits, as variable quantities comprised within determinate limits, and the

motion of the nodes as not unifonn. These variations are very sensible

in the satellites of Jupiter, and we shall see hereafter, that they explain

the singular phenomena observed in the inclination of the orbit of the

fourth sateBite.

From the preceding expressions of p and q results this theorem:

Let us imagine a circle 'whose inclination to a fixed j^lane is N, a7id of

txihich the longitude of the ascending node is g t + /S ,- also let us imagine

upo7i this first circle^ a second circle inclined hy the angle Ni , the longitude

of 'whose intersection isoith the former circle is gi t + /Sj ,• upon this second

circle let there he a third inclined to it by the angle N2 , the longitude of

'whose intej'section "with the second circle 25 ga t + ^2^ <ind so on ; the j»o-

sition of the last circle 'will be that of the orbit of ^i.

Applying the same construction to the expressions of h and 1 of Na
523, we see that the tangent of the inclination of the last circle upon the

fixed plane, is equal to the excentricity of /a's orbit, and that the longitude

of the intersection of this circle with the same plane, is equal to that of

the perihelion of /^.'s orbit.

527. It is useful for astronomical purposes, to have the differential va-

riations of the nodes and inclinations of the orbits. For this purpose, let

us resume the equations of the preceding No.
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tan. ^ = V (p« 4- q*), tan. ^ = E-

.

Differentiating these, we shall have

dp = dp sin. tf + d q cos. 6

;

1 _ d p COS. 6 — d q sin. 6~
tan. <p

If we substitute for d p and d q, their values given by the equations (C)

of the preceding No. we shall have

j^=(0, 1) tan. <p' sin. (0 — ^)-f(0, 2) tan p" . sin. {6 — 0+&c.

^-J=~ [(0, l) + (0,2)+ &c.}+(0, 1)1^ COS. {& - n

+(0,2)^-^ COS. {6 -6") + Sic.

In like manner, we shall have

-r^=(l, 0) tan. <p sin. (^ — ^)+ (l, 2) tan. p" sin. {ff — <)")+&c.

9'
^=-Ul.0)+ (l,2)+&c.l + (l,0).g^.cos.(^-^)

&c.

Astronomers refer the celestial motions to the moveable orbit of the

earth; it is in fact from the plane of this orbit that we observe them; it is

therefore important to know the variations of the nodes and the inclina-

tions of the orbits, relatively to the orbit of one of the bodies /*, /*', At", &c.

for example to the orbit of //,. It is clear that

q sin. (n t + ^) — P cos. (n' t + t)

would be the latitude of /ji.' above the fixed plane if it were in motion upon

the orbit of /ct. The latitude of this moveable plane above the same

plane is

q' sin. (n't + i) — p' cos. (n' t + «');

but the difference of these two latitudes is very nearly the latitude of /*'

above the orbit of /i; calling therefore p/ the inclination, and 6/ the lon-

gitude of the node of /i' upon the orbit of ft, we shall have, by what

precedes, ^

tan. 9/ = V (p — py + (q — q)"^; tan. 6/ = |^-
If we take for the fixed plane, that of At's orbit at a given epoch

;
we
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shall have at that epoch p = 0, q = ; but the differentials d p and d q
will not be zero ; thus we shall have.

d (p; = (dp'— dp) sin. ^ + (d q' — d q) cos. ff ;

A a' — d p' — d p) COS. & — (d q' — d q) sin. 6f

'
~"

tan. 9'

Substituting for d p, d q, d p', d q', &c. their values given by the equa^

tions (C) of the preceding No., we shall have

i^ = {{\, 2) — (0, 2)} tan. <{/' sin. {& — n
+ f (1, 3) — (0, 3)1 tan.V" sin. {ff — 6'") + &c.

^^Y
= - [(1, 0) + (1, 2) + (1, 3) + &c.} — (0, 1)

. + Kl,2)-(0,2)].i^cos.(^-r)

+ {{h 3) - (0, 3)] . ^-^^ cos. ff - n + &c.

It is easy to obtain from these expressions the variations of the nodes,

and inclinations of the orbits of the other bodies /«-'', /u/'', &c. upon the

moveable orbit of /tt.

528. The integrals found above, of the differential equations which deter-

mine the variations of the elements of the orbits, are only approximate, and

the relations which they give among the elements, only take place on the

supposition that the excentricities of the orbits and their inclinations are

very small. But the integrals (4), (5), (6), (7), which are given in No.

471, give the same relations, whatever may be the excentricities and in-

' X d V ~~~ V d X .

clinations. For this, we shall observe that ^—^

—

is double the
d t

area described during the instant d t, by the projection of the radius-

vector of the planet [m upon the plane of x, y. In the elliptic motion, if

we neglect the mass of the planet as nothing compared with that of the

sun, taken for unity, we shall have, by the Nos. 157, 237, relatively to the

plane of /i's orbit,

X d y — y d X ,—r^ r-.^-j—- = V a (1 — e^).
at ^

In order to refer the area upon the orbit to the fixed plane, we must

multiply by tlie cosine of the inclination <p of the orbit to this plane ; we

shall, therefore, have, with reference to tliis plane,

'^^y-y'^^ = COS. f,
Va(l-e') = w Vi',~fi -

d t
^ ^ ' -V 1 + tan. * f
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In like manner

x^ d y^ — y^ d x^ _ / a^ (1 -- e^")
.

d t
~ V 1 + tan. 2 f

"

&c.

These values of x d y — y d x, x' d y' — y' d x', &c. may be used,

abstraction being made of the inequalities of the motion of the planets,

provided we consider the elements e, e', &c. f, p', &c. as variables, in

virtue of the secular inequalities; the equation (4) of No. 471 will there-

fore give in that case,

a (I — e^)
, ,

ja! (1 — e^^)
,

.

^ = ^ V 1 + tan.> + ^ V 1 + tan.^p- + ^"-

+ 2. ^ f,'
i(x^-x)(d/-dy)-(/-y)dx--dx)

| ^

Neglecting this last term, which always remains of the order (i /x,', we

shall have

^ - -" V 1 + tan.'^ p + '^ V 1 + tan.^ <p' + ^'''

Thus, whatever may be the changes which the lapse of time produces

in the values of e, e', &c. 9, p', &c. by reason of the secular variations,

these values ought always to satisfy the preceding equation.

If we neglect the small quantities of the order e'*, or e^ 9^, this equa-

tion will give

c = ^ V a + /i' -v^ a' + &c. — g /A V a Je^ 4- tan. « p}

— ^ /i' V q! {e^ + tan ' <^\ — &c.;

and consequently, if we neglect the squares of e, e', f, &c. we shall have

/i V a -f-
/«.' V Q.' + &c. constant. We have seen above, that if we only

retain the first power of the perturbing force, a, a', &c. will be separately

constant; the preceding equation will therefore give, neglecting small

quantities of the order e * or e ^ 9
',

const. = At V a Je2 + tan. ^ 9} + ijf V a' Je'*^ + tan. ^ p\ + &c.

On the supposition that -the orbits are nearly circular, and but little

inclined to one another, the secular variations are determined (No. 522)

by means of differential equations independent of the inclinations, and

which consequently are the same as though the orbits were in one plane.

But in this hypothesis we have

p = 0, p' = 0, &c.

the preceding equation thus becoming

constant = e=^ /x V a + e' V' V a' + e"^/u." V a" + &c.

an equation already given in No. 524.
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In like manner the secular variations of the inclinations of the orbits,

are (No. 526) determined by means of differential equations, independent

of excentricities, and which consequently are the same as though the or-

bits were circular. But in this hypothesis we have e = 0, e' = 0, &c.

"Wherefore

const.=/AVa . tan 2 9+ (t^Wo! . tan. ^ <p'-\-iJ." Va." . tan. ^ f^'+Scc.

an equation which has already been given in No. 526.

If we suppose, as in the last No.

p = tan. p sin. d; q = tan. <p cos. 6;

it is easy to prove that, the inclination of the orbit of ju- to the plane of

X, y being (p, and the longitude of its ascending node reckoned from the

axis of X being ^, the cosine of the inclination of this orbit to the plane of

X, z, wiU be

q
V (1 + tan. 2 p)*

Multiplying this quantity by "T > ^^ ^Y ^^ value Va (1 — e ^),

X d z ~-^ z d X
we shall have the value of ^ ; the equation (5) of No. 471,

will tlierefore give us, neglecting quantities of the order /i %

,a (1 — e^)
, , , /a'. (1 — e'')

, ^

We shall find, in like manner, that the equation (6) of No. 471, gives

"" -'^•P-Vi + tan.^? + '''P Vl + tan.^p'+^'^*

If in these two equations we neglect quantities of the order e ' or e ' f>

;

they will become

const. = /tt q . V a + /«,' q' V a' + &c.

const. = /» p V a. + /m' ^' V af + &c.

equations already found in No. 526.

Finally, the equation (7) of No. 471, will give, observing that by 478,

m _ 2 m dx' + dy^+dz'
Hr ~ "^ dt*

and neglecting quantities of the order /l fj^\

/J, ii/ ix" o
const. = - + —

, ^—7, + &c.
a a a''

These different equations subsist, when we regard inequalities due to

very long periods, which affect the elements of the orbits of /a, /u.', &c.

We have observed in No. 521, that the relation of the mean motions of

tliese bodies may introduce into the expressions of the axis-majors of the
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orbits considered variable, inequalities whose arguments proportional to

the time increase very slowly, and which having for divisors the coeffi"

cients of the time t, in these arguments, may become sensible. But it is

evident that, retaining the terms only which have like divisors, and consi-

dering the orbits as ellipses whose elements vary by reason of those terms,

the integrals (4), (5), (6)) (7), of No. 471, will always give the relations

between these elements already found; because the terms of the order

(ji. Ill which have been neglected in these integrals, to obtain the relations,

have not for divisors the very small coefficients above mentioned, or at

least they contain them only when multiplied by a power of the perturb-

ing forces superior to that which we are considering.

529. We have observed already, that in the motion of a system of

bodies, there exists an invariable plane, or such as always is of a

parallel situation, which it is easy to find at all times by this condition, that

the sum of the masses of the system, multiplied respectively by the pro-

jections of the areas described by the radius-vectors in a given time is a

maximum. It is principally in the theory of the solar system, that the re-

search of this plane is important, when viewed with reference to the proper

motions of the stars and of the ecliptic, which make it so difficult to astro-

nomers to determine precisely the celestial motions. If we call y the

inclination of this invariable plane to that of x, y, and n the longitude of

its ascending node, it is easily found that

c" c'
tan. y sin. n=— : tan. y cos. 11= — ;' c c

and consequently that

/AVa(l — e*^) sin.0sin. ^-|-(U.Va'(l — e'^) sin. ?>' sin. ^'+ &c.
tan.y sm. n=^- ^^

—

=- ' —
/u,Va(l — e'^)cos. i5+/AVa'(l — e'*^) cos. p'+ &c.

lh^'A(\— e*). sin. fflcos. &-\-(j! *^ ?^(\—e'^) sin. ©' cos.^+&c.
tan. y . cos. n=' V

^ X ^^-—
; , ^

—;

Ai-Va (1 — e'^) . COS. f-|-/(i'V a'(l^-e'*) .cos. p'+ &c.

We shall determine very easily, by means of these values, the angles y

and IL We see that to determine the invariable plane we ought to know

the masses of the comets, and the elements of their orbits ; fortunately

these masses appear to be so very small that we may, without sensible

error, neglect their action upon the planets ; but time alone can clear up

this point to us. We may observe here, that relatively to this invariable

plane the values of p, q, p', q', &c. contain no constant terms ; for it is

evident by the equations (C) of No. 526, tha't these terms are the same for

p, p', p'', &c. and that they are also the same for q, q', q", &c. ; and since re-

latively to the invariable plane, the constants of the first members of tlie
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equations (1) and (2) of No. 526 are nothing: the constant terms disap-

pear, by reason of these equations, from the expressions p, p', &c.

q, q', &c.

. Let us consider the motion of the two orbits, supposing them inclined

to one another, by any angle whatever : we shall have by No. 528,

c' = sin. f cos. ^ . /x V a ( 1 — e ^) +sin. <p' . cos. ^ . (jI V a' ( 1 — e' ^)

;

c"= sin. psin. ^ . [l -v/ a (1 — e^)+sin. ^ . sin. 6'
. ijJ V a' (1 — e' ^).

Let us suppose that the fixed plane to which we refer the motion of the

orbits, is the invariable plane of which we have spoken, and by reference

to which the constants of the first members of these equations, are no-

thing, as may easily be shown. The angles <p and f' being positive, the

preceding equations give the following ones :

/i V a (1 — e^) .sin. p =ij/V a' (1 — e'^). sin. p';

sin. 6 =. — sin. &'
; cos. ^ = — cos. ^

;

whence we derive ^ = ^ -f- the semi circumference ; the nodes of the or-

bits are consequently upon the same line ; but the ascending node of the

one coincides with the decending node of the other ; so that the mutual

inclination of the two orbits is equal to f + <p'.

We have by No. 528,

c = /AVa(l — e^). cos. f + (if V o! {I — e"') cos. <p'

;

by combining this equation with the preceding one between sin. f and

sin. 9', we sliall have

2/ic.cos. p. V a(l — e2)=cH/*'a(l— e^)— /a'2. a'(l— e'^).

If we suppose the orbits circular, or at least having excentricity so small

that we may neglect the squares of their excentricities, the preceding

equation will give f constant : for the same reason <p' will be constant ; the

inclinations of the planes of the orbits to the fixed plane, and to one ano-

ther, will therefore be constant, and these three planes will always have a

common intersection. It thence results that the mean instantaneous va-

riation of this intersection is always the same ; because it can only be a

function of these inclinations. W^hen they are very small, we shall easily

find by No. 523, and in virtue of the preceding relation between sin. f

and sin. p',,that for the time t, the motion of this intersection is •

— Uo, 1) + (1,0)]. t.

The position of the invariable plane to which we refer the motion of

the orbits, may easily be determined for any instant whatever ; for we

have only to divide the angle of the mutual inclination of the orbits into

two angles, ?> and f', such as that we have in the preceding equation be-
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tween sin. (p and sin. p'. Designating, therefore, this mutual inclination

by vr, we shall have

fj/ V a' ( 1 — e"^) . sin. w
tan. p =

'^
^^

^ V a (I — e^) + /a' V a' (1 — e'*) . cos. «

' SECOND METHOD OF APPROXIMATION OF THE CELESTIAL MOTIONS.

530. We have already seen that the coordinates of the celestial bodies,

referred to the foci of the principal forces which animate them, are deter-

mined by differential equations of the second order. We have integrated

these equations in retaining only the principal forces, and we have shown

that in this case, the orbits are conic sections whose elements are thc^

arbitrary constants introduced by integration.

The perturbing forces adding only small inequalities to the elliptic mo-
tion, it is natural to seek to reduce to the laws of this motion the troubled

motion of the celestial bodies. If we apply to the differential equations

of elliptic motion, augmented by the small terms due to the perturbing

forces, the method exposed in No. 512, we can also consider the celestial

motions in orbits which turn into themselves, as being elliptic; but the

elements of this motion will be variable, and by this method we shall ob-

tain their variations. Hence it results that the equations of motion, being

differentials of the second order, not only their finite integrals, but also

their infinitely small integrals of the first order, are the same as in the

case of invariable ellipses ; so that we may differentiate the finite equa-

tions of elliptic motion, in treating the elements of this motion as con-

stant. It also results from the same method that the differential equa-

tions of the first order may be differentiated, by making vary only the

elements of the orbits, and the first differences of the coordinates ; pro-

vided that instead of the second differences of these coordinates, we sub-

stitute only that part of their values which is due to their perturbing

forces. These results can be derived immediately from the consideration

of elliptic motion.

For that purpose, conceive an ellipse passing through a planet, and

through the element of the curve which it describes, and whose focus is

occupied by the sun. This ellipse is that which the planet would invari-

ably describe, if the perturbing forces were to cease to act upon it. Its

elements are constant during the instant d t; but they vary from one

instant to another. Let therefore V = 0, be a finite equation to an in-

variable ellipse, V being a function of the rectangular coordinates x, y, z
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and the parameters c, c', &c. which are functions of the elements of ellip-

tic motion. Since, however, this ellipse belongs to the element of the

curve described by the planet during the instant d t ; the equation V =
will still hold good for the first and last point of this element, by regard-

ing c, c', &c. as constant. We may, therefore, differentiate this equation

once in only supposing x, y, z, to vary, which gives

We also see the reason why the finite equations of the invariable el-

lipse, may, in the case of the variable ellipse, be differentiated ojice in

treating the parameters as constant. For the same reason, every differ-

ential equation of the first order relative to the invariable ellipse, equally

holds good for the variable ellipse ; for let V = be an equation of this

order, V being a function of x, y, z, -?— ,
—

, j- , and the parameters

c, c', &c. It is clear that all these quantities are the same for the varia-

ble ellipse as well as for the invariable ellipse, which for the instant d t

coincides with it.

Now if we consider the planet, at the end of the instant d t, or at the

commencement of the following one ; the function V will vary from the

ellipse relative to the instant d t to the consecutive ellipse only by the

variation of the parameters, since the coordinates x, y, z, relative to the

end of the first instant are the same for the two ellipses ; thus the function

V being nothing, we have ^

This equation may be deduced from the equation V = 0, by making

X, y, z, c, c', &c. vary together ; for if we take the differential equation

(i) from this differential, we shall have the equation (i').

Differentiating the equation (i), we shall have a new equation in d c,

d c', &c. which with the equation (i') will serve to determine the parame-

ters c, c', &c. Thus it is that the geometers, who were first occupied in

the theory of celestial perturbations, have determined the variations of

the nodes and the inclinations of the orbits : but we may simplify this

differentiation in the following manner.

Consider generally the differential equation of the first order V = 0,

an equation which belongs equally to the variable ellipse, and to the in-

variable ellipse which, in the instant d t, coincides with it. In the follow-

ing instant, this equation belongs also to the two ellipses, but with this

Vou II. L
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difference, that c, c', &c. remain the same in the case of the invariable

ellipse, but vary witli tlie variable ellipse. Let V be what V becomes,

when the ellipse is supposed invariable, and V/ what this same function

becomes in the case of the variable ellipse. It is clear that in order to

have V we must change in V, the coordinates x, y, z, which are rela-

tive to the commencement of the first instant d t, in those which are rela-

tive to the commencement of the second instant; we must then augment

the first differences d x, d y, d z respectively by the quantities d ^ x, d - y»

d * z, relative to the invariable ellipse, the element d t of the time, being

supposed constant.

In like manner, to get V/, we must change in V, the coordinates

X, y, z, in those which are relative to the commencement of the second

instant, and which are also the same in the two ellipses ; we must then

augment d x, d y, d z respectively by the quantities d ^ x, d ^
y, d '^ z ; finally,

we must change the parameters c, c', &c. into c + d c, c' + d c' ; &c.

The values of d " x, d ^ y, d ^ z are not the same in the two ellipses

;

they are augmented, in the case of the variable ellipse, by the quantities

due to the perturbing forces. We see also that the two functions V"
and V/» differing only in this that in the second the parameters c, c', &c.

increase by d c, d c', &c. ; and the values of d ^ x, d '^

y, d '^ z relative to

the invariable ellipse, are augmented by quantities due to the perturbing

forces. We shall, therefore, form V/ — Y", by differentiating V in the

supposition that x, y, z are constant, and that d x, d y, d z, c, c', &c.

are variable, provided that in this differential we substitute for d ^ x, d ^
y;

d* z, &c. the parts of their values due solely to the disturbing forces.

If, however, in the function \" — V we substitute for d ^ x, d^ y, d*^ z

their values relative to elliptic motion, we shall have a function of x, y, z,

-r— ) -TY > TT » ^> ^'i ^^'i which in the case of the invariable ellipse, is

nothing; this function is therefore also nothing in the case of the variable

ellipse. We evidently have in this last case, V/— V = 0, since this

equation is the differential of the equation V = : taking it from the

equation V/ — V = 0, we have V/ — V" = 0. Thus, we may, in this

case, differentiate the equation V =r 0, supposing d x, d y, d z, c, c', &c.

alone to vary, provided that we substitute for d ^ x, d * y, d '^ z, the parts

of their values relative to the disturbing forces. These results are exactly

the same as those which we obtained in No. 512, by considerations purely

analytical ; but as is due to their importance, we shall here again present

them, deduced from the consideration of elliptic motion.
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531. Let us resume the equations (P) of No. 513,

d'xmx /dRx

" - dt^ ^ e' ^ Vdv;

163

S

m z

(P)

If we suppose R = 0, we shall have the equations of elliptic motion,

which we have integrated in (478)- We have there obtained the seven

following integrals

X d y — y d X

"dl 'c =

C' rr
X d z — z d X

dl

__ y d z — z d y ^

dt^

dx* + d z'

dt

ydy.dx zdz.dxi
dl^ + dT^^ '

X d X .d y ^ z d z . d y
dt^ '} + '-^-"^i^.-'- +dV0=f + y{^

d x2+ d y*+ d z =

(P)

=
s

2 m
a g ' dt^

These integrals give the arbitraries in functions of their first differences;

they are under a very commodious form for determining the variations of

these arbitraries. The three first integrals give, by differentiating them,

and making vary by the preceding No. the parameters c, c', c", and the

first differences of the coordinates.

dc =_ xd^y — yd^x
~~dT

dc' = xd-z — zd^x

dc"=

dt

//_ yd^z — zd*y
dt

Substituting for d ' x, d ^ y, d ^ z, the parts of their values due to the

perturbing forces, and which by the differential equations (P) are

L2



164 A COMMENTARY ON [Sect. XL

we shall have

dc=at{,(,l^)_.(^_|)},

We know from 478, 479 that the parameters c, c\ c" determine three

elements of the elliptic orbit, viz., the inclination <p of the orbit to the
plane of x, y, and the longitude & of its ascending node, by means of the

equations

tan. p = —^^ -~^^—^-y tan. 6 = ^;c
'

c'

and the semi-parameter a (1 — e'') of the elhpse by means of the equa-

tion

m a (1 — e*) = c^ + c'* + c"\

The same equations subsist also in the case of the variable ellipse,

provided we determine c, c', c" by means of the preceding differential

equations. We shall thus have the parameter of the variable ellipse, its

inclination to the fixed plane of x, y and the position of its node.

The three first of the equations (p) have given us in No. (479) the

finite integral

= c" X — c' y + c z

:

this equation subsists in the case of the troubled ellipse, as also its first

difference

= c'Mx — c'dy + cdz
taken in considering c, c', c" constant.

If we differentiate the fourth, the fifth and the sixth of the integrals

(p), making only the parameters f, f, f", and the differences d x, d y, d z

vary; if moreover, we substitute then for d ^ x, d ^ y, d ^ z, the quantities

- d t'
(f^^),

- d t« (^), - d t' (i|). we shall have

dr=dy{y(^)-.(^)}H.d.{.(^)-.(if)}

+ (ydx-xdy)(i|) + (zdx-xdz)(^);

dr = dx{.(^|)-,(^-^)} + d.{.(^)-y(^f)}

+ (xdy-ydx)(;^)+(zdy-ydz)(i|);
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ar=a.{.(-)-.(i|)}+a,{,(^|)-.(^)}

+ (xdz-zdx)(^) +(ydz-zdj)(i5).

Finally, the seventh of the integrals (p), differentiated in the same

manner, will give the variation of the semi-axis-major a, by means of the

equation

d . — = 2 dR,
a

the differential d R being taken relatively to the coordinates x, y, z alone

of the body fi.

The values of f, f, f determine the longitude of the projection of the

perihelion of the orbit, upon the fixed plane, and the relation of the ex-

centricity to the semi-axis-major; for I being the longitude of this projec-

tion by (479) we have
f

tan. !=->-;

and e being the ratio of the excentricity to the semi-axis-major, we have

m e = V (P + ('^ + f'2).

This ratio may also be determined by dividing the semi-parameter

a (1 — e''), by the semi-axis-major a : the quotient taken from unity will

give the value of e ^

The integrals (p) have given by elimination (479) the finite integral

= mf — h^-f-fx + fy + f'z:

this equation subsists in the case of the troubled ellipse, and it determines

at each instant, the nature of the variable ellipse. We may differentiate

it, considering f, f, i" as constant ; which gives

= mdj-ffdx+f'dy-|-f"dz.
The semi-axis-major a gives the mean motion of /*, or more exactly,

that which in the troubled orbit, corresponds to the mean motion in the

invariable orbit ; for we have (479) n = a ~ ^ V m ; moreover, if we de-

note by ^ the mean motion of /*, we have in the invariable elliptic orbit

d ^ = n d t : this equation equally holds good in the variable ellipse,

since it is a differential of the first order. Differentiating we shall have

d*^ = dn.dt; but we have

therefore

J 3an ,m 3 a n d K
d n = —— . d.- = ,

2 m a m

j,„ 3andt.£?R
d c = ;* m

L3
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and integrating

t, = -.//andt.dR.

Finally we have seen in (No. 473) that the integrals (p) are equivalent

to but five distinct integrals, and that they give between the seven para-

meters c, c', c", f, f, i" e, the two equations of condition

0= fc" — f c' + Pc;
m , P + V + f''2— m*

= ^ +
a ' c« + c'2 + c"2 '

these equations subsist therefore in the case of the variable ellipse provid-

ed that the parameters are determined as above.

We can easily verify these statements a 'posteriori.

We have determined five elements of the variable orbit, viz., its inclin-

ation, position of the nodes, its semi-axis-major which gives its mean mo-

tion, its excentricity and the position of the perihelion. It remains for us

to find the sixth element of elliptic motion,—that which in the invariable

ellipse corresponds to the position of /«. at a given epoch. For this pur-

pose let us resume the expression of d t (473)

d t Vm __ d v(l — e^)^

^f - U + ecos.(v — «.)r'

This equation developed mto series gives (473)

n d t = d V D + E^i) cos. (v— «r) + E^^) ^os. 2 (v — z^r) + &c.}.

Integrating this equation on the supposition of e and -a being con-

stant, we shall have

EW
/n d t + £ = V + E (J) sin. (v — sr) 4. —- sin. 2. (v — w) + &c.

I being an arbitrary. This integral is relative to the invariable ellipse

:

to extend it to the variable ellipse, in making every thing vary even to

the arbitraries, r, e, w which it contains, its differential must coincide with

the preceding one ; which gives

d. = de{ (^)si„. (v_»j + J(if^')si„.2 (V-.) + &c.}

— d«r ^E^l^COS. (V— =r) + E « COS. 2 (v— ^) + &c.?

V — w being the true anomaly of /« measured upon the orbit, and « the

longitude of the perihelion also measured upon the orbit. We have de-

termined above, the longitude I of the projection of the perihelion upon

a fixed plane. But by (488) we have, in changing v into -a and v^ into I

in the expression of v — /3 of this No.

w— e = I— ^ + tan. « \ <p sin. 2 (I— ^) + &c.
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Supposing next that v, v^, are zero in this same expression, we have

^ = 6 + tan. 2 i p sin. 2 ^ + &c.

wherefore,

which gives

«r = I + tan. 2| 9. {sin. 2 d + sin. 2 {I — 6) + Sec]

d ^ = d I . Jl + 2 Ian.
^
^ <p cos. 2(1 — ^) + &c.}

+ 2 d ^ tan. ^ ^ ?> {cos. 2 ^— cos. 2 (I —'6) + ixc.}

dptan ip ^ .^^ 2 ^ ^.^^ 2 (I— ^ + SiC.].

Thus the values of d I, d 6, and d
f)
being determined by the above, we

shall have that of d » ; whence we shall obtain the value of d t.

It follows from thence that the expressions in series, of the radius-vec-

tor, of its projection upon the fixed plane, of the longitude whether re-

ferred to the fixed plane or to the orbit, and of the latitude which we

have given in (No. 488) for the case of the invariable ellipse, subsist equal-

ly in the case of the troubled ellipse, provided we change n t intoyn d t,

and we determine the elements of the variable ellipse by the precedhig

formulas. For since the finite equations between §, v, s, x, y, z, and

j'n d i, are the same in the two cases, and because the series of No. 488

result from these equations, by analytical operations entirely independent

of the constancy or variability of the elements, it is evident these expres-

sions subsist in the case of variable elements.

When the ellipses are very excentric, as is the case with the orbits of

tlie comets, we must make a slight change in the preceding analysis. The

inclination (p of the orbit to the fixed plane, the longitude d of its ascend-

ing node, the semi-axis-major a, the semi-parameter a (1 — e'^), the ex-

centricity e, and the longitude I of the perihelion upon the fixed plane

may be determined by what precedes. But the values of » and of d w

being given in series ordered according to the powers of tan. ^ f, in order

to render them convergent, we must choose the fixed plane, so as to make
tan. ^ (p inconsiderable ; and to effect this most simply is to take, for the

fixed plane, that of the orbit of ju. at a given epoch.

The preceding value of d s is expressed by a series which is convergent

only in the case where the excentricity of the orbit is inconsiderable, we

cannot therefore make use of it in this case. Instead, let us resume the

equation

d t V m __ d V (1 — e^)^

J "
[1 + ecos. (V — -)P-
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If we make 1 — e = a, we have by (489) in the case of the invariable

ellipse,

T being an arbitrary. To extend this equation to the variable ellipse,

we must differentiate it by making vary T, the semi parameter a ( I— e ^),

«, and V. We shall thence obtain a differential equation which will de-

termine T, and the finite equations which subsist in the case of the in-

variable ellipse, will still hold good in that of the variable ellipse.

532. Let us consider more particularly the variations of the elements

of (U-'s orbit, in the case of the orbits being of small excentricity and but

little inclined to one another. We have given in No. 515. the manner of

developing R in a series of sines and cosines of the form

Ijf k cos. (i' n' t — i n t -H A)

k and A being functions of the excentricity and inclinations of the orbits,

the positions of their nodes and perihelions, the longitudes of the bodies

at a given epoch, and the major-axes. When the ellipses are variable

all these quantities must be supposed to vary conformably to what pre-

cedes. We must moreover change in the preceding term, the angle

i' n' t — i n t into i'yn' d t— ^/^ d t, or which is tantamount, into

However, by the preceding No., we have

- = 2fd'R,i

I =/n d t = — .//a n d t . cf R.

The difference d R being taken relatively to the coordinates x, y, z,

of the body /», we must only make vary, in the term

/ k COS. (i' ^' _ i ^ + A)

of the expression of R developed into a series, what depends upon the

motion of this body ; moreover, R being a finite function of x, y, z, x', y', z'

we may by No.' 530, suppose the elements of the orbit constant in the

difference £? R ; it suffices therefore to make Z, vary in the preceding term,

and since the difference of (^ is n d t, we have

i /. k n d t. sm. (i' ^'— i ^ + A)

for the term of rf R which corresponds to the preceding term of R. Thus,

with respect to this term only, we have

I :2 i /*'

a m -/kndt.sin. (i'C'-i^-h A);
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^ = ^V/a k nM t' sin. (i' ^' _ i ^ + A).

If we neglect the squares and products of the perturbing masses, we
may, in the integrals of the above terms, suppose the elements of elliptic

motion constant. Hence ^ becomes n t and ^', n' t ; whence we get

1 2 i /u,' n k ... .
. i X— = TV

—

-. -.—r cos. (1 n' t — 1 n t + A)
a m (r n' — in) ^ '

. 3 i («,' a n * k . ,., / * • * , a \C = jri—. -.—r^ sm. (f n' t — 1 n t + A).^ m (i' n' — 1 n) 2 ^ * '

Hence we perceive that if i' n' — i n is not zero, the quantities a and Z,

only contain periodic inequalities, retaining only the first power of the

perturbing force ; but i and i' being whole numbers, the equation in'— in

= cannot subsist when the mean motions of /«. and [jf are incommen-

surable, which is the case with the planets, and which can be admitted

generally, since n and n' being arbitraiy constants susceptible of all possi-

ble values, their exact relation of number to number is not at all probable.

We are, therefore, conducted to this remarkable result, viz., that the

principal axes of the planets, and their mean motions, are only subject to

periodic inequalities depending on their configuration, and that thus in ne-

glecting these quantities, their principal axes are constant and their mean

motions uniform, a result agreeing with ivhat has otherwise been found by

No. 521.

If the mean motions n t and n' t, without being exactly commensurable,

approach very nearly to the ratio i' : i ; the divisor i' n' — in is very

small, and there may result in ^ and ^'^ inequalities, which increasing very

slowly, may give reason for observers to suppose that the mean motions

of the two bodies /*, [if are not uniform. We shall see, in the theory of

Jupiter and Saturn, that this is actually the case with regard to these two

planets : their mean motions are such that twice that of Jupiter is very nearly

equal to five times that of Saturn ; so that 5 n' — 2 n is hardly the sixty-

fourth part of n. The smallness of this divisor, renders very sensible the

term of the expression for ^, depending upon the angle 5 n' t — 2 n t,

although it is of the order i' — i, or of the third order, relatively to the

excentricities and inclinations of the orbits, as we have seen in No. 515.

The preceding analysis gives the most sensible part of these inequalities

;

for the variation of the mean longitude depends on two integrations, whilst

the variations of the other elements of elliptic motion depend only on

one integration ; only terms of the expression of the mean longitude can

therefore have the divisor (i' n' — i n) '^ ; consequently with regard only
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to these terms, which, considering the smallness of the divisor ought to

be the more considerable, it will suffice, in the expressions of the radius-

vector, the longitude and latitude, to derive from these terms, the mean

longitude.

When we have inequalities of this kind, which the action of /(*' produces

in the mean motion of ^u., it is easy thence to get the corresponding ine-

qualities which the action of jt* produces in the mean motion of (jI In

fact, if we have regard only to the mutual action of three bodies M, /* and

i«.'; the formula (T) of (471) gives

dx« + dy^ + dz'^ , dx'2 ^dy +dz'2
const. = /. ^^ + / .

f^^

(a^ d X + /^^ d xQ ' + (;a d y + / d yQ^ + (,a d z + aM zQ '

2Ma& 2M/i' 2|t*Ao'

(a)

Vx^+y^+z^ Vx'2+y'Hz'^ V(x'—x)^+ (y'—yr+(z'~z)'*

The last of the integrals (p) of the preceding No. gives,* by substituting

for — the integral "^fd R,

dx» + d y'^ 4- dz'^ _ 2 (M + /-^) _ 2 / J R
d f^ Vx^ + y' + z'

If we then call R', what R becomes when we consider the action of y>

upon lif^ we shall have

R/ _ ^(xx^ + yy^ + zzQ ^

(x2 + y2 + z^)^ V (x— xr+ (y'-yr + (z'— z)^

dx^'+d/^ + clz^' _ 2(M + ^0 ^fd'W-
dt" ~ Vx''^ + y'' + z'2

'^ *

the differential characteristic d' only belonging to the coordinates of the

. 1 , ou.-. .• r dx^+dy^ + dz^ ^ d x^'' + dy^' + d z^'
body /«,'. Substitutmg for —

.

'' and ^"p

the values in the equation (a), we shall have

r^n , //;/R/ .
(/.dx+/.^dxOH(^dy+^My )H(/^clz+^'<IzO'

/x/dR+//rf'R'= const- ^

2 (M +^. + /.-RT^

Vx^ + y^ + z^' V yi'^ + f^ + z'^

It is evident that the second member of this equation contains no terms

of the order of squares and products of the /*, ^a', which have the divisor

i' n' — in; relative, therefore, only to these terms, we shall have

afdU + l^'fd'^' = 0;
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thus, by only considering the terms which have the divisor (i' n' — in) %
we shall have

377a^ n'dt.d'W _ __ ^(M + i^).a^n^ S/Z'andt.f^R
M+fJ-' ~ /a' (M + /) a n • M + /* '

but we have

_ Sffandt.dR _ S/fa'iV dt.d' W
^
~ M + fL

'^~ M + f^'

we therefore get % .

ft/ (M. + fi') a n tf + (Ji. (M + /x,) a' n' ?; = 0.

Again, we have

_ V(M + f^) ^ ^ _V(M + /^O.n — 5 , n — ^ -

,

a 2 a' 2

neglecting therefore fji, (jf, in comparison with M, we shall have

/* V a . ^ + /*' V a'. ^' = ;

or

,, __ _ IJ' V Q.
y

^ ~ ijI ^ a'*
^'

Thus the inequalities of ^, which have the divisor (i' n'— in) \ give

us those of ^', which have the same divisor. These inequalities are, as

we see, affected with the contrary sign, if n and n' have the same sign, or

which amounts to the same, if the two bodies jw and fil circulate in the

same direction; they are, moreover, in a constant ratio; whence it follows

that if they seem to accelerate the mean motion of /*> they appear to re-

tard that of fi! according to the same law, and the apparent acceleration

of ((A, will be to the apparent retardation of At', as itf V a' is to A4 V a. The
acceleration of the mean motion of Jupiter and the retardation of that of

Saturn, which the comparison of modern with ancient observations made

known to Halley, being very nearly in this ratio; it may be concluded

from the preceding theorem, that they are due to the mutual action of the

two planets; and, since it is constant, that this action cannot produce in

the mean motions any alteration independent of the configuration of the

planets, it is veiy probable that there exists in the theory of Jupiter and

Saturn a great periodic inequality, of a very long period. Next, consider-

ing that five times the mean motion of Saturn, minus twice that of Jupi

ter is very nearly equal to nothing, it seems very probable that the phe-

nomenon observed by Halley, was due to an inequahty depending upon

this argument The determination of this inequality will verify the con-

jecture.

The period of the argument i' n' t — i n t being supposed very long,



172 A COMMENTARY ON [Sect. XI.

the elements of the orbits of ,a, and til undergo, in this interval sensible

variations, which must be taken into account in the double integral

Jfo, k n« d t^ sin. (i' n' t — i n t + A).

For that purpose we shall give to the function k sin. (i' n' t— i n t+ A),

the form

Q sin. (i' n t— i n t + i' e'— i «) + Q' cos. (i' n' t— i n t 4- i'
«' — i

Q and Q' being functions of the elements of the orbits : thus we shall

have

ffv, k n* d t* sin. (i' n' t — i n t + A) =
n' a sin, (i^ n^ t—i n t+ i^t—

i

^) S c\ ^ d Q' 3d^Q 1~
(i'n' — in)2 'V^ (iV—in)dt (i'n'—in)Mt«'"^^^* J

n« a cos.(iVt—i n t +i' g—i Q ( 2dQ 3d^Q^

\
(i' v!—\uY • t ^ (iV—in)dt (i'n'—injMt^"^^^* f

'

The terms of these two series decreasing very rapidly, with regard to

the slowness of the secular variations of the elliptic elements, we may, in

each series, stop at the two first terms. Then substituting for the ele-

ments of the orbits their values ordered according to the powers of the

time, and only retaining the first power, the double integral above may

be transformed in one term to the form

(F + E t) sin. (i' n' t— i n t + A + H t).

Relatively to Jupiter and Saturn, this expression may serve for many

ages before and after the instant from which we date the given epoch.

The great inequalities above referred to, become sensible amongst the

terms depending upon the second power of the perturbing forces. In

fact, if in the formula

i = ^'y/a k n^ d t^ sin. (i' ^' — i ^ + A),

we substitute for (^, ^ their values

3 i /«.' a n '^ k . ,.,/.. • ^ . * \n t TTT-T

—

7—r-. sm. (r n' t— i n t + A)

;

m(in'—in)' ^

, ai/ttan^k/a •/•//. • x,a\
n t ,., , . .,J -, . sm. (i' n' t — 1 n t + A),

m(rn

—

mfS a

there will result among the terms of the order fi % the following

9i«/i'2a2n*k« i fi>' V a' + i' /i V a . . ,., . ^ , ..— Q 2/-/ /
—=-^- 7-77 • sm. 2(i'n't— int + A).

8 m*^ (r n'—i n)* /* v a ^

The value of ^' contains the corresponding term, which is to the one

preceding in the ratio /i V a : — /i' V a', viz.

8mHi-n--in)- ^^^ v^ a' + i /. V aj.-^ sm.2 (I'n' t~int + A).

533. It may happen that the inequalities ofthe mean motion which are the
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most sensible, are only to be found among terms of the order of the

squares of the perturbing masses. If we consider three bodies, /», ^tt', (i"

circulating around M, the expression of c? R relative to terms of this or-

der, will contain inequalities of the form

k sin. (i n t — i' n' t + i" n" t + A)

but if we suppose the mean motions n t, n' t, n'' t such that in — i' n'

+ i''n"is an extremely small fraction of n, there will result a very sensible

inequality in the value of ^. This inequality may render rigorously equal

to zero, the quantity in — i' n' 4- \" n", and thus establish an equation of

condition between the mean motions and the mean longitudes of the three

bodies /(i, i"-', ij/'. This very singular case exists in the system of Jupiter's

satellites. We will give the analysis of it.

If we take M for the mass-unit, and neglect /u., (j/, /a" in comparison with

it, we shall have

we have then

wherefore

n2 — _L. n'2 — JL n"2 — -—

.

n — 3 , n _ , 3 , n — „„ 3

»

d ^ = n d t ; d I' = n' d t; d ^'' = n'' d t

;

dt
= -|n^. da

a*'

dt
= -|n'i. da'

a'2'

dt = -|n"i da"

We have seen in No. 528, that if we neglect the squares of the excen-

tricities and inclinations of the orbits, we have

const = /i V a + /«.'. V a! •{ [if' V a." ;

which gives

- d a' , d a' „ d a''

From these several equations, it is easy to get

d*^_
dt -

3 f
2-" •

da
a^

d«r _ 3

d t ~ 2

At. n'*

ij/. n

n — n'' da
•n' — n"' a*'

dt -
3 (L.n

2 •
fj.".

'^ n — n' da
n n' — n" * a 2



174 A COMMENTARY ON [Sect. XL

Finally the equation

- = 2rd R
a ^

of No. 531, gives

a''

We have therefore only to determine d R.

By No. 513, neglecting the squares and products of the inclinations of

the orbits, we have

R =^ COB. (v' — v) — /*'
(f

'^ -- 2 g ^ cos. (v — v) + g' ") " ^

+ j4 COS. (v" — v) — /*"(g ^ — 2s§" COS. (v" — v) + /'=). ^

If we develope this function in a series ordered according to the cosines

of v' — V, v" — V and their multiples ; we shall have an expression of

this form

R = ^ (f, O ^"^ + ^'
(f> O ^'^ COS. (V' - V) + /.' (^, /) P) COS. 2 (v' - v)

+ ^'
(f. s')

^^^ COS. 3 (v' — v) + &c.

+ ^ (?»n ^°' + /*"(^n ^'^ COS. (v'' - v) + /."
(s, n ^^) cos. 2 cv^- v;

+ -^"(^ f) '^^ COS. 3 (v^'— v) + &c. ;

whence we derive

COS. 2 (v'— v) + &c. .

^cos. 2 (v" — v) + &c.

4. d / '''^^' ^^ "^ ^'"' ^^' ~^^+ 2 A*' (f» fi')
^'^ sin- 2(v' ^v)+ &c. "i

- I + At"(f, f'O ^^^sin.(v"—v)+ 2.w"(ii s") ^^^sin.2(v"—V)+ &c. j -

Suppose, conformably to what observations indicate in the system of

the three first satellites of Jupiter, that n — 2 n' and n' — 2 n" are

very small fractions of n, and that their difference n— 2 n'— (n'— 2 n')

or n — 3 n' + 2 n" is incomparably smaller than each of them.

It results from the expressions of - , and of 3 v of No. 517, that the

action of// produces in the radius-vector and in the longitude of //^, a vexy

sensible inequality depending on the argument 2 (n' t — n t + i' — e).

The terms relative to tins inequality have the divisor 4 (n' — n) ^ — n ',

dR=I
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or (n — 2 n') (3 n — 2 n'), and this divisor is very small, because of the

smalhiess of the factor n — 2 n'. We also perceive, by the consideration

of the same expressions, that the action of /«- produces in the radius-

vector, and in the longitude oi ih\ an inequality depending on the argu-

ment (n' t — n t + s' — f), and which having the divisor (n'— n) ^— n' -,

or n (n — 2 n'), is very sensible. We see, in like manner, that the action

of iJ-" upon ijf produces in the same quantities a considerable inequality

depending upon the argument 2 (n'' t — n' t •\- ^' — «'). Finally, we
perceive that the action of ij/ produces in the radius-vector and in the

longitude of /J'" a considerable inequality depending upon the argument

n'' t — n' t + i"— £. These inequalities were first recognised by obser-

vations ; we shall develope them at length in the Theory of Jupiter's Sa-

tellites. In the present question we may neglect them, relatively to other

inequalities. We shall suppose, therefore,

bg = iJY/ cos. 2 (n' t — n t -f- f'— s)

;

h\= (if W sin. 2 (n' t — n t + «' — s)
;

3 / =: il" Y/' COS. 2 (n'' t— n' 1 4- i" — e') +t^ G cos. (n t— n t+ s' -— s)

a v' = iJ." Y" sin. 2 (n'' t— n' t+ g"— e') +/tH sin. (n' t— n t+ s'— e)

a f = /a' G' cos. (n" t — n t + 3"— 2)

d y" = ij/' W sin. (n'' t— n' t + 1" — s').

We must, however, substitute in the preceding expression of <^ R for

fj
V, /, v', ^', y", the values of a 3 ^, n t + e + 5 v, a'+ 5

f',
n' t+ e'+ 5 v',

a" + h f, n" t + e'' + 3 v'', and retain only the terms which depend upon

the argument n t—3 n' t + 2 n'' t -|- t—3 e' + 2 t". But it is easy to see

that the substitution of the values of 3 j, 3 v, 3 g", 3 v" cannot produce any

such term. This is not the case with the substitution of the values of

3 / and 3 v' : the term ijf (p, ^) <*) d v sin. (v' — v) of the expression of

d R, produces the following,

Ij/ Ai". n d t
.|E-(li^|;)^)-F-(a,aO^^)}x

2

sin. (n t — 3 n' t + 2 n'' t + g' — 3 e' + 2 t").

This is the only expression of the kind which the expression of 6? R

conVains. The expressions of— , and of 3 v of No. 517, applied to the

action of /i" upon /«.', give, retaining only the terms which have the divisor

n' — 2 n'', and observing that n'' is very nearly equal to 5 n',

"^ ~" ' " ^ (n' — 2 n'O (3 n' — 2 n")
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2 E"
F' — •

ve therefore have

Xsin. (n t— 3 n' t+ 2 n" t+ s ~3 i +2 s")= — ? . -4-
a**

da d ^ f d "^
<f' d "^ t"

Substituting this value of —r- in the values of —r-^ ,
—~ , ,

^
, and*

a'' dt'dt'dt
making for brevity's sake

^ = fE.{2(a,a',<..-a'(dJ^)}.{|.>"+|....+±>..}

we shall have, since n is very nearly equal to 2 n', and n' to 2 n'',

d«r d* r dT'
J^,
— 3.^, + 2.^ = ^n«sin.(nt-.3n't+ 2n"t+.— 3,'+ 2 0;

or more exactly

d'Z d^t' d*(?"
^-3.^-t +2.^ =/3n«sin.(^-3C + 2|" + »-3s' + 20;

so that if we suppose

V = ^ — 3 C + 2 ^" + « - 3 .' + 2 a",

we shall have

d" V
-^-j = /S. n *. sin. V.

The mean distances a, a', a", varying but little as also the quantity n,

we may in this equation consider /3 n ', as a constant quantity. Integrat-

ing, we have

dt = -^_±iX_
V c — 2 /3 n =^ cos. V *

c being an arbitrary constant. The different values of which this con-

stant is susceptible, give rise to the three following cases.

If c is positive and greater than + 2 iS n ^, the angle V will increase

continually, and this ought to take place, if at the origin of the motion,

(n — 3 n' + 2 n") ^ is greater than + 2 /3 n '^ (1 + cos. V), the upper or

lower signs being taken according as /3 is positive or negative. It is easy

to assure ourselves of this, and we shall see particularly in the theory of

the satellites of Jupiter, that /3 is a positive quantity relatively to the three

first satellites. Supposing therefore + w = t— V, ^r being the semi cir-

cumference, we shall have

1 — *^ **

~
V^"c + 2 ISIT^ cos7~*
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In the interval from « = to w =—, the radical V c + 2 /S n '^ cos. w

is greater than V 2 i8 n ^, when c is equal or greater than 2 jS n -
j we

have therefore in this interval ^3^ > n t V 2 /3. Thus, the time t which the

angle w employs in arriving from zero to a right angle is less than -— .- „ .

The value of /3 depends upon the masses, «., fji/, /""; the inequalities ob-

served in the three first satellites of Jupiter, and of which we spoke above,

give, between their masses and that of Jupiter, relations from whence it

results that _^-— is under two years, as we shall see in the theory

of these satellites ; thus the angle w would employ less than two years to

,

increase from zero to a right angle ; but the observations made upon Ju-

piter's satellites, give since their discovery, w constantly'nothing or insen-

sible ; the case which we are examining is not therefore that of the three

first satellites of Jupiter.

If the constant c is less than + 2 jS n % the angle V will not oscillate

;

it will never reach two right angles, if (3 is negative, because then the

radical V c — 2 ^ n ' cos. V, becomes imaginary ; it will never be no-

thing if /3 is positive. In the first case its value will be alternately greater

and less than zero ; in the second case it will be alternately greater and

less than two right angles. All observations of the three first satellites of

Jupiter, prove to us that this second case belongs to these stars ; thus ihe

value of /3 ought to be positive relatively to them ; and since the theory

of gravitation gives 13 positive, we may regard the phenomenon as a new

confirmation of that theory.

Let us resume the equation

d «^
dt =

V c + 2 /3 n '^ cos. ^

The angle w being always very small, according to the observations,

we may suppose cos. w = 1 — ^ w * ; the preceding equation will give by

integration

cr = X sin. (n t V /3 + y)

X and y being two arbitrary constants which observation alone can deter-

mine. Hitherto, it has not been recognised, a circumstance which proves

it to be very small.

From the preceding analysis result the following consequences. Since

the angle n t + 3 n' t + 2 n" t + £ — 3 c' + It" oscillates being some-

times less and sometimes greater than two right angles, its mean value is

Vox.. II. M
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equal to two right angles ; we shall therefore have, regarding only mean
quantities

n — 3 n' +2 n" =
that is to say, that the mean motion of the Jirst satellite, minus three times

that of the second, plus twice that of the third, is exactly aiid constantly

equal to zej-o. It is not necessary that this equality should subsist exactly

at the origin, which would not in the least be probable ; it is sufficient

that it did very nearly so, and that n — 3 n' + 2 n" has been less, ab-

straction being made of the sign, than X n V /3; and then that the mutual

attraction has rendered the equality rigorous.

We have next s — 3 s' + 2 «" equal to two right angles ; thus the mean

longitude of theJirst satellite, minus three times that of the second, plus twice

that of the third, is exactly and constantly equal to two right a?igles.

From this theorem, the preceding values of 5 ^', and of 8 v' are reduci-

ble to the two following

a g = (At G — /' E") COS. (n t — n t + 6' — f)

dy'= (/x H — fi" F") sin. (n' t — n t + e' — f).

The two inequalities of the motion of fi' due to the actions of /* and of

/*", merge consequently into one, and constantly remain so.

It also results from this theorem, that the three first satellites can never

be eclipsed at the same time. They cannot be seen together from Jupi-

ter neither in opposition nor in conjunction with the sun ; for the preced-

ing theorems subsist equally relative to the synodic mean motions, and to

the synodic mean longitudes of the three satellites, as we may easily

satisfy ourselves. These two theorems subsist, notwithstanding the alter-

ations which the mean motions of the satellites undergo, whether they

arise from a cause similar to that which alters the mean motion of the

moon, or whether from the resistance of a very rare medium. It is evi-

dent that these several causes only require that there should be added to

d* V d* -vl/

the value of -3—5-, a quantity of the form of , /T 5 and which shall only

become sensible by integrations ; supposing therefore V = w — w, and w

very small, the diflferential equation in V will become

The period of the angle n t V (3 being a very small number of years,

whilst the quantities contained in -j

—

^ are, either constant, or embrace

many ages; by integrating the above equation we shall have



Book I.] NEWTON'S PRINCIPIA. 179

. = Xsin.(ntV/3 + 7)-ji^,.
Thus the value of -a will always be very small, and the secular equa-

tions of the mean motions of the three first satellites will always be order-

ed by the mutual action of these stars, so, that the secular equation of the

first, plus twice thatofthe third, may be equal to three times that of the

second.

The preceding theorems give between the six constants n, n', n",

I, e', f" two equations of condition which reduce these arbitraries to four

;

but the two arbitraries >. and 7 of the value of =r replace them. This

value is distributed among the three satellites, so, that calling p, p', p'' the

coefficients of sin. (n t V jS -f y) in the expressions of v, v', y"^ these

^^ I d * r A."^ V'
coefficients are as the preceding values of -r—y , j-rr > TTtV > ^"^^ more-

over we have p — 3 p' + 2 p" = X. Hence results, in the mean mo-

tions of the three first satellites of Jupiter, an inequality which differs for

each only by its coefficients, and which forms in these motions a sort of

libration whose extent \s, arbitrary. Observations show it to be insen-

sible.

534^. Let us now consider the variations of the excentricities and of the

perihelions of the orbits. For this purpose, resume the expressions of

d f, d f, d i" found in 531 : calling ^ the radius-vector of ih projected

upon the plane of x, y ; v the angle which this projection makes with the

axis of X ; and s the tangent of the latitude of «. above the same plane, we
shall have

X =: g cos. V ; y = e sin. v ; z = j s

whence it is easy to obtain

/d Rx /d Rx /d Rx
^ (ay) - y (tt) = (dr)

/d Rx /d Rx ,- . ,, /d Rx /d Rx
^ Cd^) - ^ (dir) = <^ + '

)
^°^- ^ (itt) - ^ ^ ^^^- ^ ( di)

^ . /d Rx

dR^ _ /dRx ,, . „ . /dRx /d R>

dR^
s cos. V

By 531, we also have

xdy— ydx = cdt; xdz — zdxrrc'dt; ydz— zdy = c dt;

M2
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the differential equations in f, f, i" will thus become

+ ^ ^"'- ^ (av)

}

-'>'{^^-(1i7) +T(av)-^0}-^(^)=
df'=dx(^)-dz{(,+s.)sin.v(^)-,s.si„.v(^4)

/dRx)-scos.v(5^)|

. f /d R\ sin. v/dR\ s. sin. v/dR\) c"dt/dR\
+cdtjcos.v(-^) —(3^) ^(d-3-)/ r^nr)'

df"=dx|(l + s2)cos. v(-jj)— f scos. v(-^)+ ssin. v(^p^)|

+ d y {(1 + s«) sin. v(-^)- ^s. sin. v(^)- s cos. v(^^)
}

. , , r /d R\ sin. v/d R\ s. cos. v /d R\ 1+ 0'.dt|cOS.v(-j^) _(g^) ^.(_)|
. ,, 1 f . /d ll\ . cos. v/d R\ s. sin. v /d R\ )

+ c".dt|si„.v(-3^) + -^(j~) ^-(dj)}- -

The quantities c', c" depend, as we have seen in No. 531, upon the in-

clination of the orbit of U' to the fixed plane, in such a manner that they

become zero when the inclination = ; moreover it is easy to see by the

nature of R that (-^— j is of the order of the inclinations of the orbits

;

neglecting therefore the squares and products of these inclinations, the

preceding expressions of d f and of d f', will become

df = _dy(^)-cd.l.in.v(^^) + -;-.(^)};

df'=d.(^)+cdt{cos.v(^)-i^-M'a|)} =

but we have

d X = d (f COS. v) ; d y = d (j sin. v) ; c d t = x d y — y d x = g* d v,

we therefore get

d f = — Jd f sin. V + 2 g d V cos. v} (^—) — f ' d v sin. v (-^);

d f = {d f COS. V — 2 f d V sin. v] (-g-;;-) + f ' d v cos. v (-j—)•

These equations are more exact, if we take for the fixed plane of x, y,



Book L] NEWTON'S PRINCIPIA. 181

that of the orbit of /t, at a given epoch ; for then c', c" and s are of the

order of the perturbing forces; thus tiie quantities which we neglect, are

of the order of the squares of the perturbing forces, multiplied by the

square of the respective inclination of the two orbits of ict and of fjl.

The values off, d f, d v, \-^— j, (-j— )> remain clearly the same what-

ever is the position of the point from which we reckon the longitudes

;

but in diminishing v by a right angle, sin. v becomes — cos. v, and cos. v

becomes sin. v ; the expression of d f changes consequently to that of

d i' ; whence it follows that having developed, into a series of sines and

cosines of angles increasing proportionally with the times, the value of

d f, we shall have the value of d f ', by diminishing in the first the angles

*, i', «r, w', t and ^ by a right angle.

The quantities f and f ' determine the position of the perihelion, and

the excentricity of the orbit ; in fact we learn from 531, that

tan. 1 = -rr

;

I being the longitude of the periheHon referred to the fixed plane. When
this plane is that of the primitive orbit of [l^ we have up to quantities of

the order of the squares of the perturbing forces multiplied by the square

of the respective inclinations of the orbits, I = w, w being the longitude of

the perihelion upon the orbit ; we shall therefore then have

f
tan. w = —.-

;

which gives

. f f
sin. -a = — = ; cos. w = ——

By 531, we then get^ ^
f ' c' — f d'

me = V i'+ i''+ f"% r = "^

^ ;

thus c' and c" being in the preceding supposition of the order of the

perturbing forces, f" is of the same order, and neglecting the terms of the

square of these forces, we have

m e = V f ^ + f'K

If we substitute for V f "^ + f % its value m e, in the expressions of

sin. w, and of cos. w, we shall have

m e sin. fr = f; me cos. w = f

;

these two equations will determine the excentricity and the position of the

perihelion, and we thence easily obtain

m*. ede = fdf + f'df'j m«e*d^ = fdf — f'df.

M3
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Taking for the plane of x, y that of the orbit of /x ; we have for the

cases of the invariable ellipses,

_ ft ( 1 — 6
') ^

, _ g
- (1 V . e . sin. (v — •»)

^

^ ~ 1 + e cos. (v — «•) ' ^ ~
a(l — e»)

'

g« d V = a« n d t \^ 1 — e^;

and by No. 530, these equations also subsist in the case of the variable

ellipses ; the expressions of d f and of d f will thus become

d f = . [2 cos. v+ l e cos. w+^ e cos. (2 v — »)} .(,- )V 1 — e * (1 V /

— a*ndt V } — e^ sin. v . ( -,—
j

df'= - ;==• 12 sin. v+f e sin. «+ ^ e sin. (2 v - ^)] (1^)

fdRy

S

wherefore

, a n d t . , V c« , / \i /d R\
^ ^ ' = - ^ ^ 1 ..

'•"• (V - -) J2 + e cos. (V _ ^)] [-^)

+ a*ndtVl — e*. cos. v ( -^— j

;

m V 1

a^^. n d t V 1 — e*
, n

/d R>
COS. (V - «r). (-g-^

fd R'
os.'(v — -)i|

a*ndt 7-^ -„ .^ , V /J R>

d e = 1^==.. [2 COS. (v— w) + e + ecos.*(v — ^)] (-r-)mVl — e* ^uv/

m V 1 — e^sin. (V — ^). (-^;).

This expression of d e may be put into a more commodious form in

some circumstances. For that purpose, we shall observe that

substituting for g and d j their preceding values, we shall have

g'dv.e.sm. (v--)(^)=a(l — e'^^rfR— a(l — e^)dv(^^j

but we have

g«d v = a*n d t V 1 — e';

n d t U + e COS. (v — «r)?*

,

d V = = *-.

>t\ 2(l-e«)
wherefore

a^ n d t V 1 — e^ sin. (v — ^). (-jr-)

= »0-«')
, R l^iL, . U + e COS. (V _ .)?'.

C^j?)

;

e evl — e^ "
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the preceding expression of d e, will thus give

, a n d t V 1— e^ /d Rx a (1 — e «) , „
e d e = . ( —.—

)
i a R.m vd V / m

We can arrive very simply at this formula, in the following manner

We have by No. 531,

d c _ ^ /d Rn ^ /d Rx _ /dR\

but by the same No. c= Vma(l — e'^) which gives

, d a V m a (1 -^^ e*) e d e v^ m a

2a V 1— e^ *

therefore

nd t V 1 — e^ /d R\ . ,, ., d a
e

, a n a t V 1 — e' /a ttN , .. j.

^ ^ = m ( dV) + ^ (1 - ^^)
2 a

and then we have by No. 53

1

m d a J ,,

-2^ = -^^'

We thus obtain for e d e the same expression as before.

535. We have seen in 532, that if we neglect the squares of the per-

turbmg forces, the variations of the principal axis and of the mean mo-

tion contain only periodic quantities, depending on the configuration of

the bodies /*, ft', y.'\ &c. This is not the case with respect to the varia-

tions of the excentricities an^ inclinations : their differential expressions

contain terms independent of this configuration and which, if they were

rigorously constant, would produce by integration, terms proportional to

the time, which at length would render the orbits very excentric and

greatly inclined to one another ; thus the preceding approximations, found-

ed upon the smallness of the excentricity and inclination of the orbits,

would become insufficient and even faulty. But the terms apparently

constant, which enter the differential expressions of the excentricities and

inclinations, are functions of the elements of the orbits ; so that they vary

with an extreme slowness, because of the changes they there inti'oduce.

We conceive there ought to result in these elements, considerable inequa-

lities independent of the mutual configuration of the bodies of the system,

and whose periods depend upon the ratios of the masses jct, (l\ &c. to the

mass M. These inequalities are those which we have named secular in-

equalities, and which have been considered in (520). To determine them

by this method we resume the value of d f of the preceding No.

d f =r {2 cos V 4- I e cos. « 4- i e cos. (2v— zM (-5—

)
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— a'ndt V 1 — e^sin v.^-^—j.

We shall neglect in the developement of this equation the square and

products of the excentricities and inclinations of the orbits ; and amongst

the terms depending upon the excentricities and inclinations, we shall re-

tain those only which are constant: we shall then suppose, as in No. 515.

f = a(l + u,); ^ = a'(l + u/)

;

V = n t + g + V/ ; v' = n' t + s' + v/.

Again, if we substitute for R, its value found in 515; if we next con-

sider that by the same No. we have,

/d Rx a /d Rx
\ (^^\

and lastly if we substitute for u^, u/, v^ v/ their values— e cos. (n t+ 1—w),

— e' COS. (n' t + t'— w ), 2 e sin. (n t + f — W), 2 e' sin. (n' t + i' — ^')

given in No. 484, &c by retaining only the constant terms of those which

depend upon the first power of the excentricities of the orbits, and ne-

glecting the squares of the excentricities and inclinations, we shall find

that

,. a/.'ndt . r /dA^oK
, , ,/d^AW.-»df= __.e.sin..|a(-^^)+|a'(^^^j^)|

+ -'"<lt.eVsin..^ { A.-,, (i^) + .a^ (^-^V^aa^

^a/!t'ndt.2|iA «+ a-
a {^^) I

sin.{i(n' t—n t+ s'— + n t+ t];

the integral sign belonging as in the value of R of 515, to all the whole

positive and negative values of i, including also the value of i =r 0.

We shall have by the preceding No. the value of d f, by diminishing

in that of d f the angles £, t', w, «/ by a right angle ; whence we get

Af^ a^'ndt / /dA(°\^, -/d*A(«\\
d f = 2—. e. COS. ^|a {-^—) + i a«

{'^-,-)l

-a.a'ndt. e^ cos.^ | A ^'^+h4-^) +i ^'(-d^) +i^'(dldl0 }

-f a/t'n dt s/i A «+ ^ a (-^
)

J-cos.fi {n't—nt+t'—s)+ n t-f-j].

Let X, for the greater brevity, denote that part of d f, which is con-

tained under the sign 2, and Y the corresponding part of d f. Make also,

»s in No. 522,

0, 1) = —2-1"- i-JT) + '^ " (-dT^)l'
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then observe that the coefficient of e' d t sin. t', in the expression of d f

is reducible to |0, 1| when we substitute for the partial differences in a',

their values in partial differences relative to a; finally suppose, as in 517,

that

e sin. w = h ; e' sin. w' = h'

e cos. w = 1 ; e' cos. s/ = 1'

which gives by the preceding No. f = m 1, f = m h or simply f = 1,

i' = hj by taking M for the mass-unit, and neglecting At with regard to

M ; we shall obtain

^ = (0, l).l-[orT!.F+aA^'nY;

^ = — (0, 1). h + |o71[. h' — a / n. X.

Hence, it is easy to conclude that if we name (Y) the sum of the terms

analogous to a i^' n Y, due to the motion of each of the bodies /«.', /*'', &c.

upon (U-; that if we name in like manner (X) the sum of the terms analo-

gous to — a At' n X due to the same actions, and finally if we mark suc-

cessively with one dash, two dashes, &c. what the quantities (X), (Y), h,

and 1 become relatively to the bodies /i', (j/\ &c. ; we shall have the fol-

lowing differential equations,

dh^ - \{% 1) + (0, 2) 4- Sccl 1 -^ r - jori F' - &c. + (Y);

^ = - f(Q, 1) + (0, 2) -I- &c.? h + .OTTI h' + lO^I h'' + &C-H (X);

^ = Ui, 0) + (1, 2) + &c.] r - [Toi 1 - [Ql \" - &c. + (Y') •

dl^ = - f(l, 0) + (1, 2) + &C.1 h' + [IJ h + |1, 2!h^H&c.+ (X0

&c.

To integrate these equations, we shall observe that each of the quanti-

ties h, 1, h', 1', &c. consists of two parts ; the one depending upon the

mutual configuration of the bodies «, /i', &c. ; the other independent of

this configuration, and which contains the secular variations of these quan-

tities. We shall obtain the first part by considering that if we regard

bat alone, h, 1, h', 1', &c. are of the order of the perturbing masses, and

consequently, (0, 1). h, (0, 1). 1, &c. are of the order of the squares of
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these masses. By neglecting therefore quantities of this order, we sliall

have

^^ = (Y);^ = (X);

wherefore,

h =/(Y) d t; 1 =/(X) d t; h' =/(Y0 d t; &c.

If we take these integrals, not considering the variability of the ele-

ments of the orbits and name Q whaty* (Y) d t becomes ; by calling 3 Q
the variation of Q due to that of the elements we shall have -'

/(Y)dt = Q-/aQ;
but Q being of the order of the perturbing masses, and the variations of

the elements of the orbits being of the same order, 5 Q is of the order of

the squares of the masses ; thus, neglecting quantities of this order, we

shall have

/(Y) d t = Q.

We may, therefore, take the integrals/ (Y) d t, / (X) d t, / (Y') d t,

&c. by supposing the elements of the orbits constant, and afterwards con-

sider the elements variable in the integrals ; we shall after a very simple

method, obtain the periodic portions of the expressions of h, 1, h', &c.

To get those parts of the expressions which contain the secular inequa-

lities, we observe that they are given by the integration of the preceding

differential equations deprived of their last terms, (Y), (X), &c. ; for it is

clear that the substitution of the periodic parts of h, 1, h', &c. will cause

these terms to disappear. But in taking away from the equations their

last terms, they will become the same as those of (A) of No. 522, which

we have already considered at great length.

536. We have observed in No. 532, that if the mean motions n t and

n' t of the two bodies /* and ^a', are very nearly in the ratio of i' to i so

that i' n' — in may be a very small quantity ; there may result in the

mean motions of these bodies very sensible inequalities. This relation of

the mean motions may also produce sensible variations in the excentrici-

ties of the orbits, and in the positions of tlieirperihelions. To determine

them, we shall resume the equation found in 534,

e d e = an d t. <•! — e«

\ d v / mm
It results from what has been asserted in 515, that if we take for the

fixed plane, that of the orbit of /(*, at a given epoch, which allows us to
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neglect in R the inclination p of the orbit of fi to this plane; all the terms

of the expression of R depending upon the angle i' n' t — i n t, will be

comprised in the following form,

M>' k COS. (i' n' t— i n t + i' £' — i £ -— g ar — g' ^ _ g'' ^),

i, i', g, g , ^' being whole numbers and such that we have = i'-i-g-g'-g".

The coefficient k has the factor e ^. e' §' (tan. J fQ s'^;
g, g', g^' being taken

positively in the exponents : moreover, if we suppose i and i' positive, and

i' greater than i ; we have seen in No. 515, that the terms of R which

depend upon the angle i' n' t — i n t are of the order i' — i, or of a su-

perior order of two, of four, &c. units ; taking into account therefore only

terms of the order i' — i, k will be of the form e 8. e' «' (tan. ^ (p') «". Q,

Q being a function independent of the excentricities and the inclination

of the orbits. The numbers g, g', g" comprehended under the symbol

COS., are then positive ; for if one of them, g for instance, be negative and

equal to — f, k will be of the order f + g + g'' ; but the equation = i'

— i — g — g^ — g" gives f + g' 4- g" = i' — i + 2 f ; thus k will be

of an order superior to i'— i, which is contrary to the supposition. Hence

hy No. 515, we have f -j— j = f -,—) provided that in this last partial

/d Ti
difference, we make t — w constant; the term of (-^—\ corresponding

to the preceding term of R, is therefore

tt' (i + g) k sin. (i' n' t — i n t + iV — i e — g ty — g ar' — g'' 6').

The corresponding term of c? R is

tt' /3 i n k d t sin. (i' n' t — i n t + i' e' — is — go-— g' z^' — g" ^).

Hence only regarding these terms and neglecting e * in comparison witli

unity, the preceding expression of e d e, will give

J /i' a n d t ff k . ... , . ,, , . / / ,, «d e = . 2_ sm. (i' n' t — 1 n t + i' « — i «—g ^^

—

g' ^'—^' 6")

,

but we have

~ = g e«-'. e'«'. (tan. h p')«". Q = {^~);

integrating therefore we get

/^' a n /d k\ ,., , . ... - , , „ ,„e = -^y—.—;— f — ) cos. (i n t—1 n t + r s'— i t—<r »—</ «r'

—

gf^ y).m(rn

—

an)vde/ ^ & fo 6 /

The sum of all the terms of R, however, which depend on the angle

i' n' t — i n t^ being represented by the following quantity

/*'. P sin. (i' n' t— i n t + i' £' -- i + "' P' cos. (i' n' t— i n t + i' i'—i i)

the corresponding part of e will be

H'&, {
(^)sin.(i'n't-int+iV-i,)+(i|')co..(i'n'Mn.+iV-i.)}.
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This inequality may become very sensible, if the coefficient i' n' — in
is very small, for it actually takes place in the theory of Jupiter and Sa-

turn. In fact, it has for a divisor only the first power of i' n'— i n, whilst

the corresponding inequality of the mean motion, has for a divisor the se-

cond power of this quantity, as we see in No. 532; butT-^

—

\ and (-.—

j

being of an order inferior to P and P', the inequality of the excentricity

may be considerable, and even surpass that of the mean motion, if the

excentricities e and e' are very small; this will be exemplified in the

theoiy of Jupiter's satellites.

Let us now determine this corresponding inequality of the motion of

the perihelion. For that purpose, resume the two equations

, fdf+f'df ,, fdf — f'dfede = 2 ,e*dw = 5
;

m*^ m^
which we found in No. 534. These equations give

d f = m d e cos. w — m e d w. sin. w

;

thus with regard only to the angle

i' n' t— i n t + i' f' — i « — g » — g =/' — g" ^'>

we shall have

d f = At', a n d t(^) cos. « sin. (i' n' t— i n t+ i' «'—i t—g«—g' ^'—g'^')

— m e d w . sin. w.

Representing by

— ^'. an dt
-[ (^) +k'} cos. (i' n' t—i n t + i' ^'—i s—g^-.g'^'—g"ff),

the part of m e d w, which depends upon the same angle, we shall have

d f = /.'. a n d t
{ (^) + ^k'} sin.(i' n' t-i n t+ i' *'-i «—(g-l)^-g'«-'-g"^0

_^^Jli-tk'sin.(i'n't— int+i'e'— is— (g + 1)*—g'-'— g^'O-

It is easy to see by the last of the expressions of d f, given in the No.

634, that the coefficient of this last sine has the factor e 8+ 1. e' s' (tan. ^ f)«"

;

k' is therefore of an order superior to that of (-r- ) by two units ; thus,

in neglecting it in comparison to \-r—) j we shall have

_^andt /dkx
cos.(i'n't-int+ i'''-i^-g— g'-'— g"^)

m \d e/

for the term of e d «r, which corresponds to the term

/ k COS. (i' n' t — i n t + i' f' — i s — g w — g' «r' — g'' ^K),
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of the expression of R. Hence it follows that the part of w, which cor-

responds to the part of R expressed by

ft! P sin. (i' n' t— i n t + i' s'— i s) + /^' F cos. (i' n' t— i n t + i' s'— i e),

is equal to

At', a n / / d P\ /.,,.• ., , . V /d P\ . ,•, ,^ • ^ . -, . s\
—r. , / • X • 1 {

-1— ) cos.(i n t-int+i £ -If)- ( -1— 1 sin.(rn t-int+r «-is) \ :

m(in-in)e l^de/ ^ '^Vde/ ^ J

we shall therefore, thus, after a very simple manner, find the variations

of the excentricity and of the perihelion, depending upon the angle

i' n' t — i n t + i' e' — i e. They are connected with the variation ^ of

the corresponding mean motion, in such a way that the variation of the

excentricity is

Sin vde.dt/'

and the variation of the longitude of the perihelion is

i' n' — in /d ^\

Sine * vcTe/

The corresponding variation of the excentricity of the orbit of At', due

to the action of At, will be

L_ f_ilil>|
3i'n'. e'* Vde'.dt-^'

and the variation of the longitude of its perihelion, will be

i' n' — in /d ^\~ 3 i' n' e' Vd~?J

'

and since by No. 532, X! — — —.—;—, . <?, the variations will be
•^ ^

A"- V a ^

At- ^ a /d'^^x j(i'^ — in)A''Va d^
3 1. n'. At' V a' VdiQ t>)

* Si'n'.eV'Va' ' d~e'

'

When the quantity i' n' — i n is very small, the inequality depending

upon the angle i' n' t — i n t, produces a sensible one in the expression

of the mean motion, amongst the terms depending on the squares of the

perturbing masses ; we have given the analysis of this in No. 532. This

same inequality produces in the expression of d e and of d w, terms of

the order of the squares of the masses, and which, being only functions of

the elements of the orbits, have a sensible influence upon the secular

variations of these elements. Let us consider, in fact, the expression of

d e, depending on the angle i' n' t — int.

By what precedes, we have •

de = — At', a n . d t

I (t—\ cos. (i' n' t — i n t + i' e' — i t)

— (-Tj— ) • sin. (i' n' t — i n t + i' f' — i f)

I
•



190 A COMMENTARY ON [Sect. XI.

By No. 532 the mean m<>tion n t, ought to be augmented by

r
?' ^ K ^

' I Pcos. (i'n't—int+i's'—iO—Fsin.(i' n' t-i n t+i' «'—i \
(in— inf.m I

^ ')

and the mean motion n' t, ought to be augmented by

— rJ—r-—^^vi— • -riT—7 -iP COS. (i n' t — 1 n t + 1 i' — i «)
—

(r n'— \n)\m. ijf V of

V sin. (i' n' t — i n t + i' s' — i ^)}.

In virtue of these augments, the value of d e will be augmented by the

function

and the value of d w will be augmented by the function

3/a^in3. dt c- , , , , v / 7 / o /^ Pn
, ^, /d P\ \-—

g 7 //•/ / • si> »ii/^ Va'+ iV Va^ iP.l:^— ) + P (-5—) f •

2m^ Va (rn'— in)\e l \d e / \de/J

In like manner we find that the value of d e' will be augmented by the

function

3Ata^Va.in^dt ,. , , , . -, / , /t* /'^ P\ r./ /'^ P\ I
2 m ^ a'. (1' n'-i n) ^ ^ M \d e' / \d e / J

and that the value of d e' will be augmented by the function

3/!*a^ Va.in^dt
s- > / ' ^ " / 7 Jo /d P\

, r»//d PM
2m^a. (rn'— in)%e' t vd eV ' \d e' / J

These different terms are sensible in the theory ofJupiter and Saturn, and

in that of Jupiter's satellites. The variations of e, e', w, w' relative to the

angle i' n' t— i n t may also introduce some constant terms of the order of

the square of the perturbing masses in the differentials d e, d e', dw, and d«r',

and depending on the variations of e, e', t?, w' relative to the same angle.

This may easily be discussed by the preceding analysis. Finally it will

be, easy^ by our -analysis, to determine the terms of the expressions of

e, 9, e', «r' which depending upon the angle i' n' t — i n t + i' *' — i *

have not i' n' — in for a divisor, and those which, depending on the same

angle and the double of this angle, are of the order of the square of the

perturbing forces. These different terms are sufficiently considerable in

the theory of Jupiter and Saturn, for us to notice them : we shall deve-

lope them to the extent they merit when \ye come to that theory.

537. Let us determine the variations of the nodes and inclinations of

the orbits, and for that purpose resume the equations of 531,
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ac' = c,t{z(^)-x(^)},

If we only notice the action of/*', the value of R of No. 513, gives

f__i___ I
,

d Rx /d K
1 = (/. i^x y — X y) X

J - I -\
^2 + 2' 2) I J(x'— x)»+(/ --y)^+ (z'— z)'^J^

r__ ^ — L A,
\ (x' ^ + y'

^ + z'
')

*
j(x' — x)«+ (y'— y)'+ (z'— z)*]

2' i

Let however,

c" c'

the two variables p and q will determine, by No. 531, the tangent of the

inclination cp of the orbit of /», and the longitude 6 of its node by means of

the equations

tan. p = V p * + q 2 ; tan. 4 = -^

.

Call p', q', p", q'', &c. what p and q become relatively to the bodies

(I'f f//'y &c. : we shall have by 531,

z = q y — p X ; z' = q' y' — p' x'> &c.

The preceding value of p differentiated gives

dp_l dc" — pdc
dT ~

"c"* dl '

substituting for d c, and d c" their values we get

^ = f-Kq-q)y/+(p'-p)^'yl x

l(x'» + y'« + z'«)"2 f(x'— x)« + (y— y)^ + (!^— z)«J^J

In like manner we find

^=^ Kp' - p) X X' + (q - qO x y'} X
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r
1

,
I )

If we substitute for x, y, x', y' their values g cos. v, » sin. v, ^' cos. v',

f'
sin. v', we shall have

(q-qO y / + (p'—p) x' y = ^-^. ? f'.
{cos. (v'+v) _ cos. (v'—v)|

+ ^^-^'S /• isin. (v'+v) — sin. (v—v)];

(p'~p) X x' + (q—q') X / = 2^^ . *
f'. {cos. (v'+v) + cos. (V—v)|

+ ^-^ . ^ f'.
{sin. (v'+v) + sin. (v'—v)}.

Neglecting the excentricities and inclinations of the orbits, v, e have

§ = a; V = n t + £ ;
^' = a' ; v' =r n' t + t'

;

which give

1 I _ 1___

(X'«+ y'«+ z'^y {(X' — X)« + (y'_y)^+ (z' — z)^]^
~ ^"

1

{a* — 2 a a' cos. (u' t — n t + s' — s) + a' *]
»

moreover by No. 516,

3 = ^ 2. B (". COS. i (n' t—n t+/—e)

{a«—2 a a' cos. (n' t—n t+ e'—t) + a' ^p

the integral sign 2 belonging to all whole positive and negative values of

i, including the value i = 0; we shall thus have, neglecting terms of the

order of the squares and products of the excentricities and inclinations of

the orbits,

dp ^ q;^^ /^^ j^^g^ (n' t+ n t + .' + s)_cos. (n' t-n 1+.'-,)!
cl t <b c a

+ ^^^-^-{sin. (n't+ n t+i'+O— sin.(n't— nt+ t'—«)}
i£ c a

+ ^^^ . fi'. a a'. 2. B P) {cos.[(i+ 1) (n t—n t+t'—0]
4) c

--cos.C(i+l)(n' t—n t+g'— + 2nt+2e]]

+ ^^^-^ . fi'. a a'. 2. B (') {sin.C(i+l) (n' t—n t+a'—OJ

— sin.[(i+l) (n't—n t+«'—0+ 2nt+2e]|.

^ = ^- 4f . {cos. (n' t + n t + I' + + cos.(n' t-n t+^-0{
Q V A c a '
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+ 5^. 'fL^
, Jsin. (n' t + n t + a' +e) + sin. (n' t-^nt+Z—01

+ P^^
. /i'. a a'. 2. B ^'^^cos. [(i+ 1) (n' t—n t+s'—0]

+ COS. [(i+l) (n't—n t+«'— + 2n t+2 0J

+ 2^./.aa'.2.BP).fsin. [(i+1) (n't—n t+i'—0]

+ sin. [(i+1) (n't—n t+£'— + 2nt+2O].

The value i = — 1 gives in the expression of ~-, the constant quan-

tity -L—I . /j^\ a a' B ^-" ^^ ; all the other terms of tlie expression of -r^

are periodic : denoting their sum by P, and observing that B ^~ ^^ = B '^'

by 516, we shall have

^ = S:-=l9.^^aa'.Bn) + P.
d t 4 c

By the same process we shall find, that if we denote by Q the sum of

all the periodic terms of the expression of -r—^ > we shall have

-j-9 = P-7lP-.^'. aa'. B(^) + Q.
d t 4 c

d^

d

If we neglect the squares of the excentricities and inclinations of the

orbits, by 531, we have c = 'V^ m a, and then supposing m =: 1, we

have n * a ^ = 1 which gives c = — ; the quantity ———^ thus be-

jto'. a * a', n B ^^^

comes — £ which by 526, is equal to (0, 1); hence we get

^ = (0, l).(q'-q)+P;

^ ^ = (0, 1). (p - pO + Q.

Hence it follows that, if we denote by (P) and (Q) the sum of all the

functions P and Q relative to the action of the different bodies /x-'j A^"* &c.

upon /i ; if in like manner we denote by (P'), (Q'), (P"), (Q")> &c. what

(P) and (Q) become when we change successively the quantities relative

to fi into those wliich are relative to /*', /x", &c. and reciprocally ; we shall

have for determining the variables p, q, p', q', p'', q", &c. the followmg

system of differential equations,

IP = —{(0, 1) + (0, 2) + &c.} q + (0, 1). q' + (0, 2) q"+ &c.+ (P);

Vol. II. N
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i^ = [{0, 1) + (0, 2) + &c.| p — (0, 1) p' — (0, 2) p" — Scc.+(Q)

;

^ = ~[{l, 0) + (1, 2) + &c.] q' + (1, 0) q+ (1, 2) q''+ &c.+ (F);

^'=f(l, 0) + (1,2) + &C.1.P' — (1, 0)p-(l, 2)p"-&c.+ {Q');

&c.

The analysis of 535, gives for the periodic parts of p, q, p', q', &C.

p =/{P).dt; q =/(Q). dt;

p'=/(F).dt; q'=/(Q').dt;
&c.

We shall then have the secular parts of the same quantities, by inte-

grating the preceding differential equations deprived of their last terms

(P), (Q), (P')} &c. ; and then we shall agaia hit upon the equations (C)

of No. 526, which have been sufficiently treated of already to render it un-

necessary again to discuss them.

538. Let us resume the equations of No. 531,

tan. 9 = ; tan. 6 = —^ c c

whence result these

c c''— = tan. © cos. 6: - = tan. p sin. d.CO
Differentiating, we shall have

d tan. p = — {d c' cos. 6 -{• d c" sin. & — d c tan. p}

d 6 tan. p = - {d c" cos. 6 -— do' sin. 6],

d c d c' d c''
If we substitute in these equations for -r~ , -,— , --r— , their values

/d Rx /d Rx /d Rx /d Rx /d Rx /d Rx , „

y (dT)-nd7)'Hdir)-ndT)' ndT)-nd7)' ^"^^^"^

these last quantities their values given in 534 ; if moreover we observe

that s = tan. p sin. (v — 6), we shall have

J , ^ d t tan. ?i COS. (v - ^) J /d Rx . . .\
,
/d R\ , ..\

d . tan. f = ^—5^
. \s (-gy) sm.(v-^)+ [-^^) cos.(v-^)

|

(1 + s'^)dt , . /d Rx

,. ^ d t tan. ® sin. (v - tf) f /d R\ . , .\ .
/d R\

/ a \\d 6 . tan.
f.
= ^^—^ '-

\g .

{^^ ) sin.(v-0+(^ cos.(v^)}

(1 + s«)dt . , ,v/dRx
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These two differential equations will determine directly the inclination

of the orbit and the motion of the nodes.

They give

sin. (v — b) d tan. <p — d ^ cos. (v — 6) tan. p = ;

an equation which may be deduced from this

s = tan. <p sin. (v — d)

;

in fact, this last equation being finite, we may (530) differentiate it whe-

ther we consider <p and 6 constant or variable ; so that its differential,

taken by only making p and 6 vary, is nothing ; whence results the pre-

ceding differential equation.

Suppose, however, that the fixed plane is inclined extremely little to the

orbit of fi, so that we may neglect the squares of s and tan. p, we shall

have

d . tan. <p = —— COS. {v -r- 6) . (-^);

J A d t . , .. /d R\
d 6 tan. p = sm. (v — 6) [-^);

by making therefore as before

p = tan. (p sin. ^ ; q = tan. (p cos. 6

;

we shall have, instead of the preceding differential equations, the follow-

ing ones,

, dt /d R\dq = -.-cos.v.(^);

d t . /d Rx
dp = --sm.v.(^);

But we have also

s = q sin. v — p cos. v

which gives

/dRx _ 1 /dRx /d Rx 1_ /d_Rx

\ ds /
""

sin. V * \d q /' \ds/ cos. v vdp/*

wherefore

, dt/dRx
^^ = T:(dlp)'

d t/d R^, a t/a Jttx

dq

We have seen in 515 that the function R is independent of the po-

sition of the fixed plane of x, y ; supposing, therefore, all the angles of

that function referred to the orbit of /a, it is evident that R will be a

function of these angles and the respective inclination oftwo orbits, an

N2
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inclination we denote by f/. Let ^/ be the longitude of the node of the

orbit of ii! upon the orbit of ^t ; and supposing that

II' k (tan. <pI)
« cos. (i' n' t— i n t + A — g ^/)

is a term of R depending on the angle i' n' t — i n t, we shall have, by

527,

tan. <^l , sin. ^/ = p' — p ; tan. p/ cos. ^/ = q' — q

;

whence we get

(tan. ?/) « sin. g ,/=fq-q+(P'-P)
V-li'--iq'-q-(p'-p)V-lj

(tan. ?/) . COS. g V=
iq'-q+ (p--p) ^-1S^+ Sg'-g- (p'-p) ^/-U '

.

With respect to the preceding term of R, we shall have

{—)=— g (tan. <p;)
«-» ^' k . sin. ^i' ri' t—i n t+A—(g— 1 ) &;\

;

(^)=—g (tan. p/)8-V k COS. Ji' n' t— i n t+A—(g— 1 ) d/].

If we substitute these values in the preceding expressions of d p and

d q, and observe that very nearly c = — , we shall have
•^ "^ a n

gfL k.an
^ y_^^ ^.^^

J.,
^, j_i „ j_j.A—(g-1) ^/J'^ m (i n'— 1 n) ^ ' vo

/ / j

_g A^qc^^n
^ ^^^ , ^^^^ ^i' n t— i n t+A—(g—1) 6f].

Substituting these values in the equation

s = q sin. v — p cos. v

we shall have

ff.^'k.an , #x 1 . ,., • . i / \\./-,s= ^:^jrf-, ^^ (tan. ip/)«-^ sm. fi' n' t— i n t— v+A—(g —1) 6/].m (r n — i n) ^ ^' ^ * \.o / / j

This expression of s is the variation of the latitude corresponding to

the preceding term of R : it is evident that it is the same whatever may

be the fixed plane to which we refer the motions of /ot and /*'> provided that

it is but little inclined to the plane of the orbits ; we shall therefore thus

have that part of the expression of the latitude, which the smallness of the

divisor i' n' —-in may make sensible. Indeed the inequality of the lati-

tude, containing only the first power of this divisor, is in that degree

less sensible than the corresponding inequality of the mean longitude,

which contains the square of the same divisor ; but, on the other hand,

tan, <p/ is then raised to a power less by one ; a remark analogous to that

which was made in No. 536, upon the corresponding inequality of the

excentricities of the orbits. We thus see that all these inequalities are
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connected with one anothei", and with the corresponding part of R, by
very simple relations.

If we differentiate the preceding expressions of p and q, and if in tlie

values of ~- and -7-* we augment the angles n t and n' t by the inequa-

lities of the mean motions, depending on the angle i' n' t — i n t, there

will result in these differentials, quantities which are functions only of the

elements of the orbits, and which may influence, in a sensible manner, the

secular variations of the inclinations and nodes although of the order of

the squares of the masses. This is analogous to what was advanced in

No. 536 upon the secular variations of the excentricities and aphelions.

539. It remains to consider the variation of the longitude s of the epoch.

By No. 531 we have

— d ^ [E ^'^ cos. (v— z^) + E '^' cos. 2 (v— «r) + &C.1

;

substituting for E ^'^, E ^% &c. their values in series ordered according to

the powers of e, series which it is easy to form from the general expres-

sion of E ' (473) we shall have

d £ = — 2 d e sin. (v— t?) + 2 e d w cos. (v— w)

+ede [^ + 1 e2+&c.] sin. 2 (v—z=r)_eMt^ J|+ i e«+&c.]cos.2(v—zr)

— eMe U 4- &c.] sin. 3(v— z^)+ eM^^U + &c.} cos. 3 (v-— z^r)

-H&c.

If we substitute for d e and e d w their values given in 534, we shall

6nd, carrying the approximation to quantities of the order e * inclusively,

dt = ^''"'^Vl—eM2— fecos. (v— z.)+e'=cos.2(v-^z^)|.(i^)

. e . sin. (v — z^) {I + i e cos. (v— »)] ( --5—^

.

mVl — e'
^ /i-r- V ^'Vd^;

The general expression of d i contains terms of the form

At' k . n d t . cos. (i' n' t — i n t + A)

and consequently the expression of s contains terms of the form

-.—

;

:— sm. (i n' t — 1 n t + A)

:

in — 1 n ^

but it is easy to be convinced that the coefficient k in these terms is of

the order i' — i, and that therefore these terms are of the same order as

those of the mean longitude, which depend upon the same angle. These

having the divisor (i' n' — in) *, we see that we may neglect the corre-

sponding terms of ?, when i' n' — i n is a very small quantity.

N3
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If in the terms of the expression of d e, which are solely functions of the

elements of the orbits, we substitute for these elements the secular parts

of theur values ; it is evident that there will result constant terms, and

others affected wlih the sines and cosines of angles, upon which depend

the secular variations of the excentricities and inclinations of the orbits.

The constant terms will produce, in the expression of e, terms propor-

tional to the time, and which will merge into the mean motion /a. As to

the terms affected with sines and cosines, they will acquire by integration,

in the expression of «, very small divisors of the same order as the per-

turbing forces ; so that these terms being at the same time multiplied and

divided by the forces, may become sensible, although of the order of the

squares and products of the excentricities and inclinations. We shall see

in the theory of the planets, that these terms are there insensible; but in

the theory of the moon and of the satellites of Jupiter, they are very sen-

sible, and upon them depend the secular equations.

We have seen in No. 532, that the mean motion of /», is expressed by

—
- //a n d t . c? R,

and that if we retain only the first power of the perturbing masses, d R
will contain none but periodic quantities. But if we consider the squares

and products of the masses, this differential may contain terms which are

functions only of the elements of the orbits. Substituting for the elements

the secular parts of their values, there will thence result terms affected with

sines and cosines of angles depending upon the secular variations of the

orbits. These terms will acquire, by the double integration, in the ex-

pression of the mean motion, small divisors, which will be of the order of

the squares and products of the perturbing masses; so that being both

multiplied and divided by the squares and products of the masses, they

become sensible, although of the order of the squares and products of the

excentricities and inclinations of the orbits. We shall see that these terms

are insensible in the theoiy of the planets.

540. The elements of fj>*s orbit being determined by what precedes, by

substituting them in the expressions of the radius-vector, of the longitude

and latitude which we have given in 484, we shall get the values of these

three variables, by means of which astronomers determine the position of

the celestial bodies. Then reducing them into series of sines and cosines,

we shall have a series of inequalities, whence tables being forined, we may

easily calculate the position of fji. at any given instant.

This method, founded on the variation of the parameters, is very useful
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in tlie research of inequalities, which, by the relations of the mean motions

of the bodies of the system, will acquire great divisors, and thence become

very sensible. This sort of inequality principally affects the elliptic ele-

ments of the orbits ; determining, therefore, the variations which result

in these elements, and substituting them in the expression of elliptic mo-

tion, we shall obtain, in the simplest manner, all the inequalities made

sensible by these divisors.

The preceding method is moreover useful in the theory of the comet':.

We perceive these stars in but a very small part of their courses, and ob-

servations only give that part of the ellipse which coincides with the arc

of the orbit described during their apparitions ; thus, in determining the

nature of the orbit considered a variable ellipse, we shall see the changes

undergone by this ellipse in the interval between two consecutive appari-

tions of the same comet. We may therefore announce its return, and

when it reappeai's, compare theory with observation.

Having given the methods and formulas for determining, by successive

approximations, the motions of the centers of gravity of the celestial bo-

dies, we have yet to apply them to the different bodies of the solar system

:

but the ellipticity of these bodies having a sensible influence upon the

motions of many of them, before we come to numerical applications, we

must treat of the figure of the celestial bodies, the consideration of which

is as interesting in itself as that of their motions.

SUPPLEMENT
TO

SECTIONS XII. AND XIII.

ON ATTRACTIONS AND THE FIGURE OF THE CELESTIAL BODIES.

541. The figure of the celestial bodies depends upon the law of gravi

tation at their surface, and the gravitation itself being the result of the at-

tractions of all their parts, depends upon their figure; the law of gravi-

ty at the surface of the celestial bodies, and their figure have, therefore, a

reciprocal connexion, which renders the knowledge of the one necessary

to the determination of the other. The research is thus Very intricate,
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and seems to require a very particular sort of analysis. If the planets were

entirely solid, they might have any figure whatever ; but if, like the earth,

they are covered with a fluid, all the parts of this fluid ought to be dis-

posed so as to be in equilibrium, and the figure of its exterior surface de-

pends upon that of. the fluid which covers it, and the forces which act

upon it. We shall suppose generally that the celestial bodies are covered

willi a fluid, and on that hypothesis, which subsists in the case of the earth,

and which it seems natural to extend to the other bodies of the system of

the wox'ld, we shall determine their figure and the law of gravity at their

surface. The analysis which we propose to use is a singular application

of the Calculus of Partial Differences, which by simple differentiation, will

conduct us to very extensive results, and which with difficulty we should

obtain by the method of integrations.

THE ATTRACTIONS OF HOMOGENEOUS SPHEROIDS BOUNDED BY SURFACES

OF THE SECOND ORDER.

542. The different bodies of the solar system may be considered as

formed of shells very nearly spherical, of a density varying according to

any law whatever ; and we shall show that the action of a spherical shell

upon a body exterior to it, is the same as if its mass were collected at its

center. For that purpose we shall establish upon the attractions of sphe-

roids, some general propositions which will be of great use hereafter.

Let X, y, z be the three coordinates of the point attracted which we

call fi ; let also d M be the element or molecule of the spheroid, and

x', Yi z' the coordinates of this element ; if we call g its density, f
being a

function of x', y', z' independent of x, y, z, we shall have

d M = g.dx'.dy'.dz'.
Tlie action of d M upon fL decomposed parallel to the axis of x and

directed towards their origin , will be

g d x\ d y^ d z^ (X — xQ

J(x _ xO= + (y — yO' + (z — ^V} ^

and consequently it will be equal to

'

,

g d x' . d y' . d z'

—

i

V(x — x-)' + (y— yO«-t- (z-zQ' I .

V d x y
cnlling therefore V the integral/f d x' . d y' . d z'

V (x— x') *
-t- (y - yTM- (z — z')

'

extended to the entire mass of the spheroid, we shall have — (-,—

j
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for the total action of the spheroid upon the point j«., resolved parallel to

the axis of x and directed towards its origin.

V is the sum of the elements of the spheroid, divided by their respec-

tive distances from the point attracted ; to get the attraction of the sphe-

roid upon this point, parallel to any straight line, we must consider V as

a function of three rectangular coordinates, one of which is parallel to this

straight line, and differentiate this function relatively to this coordinate;

the coefficient of this differential taken with a contrary sign, will be the

expression of the attraction of the spheroid, parallel to the given straight

line, and directed towards the origin of the coordinate which is parallel to

it.

If we represent by /3, the function ^x— x')*+(y

—

y'Y+{2— z'Y];
we shall have

V =//3.^dx'dy'dz'.
The integration being only relative to the variables x', y', z', it is evi-

dent that we shall have

But we have

^ - Cd^) + CdyO + VdT^

'

in like manner we get

^ = fe) + (dyO + KdT^J' (^^

This remarkable equation will be of the greatest use in the theory of the fi-

gure of the celestial bodies. We may present it under more commodious

forms in different circumstances ; conceive, for example, from the origin

of coordinates we draw to the point attracted a radius which we call f

;

let 6 be the anifle which this radius makes with the axis of x, and « the

angle which the plane formed by § and this axis makes with the plane of

X, y; we shall have

X = ^ cos. ^ ; y = f sin. 6 cos. mr ; z = g sin. 6 sin. w

;

whence we derive
,

X . z
p = Vx^'+y'^+z-; cos. ^ = ; tan. w = —

;

thus we can obtain the partial differences of
f, 6, ir, relative to the varia-

bles x, y, z, and thence get the values of (^-^) > (dV*") ' ( dTz^)



i02 A COMMENTARY ON [Sect. XII. & XIII.

in partial differences of V relative to the variables
f, 6, nr. Since we shall

often use these transformations of partial differences, it is useful here to

lay down the principle of it. Considering V as a function of the variables

X, y, z, and then of the variables
f,

d, w, we have

/d V\ _ /d V\ /d ^\ /d V\ /d ^\ /d V\ /d «r\

To get the partial differences ( t-^) » ( t~ ) > (j~') » ^^'® must make

X alone vary in the preceding expressions of §, cos. 6, tan. w ; differentiat-

ing thejefore these expressions, we shall have

/d g\ /d ^^ sin. ^ /dw\ ^

(a-x) = 'o^- ' (dx) =
-
-T' (d x)

= "

'

which giveso*
/d V\ ^/dV\ sin. ^ /d V\(^^-)=cos.^(-^)-_- (^).

d\'
Thus we therefore get the partial difference (-,—^ , in partial differ-

ences of the function V, taken relatively to the variables g, 6, -a. Differ-

entiating again this value of f-r

—

\ , we shall have the partial difference

^T—2
jin partial differences of V taken relatively to the variables g, ^, w.

/d'^Vx /d^V\
By the same process the values of f ^

—

^\ and [-.—^Jmay be found.

In this way we shall transform equation (A) into the following one:

,d^>

And ifwe make cos. ^ = m, this last equation will become

K ^

dn. "^ V + fep+ ^(^) •
'">

543. Suppose, however, that the spheroid is a spherical shell whose

origin of coordinates is at the center ; it is evident that V will only de-

pend upon
f,

and contain neither m nor «r ; the equation (C) will therefore

give

whence by integration we get
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A and B being two arbitrary constants. We therefore have

__ /d_VN _ B_

d V
J— expresses, by what precedes, the action of the spherical shell upon

s

tlie point /i, decomposed along the radius g and directed towards the

center of the shell ; but it is eA'ident that the total action of the shell

ought to be directed along this radius; — (-j— j expresses therefore

the total action of the spherical shell upon the point ^.

First suppose this point placed within the shell. If it were at the center

itself, the action of the shell would be nothing ; we have therefore.

d Vn . B

d V,

/d Vx ^ B- (-37) = ^'
«V = ''^

when f = 0, which gives B = 0, and consequently — f -^—^ = 0, what-

ever g may be ; whence it follows that a point placed in the interior of the

shell, suffers no action, or \vhich comes to the same thing, it is equally at-

tracted on all sides.

If the point fi is situated without the spherical shell, it is evident, sup-

posing it infinitely distant from the center, that the action of the shell

upon the point will be the same, as if all the mass of the shell were con-

densed at this center; calling, therefore Mthe mass of the shell, — (-5—
)

or —^ will become in this case equal to —- , which gives B=M ; we have

therefore generally relatively to exterior points,

\dg) -
s'

that is to say, the shell attracts them as if all its mass were collected at

its center.

A sphere being a spherical shell, the radius of whose interior surface is

nothing, we see that its attraction, upon a point placed at or above its

surface, is the same as if its mass were collected at its center.

This result obtains for globes formed of concentric shells, varying in

density from the center to the circumference according to any law what-

ever, for it is true for each of the shells : thus since the sun, the planets,

and satellites may be considered nearly as globes of this nature, they at-

tract exterior bodies very nearly as if their masses were collected into

their centers of gravity. This is conformable with what has been found by
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observations. Indeed tlie figure of tlie celestial bodies departs a lit-

tle from the sphere, but the difference is very little, and the error which

results from the preceding supposition is of the same order as this sup-

position relatively to points near the surface; and relatively to distant

points, the error is of the same order as the product of this difference by

the square of the ratio of the radii of the attracting bodies to their

distances from the points attracted; for we know that the considera-

tion alone of the distance of the points attracted, renders the error of

the preceding supposition of the same order as tne square of this ratio.

The celestial bodies, therefore, attract one another very nearly as if their

masses were collected at their centers of gravity, not only because they

are very distant from one another relatively to their respective dimensions,

but also because their figures differ very little from the sphere.

The property of spheres, by the law of Nature, of attracting as if their

masses were condensed into their centers, is very remarkable, and we may

be curious to learn whether it also obtains in other laws of attraction.

For that purpose we shall observe, that if the law of gravity is such, that

a homogeneous sphere attracts a point placed without it as if all its mass

were collected at its center, the same result ought to obtain for a spherical

shell of a constant thickness ; for if we take from a sphere a spherical

shell of a constant thickness, we form a new sphere of a smaller radius

with the remainder, but which, like the former, shall have the property of

attracting as if all its mass were collected at its center ; but it is evident,

that these two spheres can only have this common property, unless it also

belongs to the spherical shell which forms their difference. The problem,

therefore, is reduced to determine the laws of attraction according to which

a spherical shell, of an infinitely small and constant thickness, attracts an

exterior point as if all its mass were condensed into its center.

Let g be the distance of the point attracted to the center of the spherical

shell, u the radius of the shell, and d u its thickness. Let 6 be the angle

which the radius u makes with the straight line §, w the angle which the

plane passing through the straight lines j, u, makes with a fixed plane

passing through §, the element of the spherical shell will be u * d u . d w

.

d 6 sin. 6. If we then call f the distance of this element from the point at-

tracted, we shall have

f * = g« — 2 g u COS. ^ + u =.

Represent by ^'(f) the law of attraction to the distance f; the action of

the shell's element upon the point attracted, decomposed parallel to g and

directed towards the center of tlie shell, wiU be
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« 1
" J • A S — u COS. 6 .^

u ' d u . d w sin. $
t: <p (f)

;

but we have

. g — u COS. 6 _ /d f \

which gives to the preceding quantity this form

u ^ d u . d w sin. 6 f-j- ) f (0 J

wherefore if we denote y*d f p (f) by (p, (f) we shall have the whole action

of the spherical shell upon the point attracted, by means of the integral

u* d uyd « d ^ sin. d. p^ (f ), differentiated relatively to
f,
and divided by

d;.

This integral ought to be taken relatively to w, from w = to «r equal

to the circumference, and after this integration it becomes

2ffu2/d^sin. d(p, (f);

If we differentiate the value of f relatively to ^, we shall have

^ .
• . fdf

d sm. 6 = :

and consequently

2^.uMu/d^sin.^.i5,(f) =2«r.^i^/fdf. p, (f).

The integral relative to 6 ought to be taken from ^ = to /) = w, and

at these two limits we have f = g — u, and f = g + u ; thus the integral

relative to f must be taken from f=f — utof=g + u; let therefore

yf d f.
f>,

(f) = -vj/ (f ), we shall have

2ff.udu -^j^ ,„. 2T.udUf, , . V ,, V,

The coefficient of d g, in the differential of the second member of this

equation, taken relatively to g, will give the attraction of the spherical

shell upon the point attracted ; and it is easy thence to conclude that in

nature where 9 (f ) = -y^- this attraction is equal to

4 IT . u* d u

77? *

That is to say, that it is the same as if all the mass of the spherical

shell were collected at its center. This furnishes a new demonstration of

the property already established of the attraction of spheres.

Let us determine p (f ) on the condition that the attraction of the shell

IS the same as if its mass were condensed into its center. This mass

is equal to 4 t . u* d u, and if it were condensed into its center, its action
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upon the point attracted would be 4 «• . u ^ d u . p (f)
; we shall therefore

have

/d. {4--(^lj+u]— ^[f-u])} \
2^.udu\ 1_L . Ly=4^uMup(g);.(D)

integrating relatively to g, we shall get

^ (f + u) — 4 (f
— u) = 2 g u/d ^. p (?) + ^ U,

U being a function of u and constants, added lo the integral 2 u/d ? f (?).

If we represent -v^ (j + u) — -vj/ (g — u) by R, we shall have, by differen-

tiating the preceding equation

/d - R\ , , . ^ d (5 f o)

(d7^) = ^"^(^) + 2^"-'-rr
/d^Rx _ /d^Ux
VdT^; - ^ lair^;

'

But we have, by the nature of the function R,

/d'Rx _ d^'R
Vdg^; "" du^ '

wherefore

or

2p(g) d.p(g) __ 1 /dUJx
g

"^ df ~" 2uVdu2/*
Thus the first member of this equation being independent of u and the

functions of ?, each of its members must be equal to an arbitrary which we

shall designate by 3 A ; we therefore have

whence in integrating we derive

pg = A? + -,-

B being a new arbitrary constant. All the laws of attraction in which a

sphere acts upon an exterior point placed at the distance g from its center,

as if all the mass were condensed into its center, are therefore comprised

in the general formula

it is easy to see in fact that this value satisfies equation (D) whatever may

be A and B.

If we suppose A = 0, we shall have the law of nature, and we see that
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in the infinity of laws which render attraction very small at great dis-

tances, that of nature is the only one in which spheres have the property

of acting as if their masses were condensed into their centers.

This law is also the only one in which a body placed within a spherical

shell, every where of an equal thickness, is equally attracted on all sides.

It results from the preceding analysis that the attraction of the spherical

shell, whose thickness is d u, upon a point placed in its interior, has the

expression

/d.J. J^(u + g)-4(u~f)A
2«-u«du\^-^^i ^-3-

J,
To make this function nothing, we must have

•^ (u + f)
— -4^ (u —

f ) = g . U,

U being a function of u independent of
f, and it is easy to see that this

obtains m the law of nature, where p (f ) = —^ . But to show that it

takes place only in this law, we shall denote by ^' (f ) the difference of -^

(f ) divided by d f, we shall also denote by >}/" (f) the difference of -v}^' (f)

divided by d f, and so on ; thus we shall get, by differentiating twice suc-

cessively, the preceding equation relatively to f,

^" (n + S) — ^'" (u — g) = 0.

This equation obtaining whatever may be u and
f,

it thence results

that •^' (f ) ought to be equal to a constant whatever f may be, and that

therefore ^"' (f ) = 0. But, by what precedes,

^}/ (f ) = f . p, (f ),

whence we get

^I.'"(f) = 2i&(f) + f?.'(f);

we therefore have

= 255(f) + ff'(f);

which gives by integration

P(f) = 7r>

and consequently the law of nature.

554. Let us resume the equation (C) of No. 541. If this equation

could generally be integrated, we should have an expression of V, which

would contain two arbitrary functions, which we should determine by

finding the attraction of a spheroid, upon a point situated so ^s to facili-

tate this research, and by comparing this attraction with its general ex-

pression. But the integration of the equation (C) is possible only in some

particular cases, such as that where the attracting spheroid is a sphere,

which reduces this equation to ordinary differences; it is also possible in
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the case where the attracting body is a cylinder whose base is an oval or

curve returning into itself, and whose length is infinite. This particular

case contains the theory of Saturn's ring.

Fix the origin of g upon the same axis of the cylinder, which we shall

suppose of an infinite length on each side of the origin. Naming g the

distance of the point attracted from the axis ; we shall have

ef
= g V 1 — m *.

It is evident that V only depends on / and w, since it is the same for

all the points relatively to which these two variations are the same ; it

contains therefore only m inasmuch as g' is a function of this variable.

This gives

/d V\ ^ /"d ^> f^S'\ _ ? "^ f^^\'
vdltiy ~" ^dY/' Vdm/ "~ Vl~^ m^ \d7^/'

/d' Vx _ g 'm^ /d' Vn _ g /d Vn

ihe equation (C) hence becomes

^ = ^ (dT^) +d^ + ^(d7>
whence by integrating we get

V = f)[g' cos. w 4- g V — 1 sin. v] + -^[g' cos. w— g' V — I sin. «r|

;

f (g) and -^ [§f) being arbitrary functions of g, which we can determine

by seeking the attraction of the cylinder when «r is nothing and when it

5s a right angle.

If the base of the cylinder is a circle, V will be evidently a function of

f independent of w; the preceding equation of partial differences will

tlius become

^=/ CdT^) +^ (dy)'
which gives by integrating,

/d Vx _ H
-Vdf) ~7'

H being a constant. To determine it, we shall suppose §' relatively to

the radius of the base of the cylinder extremely great, which supposition

permits us to consider the cylinder as an infinite straight line. Let A be

this base, and z the distance of any point whatever of the axis of the cy-

linder, to the point where this axis is met by g' ; the action of the cylin-

der considered as concentrated or condensed upon its axis, will be, paral

lei to ^, equal to

/» A g^. d z

(g'« + z')^'
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the integral being taken from z = — ootozsoo; this reduces the in-

tegral to
, ; which is the expression of — (ztt) when ^ is very con-

siderable. Comparing this with the preceding one we have H = 2 A,
and we see that whatever is

f',
the action of the cylinder upon an exterior

2 A
point, is —7-

.

e

If the attracted point is within a circular cylindrical shell, of a constant

thickness, and infinite length, we shall have —
( j ~) = "^j ^^^ since

the attraction is nothing when the point attracted is upon the axis of the

shell, we have H = 0, and consequently, a point placed in the interior of

the shell is equally attracted on all sides.

545. We have thus determined the attraction of a sphere and of a

spherical shell : let us now consider the attraction of spheroids terminated

by surfaces of the second order.

Let X, y, z be the three rectangular coordinates of an element of the

spheroid ; designating d M this element, and taking for unity the density

of the spheroid which we shall suppose homogeneous, we shall have

dM = dx.dy.dz.
Let a, b, c be the rectangular coordinates of the point attracted by the

spheroid, and denote by A, B, C the attractions of the spheroid upon

this point resolved parallel to the axes of x, y, z and directed to the origin

of the coordinates.

It is easy to show that we have

A _ rz-r (a — x)dx.dy.dz

B =///

C =/// v^ — ^, ^ ^ . ^ ^ . w ^
^^

{ a — x)= + (b — y)* + (c — z)^J2

All these triple integrals ought to be extended to the entire mass of the

spheroid. The integrations under this form present great difficulties,

which we can often in part remove by transforming the diiferentials into

others more convenient. This is the general principle of such trans-

formations. '

Let us consider the differential function Pdx.dy.dz, P being any

function whatever of x, y, z. We may suppose x a function of y and z

and of a new variable p : let f (y, z, p) denote this function ; in this case,

Vol. ir. O

Ha-- x) ^ + (b ~ yr + (c

-

(b — y) d X . d y . d z

-z)^]^'

Ua--x)^-i- (b — y)^ + <c-
(c — z)dx.dy.dz

-z)^l^
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we shall have, making y and z constant, d x = /S . d p, /3 being a function

of y, z and p. The preceding differential will thus become /3 . P . d p ,

d y . d z ; and to integrate it, we must substitute in P, for x, its value

9 (y» z» p).

In like manner we may suppose in this new differential, y = / (z, p, q),

q being a new variable, and
(f>'

(z, p, q) being any function of the three

variables z, p and q. We shall have, considering z and p constant,

d y = iS' d q, /S' being a function of z, p, q ; the preceding differential

will thus take this new form jS /3' P. d p . d q . d z, and to integrate it, we
must substitute in /S P for y its value <p' (z, p, q).

Lastly we may suppose z equal to f" (p, q, r), r being a new variable,

and <p" (p, q, r) being any function whatever of p, q, r. We shall have,

considering p and q constant, d z = /S^' d r, ^" being a function of p, q, r

;

the preceding differential will thus become |S. /3'. /S". P . d p . d q . d r

and to integrate it, we must substitute in /S . |S'. P for z its value o" (p, q, r).

The proposed differential function is thence transformed to another rela-

tive to the three new variables p, q, r, which are connected with the pre-

ceding by the equations

X = p (y, z, p) ; y = 9' (z, p, q) ; z = f" (p, q, r).

It only remains to derive from these equations the values of ^, jS", ^".

For that purpose we shall observe that they give x, y, z, in functions of

the variables p, q and r ; let us consider therefore the three first variables

as functions of the three last. Since /S" is the coefficient of d r in the dif-

ferential of z, taken by considering p and q constant, we have

^" = (^^)-

jS' is the coefficient of d q, in the differential of y taken on the supposi-

tion that p and z are constant ; we shall therefore have /S', by differen-

tiating y on the supposition that p is constant, and by eliminating d r by

means of the differential of z taken on the supposition that p is constant,

and equating it to zero. Thus we shall have the two equations

which give

9'

d y = d q X ^Vdq/ Vdr/ \Av) \d<\)
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wherefore

Finally, /3 is the coefficient of d p, in the differential of x taken on the

supposition that y and z are constant. This gives the three following

equations

— (^^\ (^Ly\ f—\ (^ 5\ /4_y^ (^ ^\
' - \d^J Vd q) Vd r^ Vd~p; VJTJ Vd q)

/d x\ /dy\ /d_z\ /^ x\ /d yv /d 2\
*" \dq) \div) Vdp^~Uq^ Vdpy' \6~x)

, (^_^\ /d y\ /d z\ /d x\ /d v\ /dz\
*" Vdr^ Vdp; ^^"^dTy \d\) VdpJ'

If we make

w^e shall have

which gives

dx = dp

Vdq) (dr) (dr) (d q)

Vdqy \dLT) \Ax) Vdq^

wherefore /3 . ^'. ^" = e and the differential P. d x . d y . d z is transform-

ed into i . P. dp. dq. dr; P being here what P becomes when we

substitute for x, y, z their values in p, q, r. The whole is therefore re-

duced to finding the variables p, q, r such that the integrations may be-

come possible.

Let us transform the coordinates x, y, z into the radius drawn from

the point attracted to the molecule, and into the angles which this ra-

dius makes with given straight lines or with given planes. Let r be

this radius, p the angle which it forms with a straight line drawn through

the attracted point parallel to the axis of x, and let q be the angle which

02
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its projection makes on the plane of y, z with the axis of y ; we shall

have

X = a— r cos. p ; y = b— r sin. p cos. q ; z = c— r sin. p sin. q.

We shall then find s = — r * sin. p, and the differential d x . d y . d z will

thus be transformed into — r* sin. p . d p . d q. d r : this is the expres-

sion of the element d M, and since this expression ought to be positive

in considering sin. p, d p, d q, d r as positive, we must change its sign,

which amounts to changing that of £, and to making i =r r * sin. p.

The expressions of A, B, C will thus become

A —jyyd r d p d q . sin. p cos. p

;

B = /jyd r dp d q . sin. * p cos. p

;

C = fffd. X dp d q . sin. * p sin. q.

It is easy to arrive by another way at these expressions, by observing

that the element d M may be supposed equal to a rectangular parallelo-

piped, whose dimensions are d r, r d p and r d q sin. p, and by then observing

that the attraction of the element, parallel to the three axes of x, y, z is

dM d M . dM .—g- COS. p ; —J- sm. p cos. q ; —— s*n. p sm. q.

The triple integrals of the expressions of A, B, C must extend to the

entire mass of the spheroid : the integrations relative to r are easy, but

they are different according as the point attracted is within or without the

spheroid ; in the first case, the straight line which passing through the

point attracted, traverses the spheroid, is divided into two parts by this

point ; and if we call r and xf these parts, we shall have

A —ff{x + r') d p d q. sin. p cos. p

;

B = JJ (r 4- r') d p d q . sin. * p cos. p

;

C =f/{r + r') dp d q. sin.'p sin. q;

the integrals relative to p and q ought to be taken from p and q equal to

zero, to p and q equal to two right angles.

In the second case, if we call r, the radius at its entering the spheroid,

and r' the radius at its farther surface, we shall have

A z=iff{x' — r) d p d q . sin. p cos. p ;

B =. ffif — r) d p d q . sin. ^ p cos. q

;

C =: ff{x' — r) d p d q . sin. * p sin. q.

The limits of the integrals relative to p and to q, must be fixed at the

points where r' — r = 0, that is to say, where the radius r is a tangent

to the surface of the spheroid.

546. Let us apply these results to spheroids bounded by surfaces of the
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second order. The general equation of these surfaces, referred to the

three orthogonal coordinates x, y, z is

0=A+B.x + C.y+E.z+F. x-+H.xy+L.y«+M. xz+N.yz+O.z^.
The change of the origin of coordinates introduces three arbitraries,

since the position of this new origin relating to the first depends upon

three arbitrary coordinates. The changing the position of the coordi-

nates around their origin introduces three arbitrary angles ; supposing,

therefore, the coordinates of the origin and position in the preceding

equation to change at the same time, we shall have a new equation of the

second degree whose coefficients will be functions of the preceding coeffi-

cients and of the six arbitraries. If we then equate to zero the first

powers of the coordinates, and their products two and two, we shall de-

termine these arbitraries, and the general equation of the surfaces of the

second order, will take this very simple form

x2 + my* + n z^ = k«;

it is under this form that we shall discuss it.

In these researches we shall only consider solids terminated by finite

surfaces, which supposes m and n positive. In this case, the solid is an

ellipsoid whose three semi-axes are what the variables x, y, z become

when we suppose two of them equal to zero ; we shall thus have k, —^—

,

k , .

--.— for the three semi-axes respectively parallel to x, to y and to z. The

4.ff.k'
solid content of the ellipsoid will be^

3 V m n

If, however, in the preceding equation we substitute for x, y, z their

values in p, q, r given by the preceding No., we shall have

r ^ (cos. '^

p + m sin.*p cos.* q + n sin. ^ p sin. *
q)

— 2 r (a COS. p + m b sin. p cos. q+ n c sin. p sin. q) = k ^-a ^-m b'-n c*

;

so that if we suppose

I = a COS. p + m b sin. p cos. q -}- n c sin. p sin. q

;

L = COS. * p + m sin. ^ p cos. '^

q + n sin. ^ p sin. * q

;

R = I« -f. (k' — a* — mb* — nc*). L •

we shall have

I + V R
^= ~L '

whence we obtain r' by taking -f , and r by taking — ; we shall theie-

fore have

, ^ 2 1, 2 V R
r + r'=-^; r'-r = _j-.

03
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Hence relatively to the interior points of the spheroid, we get

A = 2 rr ^p-

^

q -^- s"i. p . cos.

p

_

B = 2
^/-d p.dq.I.sin.'p.cos. q

^

C z= 2 r /» <^ P • <^ q • ^ • sin.
' p .

sin, q ^

and relatively to the exterior points

A n r r^ V '*^ ^,- si"' P • cos. p V RA _ 2Jf
~

-^ ;

Tt — o /» r ^ P • ^ q • sin. ' p COS. q V R
\5 - ijj

J-
;

n — o rr ^ P • d q . sin. ^ p sin. q V R
^' - '^JJ L '

the three last integrals being to be taken between the two limits which

correspond to R = 0.

547. The expressions relative to the interior points being the most

simple, we shall begin with them. First, we shall observe that the semi-

axis k of the spheroid does not enter the values of I and L ; the values of

A, B, C are consequently independent ; whence it follows that w^e may
augment at pleasure, the shells of the spheroid which are above the point

attracted, without changing the attraction of the spheroid upon this point,

provided the values of m and n are constant. Thence results the follow-

ing theorem.

A 'point placed ivithin an elliptic shell whose interior and exterior sur-

Jaces are similar and similarly situated^ is equally attracted on all sides.

This theorem is an extension of that which we have demonstrated in

542, relative to a spherical shell.

Let us resume the value of A. If we substitute for I and L their va-

lues, it will become

. __ - >^ ^dp.dq.sin.p.cos.p.(acos.p -j- mbsin.pcos.q -Hncsin.psin.q)
"~ JJ cos. "^ p + m sin. * p cos. " q -|- n sin. * p sin. ^ q

Since the integrals relative to p and q, must be taken from p and q

equal to zero, to p and q equal to two right angles, it is clear we have

generally /" P d p . cos. p = 0, P being a rational function of sin. p and

of cos. ^ p ; because the value of p being taken at equal distances greater

and less than the right angle, the corresponding values of P . cos. p are

equal and have contrary signs ; thus we have

A = 2 a /"/•
d p .

d q . sin, p cos.
« p

JJ cos. * p -H m sin. * p cos "^ q -t« n sin '^ p sin. * q
'
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If we integrate relatively to q from q = to q = two right angles, we
shall find

A _ 2 a ^ r d p . sin, p cos. ' p

an integral which must be taken from cos. p = 1 to cos. p = — 1. Let

COS. p = X, and call M the entire mass of the spheroid ; we shall have

by 545, M = J-— and consequently = —r-r J we shall there-Vmn ^ •'Vmn ^^

fore have

3 a M /^ x^d X
^ = -k

' ^^yo + ^?^-o•o+^"-o
which must be taken from x = 0, to x = 1.

Integrating in the same manner the expressions of B, C we shall reduce

them to simple integrals ; but it is easier to get these integrals from the

preceding expression of A. For that purpose, we shall observe that this

expression may be considered as a function of a and of the squares k *,

k= k* .— , — of the semi-axes of the spheroid, parallel to the coordinates a, b, c

of the point attracted ; calling therefore k' * the square of the semi-axis

parallel to b, and consequently k' ^ m, and k' * n the squares of the two

other semi-axes, B will be a similar function of b, k'*, k' ^ m, k'* — : thus
n

to get B we must change in the expression of A, a into b, k into k' or

-^— , m into — , and n into — , which gives
V m

'

m m °

g __ 3 b M f m^.x==dx
^' /^U + (m-l)x^{l + ^^.x4'

Let -

t
X =

-• m -f- (1 — m). t*

we shall have <

„ 3bM / t* d t

an integral relative to t which must be taken, like the integral relative to x

04
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from t = to t = 1, because x = gives t = and x = 1, gives t = 1

Hence it follows that if we suppose

'-'°=X';lr:i; = X'; F=/-.
'''•'''

n Jm ' n J V(l + X^x^). (1 + ?/*x')
we shall have

„ 3bM/d.xFx

If we change in this expression, b into c, X into X' and reciprocally, we

shall have the value of C. The attractions A, B, C of the spheroid, par-

allel to its three axes are thus given by the following formulas

^ 3aM ^ ^ SbM/d.xFx ^ ScM/d.x'Fx

We may observe that these expressions obtaining for all the interior

points, and consequently for those infinitely near to the surface, they also

hold good for the points of the surface.

The determination of the attractions of a spheroid thus depends only

on the value of F ; but although this value is only a definite integral, it

has, however, all the difficulty of indefinite integrals when X and X' are

indeterminate, for if we represent this definite integral, taken from x =
to X = 1, by p (X*, X' *), it is easy to see that the indefinite integral will

be X ' p (X X *, X' * X '), so that the first being given, the second is likewise

given. The indefinite integral is only possible in itself when one of the

quantities X, X' is nothing, or when they are equal : in these two cases,

the spheroid is an ellipsoid of revolution, and k will be its semi-axis of

revolution if X and X' are equal. In this last case we have

To get the partial differences (—t—— ), (-
*, —), which enter the

expressions of B, C, we shall observe that

d x/d^JFx d x^d.x'F x /d X d x\

^^--rl-dx--;+ -x^^-di7-;-^(-x- + -ir}

but when X = x', we have

/d.X Fn _ /d . X^ F\ d_x _ d^.

V d X J ~ V dx' r X - X'
'

F.

wherefore
J1

('-i^)-"-*
.xdF+Fd-A d,, X'

Substituting for F its value, we shall have

(^-^) = a'x'O""--'
1 >

X
^-

1 + x«,
)•
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we shall therefore have relatively to ellipsoids of revolution, whose semi-

axis of revolution is k,

. 3a.M,^
^ _, .

B = 3 b . M /; .

.

X

sH'-'^-r+^O^2 k '. X

3 c . M/ . . X^ 3 c . ivi /^ _ , . A N
^ = 2T^3(tan.-'X_^-^-^).

548. Now let us consider the attraction of spheroids upon an exterior

point. - This research presents greater diflficulties than the preceding be-

cause of the radical \^ R which enters the differential expressions, and

which under this form renders the integrations impossible. We may ren-

der them possible by a suitable transformation of the variables of which

they are functions ; but instead of that method, let us use the following

one, founded solely upon the differentiation of functions.

If we designate by V the sum of all the elements of the spheroid divided

by their respective distances from the point attracted, and x, y, z the co-

ordinates of the element d M of the spheroid, and a, b, c those of the

point attracted, we shall have

v= r
^^

J V (a — x)^ -H (b — y)^ -h (c — z)^*

Then designating, as above, by A, B, C the attractions of the spheroid

parallel to the axes of x, y, z, and directed towards their origin, we shall

have

A^r (a - X). d M ==_(^).
^ J(a-x)^+(b-y)» + (c-z)^i'

^^^^'

In like manner we get

whence it follows that if we know V, it will be easy thence to obtain by

differentiation alone, the attraction of a spheroid parallel to any straight

line whatever, by considering this straight line as one of the rectangular

coordinates of the point attracted ; a remark we have already made in

541.

The preceding value of V, reduced into a series, becomes

r ^ 2ax+2by-i-2cz— x'— y'—

z

^ -v

V-/'-=iH_) a^-Hb^ + c* f

J V aHb^+ c^ ) ^ 3
(2ax+ 2by+2cz—X'—y'-z')* o (

V. +8- (a*+ b*-|-c^)^ ^ -^

This series is ascending relatively to the dimensions of the spheroid
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and descending relatively to the coordinates of the point attracted. If we
only retain the first term, which is sufficient when the attracted point is

at a very great distance, we shall have

y - M
V a^ + b- + c«'

M being the entire mass of the spheroid. This expression will be still

more exact, if we place the origin of coordinates at the center of gravity

of the sphere ; for by the property of this center we have

/x. dM = 0; /y. dM = 0; /z. dM = 0;

so that if we consider a very small quantity of the first order, the ratio

of the dimensions of the spheroid to its distance from the point attracted,

the equation

y- M
V a" + b* + c^

will be exact to quantities nearly of the third order.

We shall now investigate a rigorous expression of V relatively to ellip-

tic spheroids.

649. If we adopt the denominations of 544, we shall have

V =f^ =fffr d r d p d q sin. p = i//(r'» _ r ^) d p dq. sin. p.

Substituting for r and r' their values found in 544, we shall have

V _ o /'/' d p . d q sin, p. I . V R
V _ 2JJ j-5

Let us resume the values of A B, C relative to the exterior points, and

given in 546,

A a rr^P '^ ^ ^^"' P cos, p V R
A _ 2JJ ^- ;

T3 _ g rr d p . d q sin. " p cos, q V R ^

C = 2 r /- d p . d q sin. ^ p sin, q V R >

Since at the limits of the integrals, we have V R = 0,,it is easy to see

that by taking the first differences of V, A, B, C relatively to any of the

six quantities a, b, c, k, m, n, we may dispense with regarding the varia-

tions of the limits ; so that we have, for example,

(^')=2//dpd<,sin.p(^l^) =

for the integral

/d p sin. p I V R
L^
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is towards these limits, very nearly proportional to R ^, which renders

equal to zero, its differential at these limits. Hence it is easy to see by

differentiation that if for brevity we make

aA + bB + cC = F;
we shall have between the four quantities B, C, F, and V the following

equation of partial differences,

^-'^•''•{(d~l)-i('a^)-B}

We may eliminate from this equation, the quantities B, C, F by means

of their values

We shall thus get an equation of partial differences in V alone. Let

therefore

V = == . V = M . V,
3 V m n

M being by 545, the mass of the elliptic spheroid ; and for the variables

m and n let us here introduce 6 and w which shall be such that we have

m n

6 will be the difference of the square of the axis of the spheroid parallel

to y and the square of the axis parallel to x ; w will be the difference of

the square of the axis of z and the square of the axis of x ; so that if we

take for the axis of x, the smallest of the three axes of the spheroid, V i)

and V -a will be its two excentricities. Thus we shall have

(dls)=-'"|m«-Cd7)+2lH} =

/d V. ,, fk'/dvx V 1

V being considered in the first members of those equations as a function

of a, b, c, k, m, n ; and v being considered in their second members as a

function of a, b, c, ^, w, k.
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If we make

(dis) ' (dir) ^y
changing in the preceding values of k

(g-j^) , (^)

,

f -5—
j , V into — Q. Moreover V and F are homogeneous functions in

a, b, c,kf V 6, V tr of the second dimension, for V being the sura of the

elements of the spheroid, divided by their distances from the point at-

tracted, and each element being of three dimensions, V is necessarily of

two dimensions, as also F which has the same number of dimensions as

V ; V and Q are therefore homogeneous functions of the same quantities

and of the dimension — 1; thus we shall have by the nature of homo-

geneous functions,

an equation which may be put under this form

We shall have in like manner

<rf) +K^) +«=(^)+-0 +-(^)MlS =-Q=

then, if in equation (1) we substitute for V, F and their partial differences;

k* k*
if moreover we substitute . - —- for m and .-g-j— for n, we shall have

'"•('d§)+-(a-|)-^''Ha6)-^-0-
550. Conceive the function v expanded into a series ascending rela-

tively to the dimensions k, V ^, \^ w of the spheroid, and consequently

descending relatively to the quantities a, b, c : this series will be of the

following form

:

V = UW+ U('' + U<2)+U«)+&c.;
U ^^, U ^'', &c. being homogeneous functions of a, b, c, k^ V 6, V v, and

separately homogeneous relatively to the three first and to the three last
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of these six quantities ; the dimensions relative to the three first always

decreasing, and the dimensions relative to the three last increasing con-

tinually. These functions being of the same dimension as v, are all of the

dimension — 1.

If we substitute in equation (2) for v its preceding expanded value ; if

we call s the dimension of U ^'' in k, V 6, V w, and consequently— s —

1

its dimension in a, b, c; if in like manner we name s' the dimension of

U(» + i) in kj V 6, V w, and consequently — s' — 1 its dimension in a, b,

c ; if we then consider that by the nature of homogeneous functions we
have

/d U «N , , /d U '^ , /d U^\

rdU(i+')

r^)^'idU(' + J)i rdU (' + »).

we shall have, by rejecting the terms of a dimension superior in k, V &,

v^ w to that of the terms which we retain,

/d U^'\ /d U^x

UC' + i) =

-dU^') s+ 1_(s+i)..^(—)_L-^_i.(,+ .).U«

'dU« d uw.
^_,+ i,M.(2g^)_(S+|).0.(Hg^)

s'.^l±^.(a^ + b«+c'=)
(3)

This equation gives the value of U ^' + ^\ by means of U ^'^ and of its

partial differences ; but we have

U(0) = \ -
(a2 + b2 + c2)2

since, retaining only the first term of the series, we have found in 548, that

(a2 + b^ + c') «

Substituting therefore this value of U ^°^ in the preceding formula, we
shall get that of U ^^^ ; by means of that of U ^'^ we shall have that of U ^*'

and so on. But it is remarkable that none of these quantities contains k:

for it is evident by the formula (3) that U^% riot containing U^'^ does

not contain it ; that U ^^^ not containing it, U '^^ will not contain it, and so

on ; so that the entire series U ^^^ + U ^'^ + &c. is independent of k, or

which is the same thing (-rr) = 0. The values of v, — (-,—
j , — \\T) »
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—
Vd^)' ^^^ therefore the same for all elliptic spheroids similarly si-

tuated, and which have the same excentricities \^ ^, V w ; but —M (t-^) »

— ^(db)' — ^((Tc)' ^^P'"^^^ ^y 548,the attractions of the spheroid

parallel to its three axes; therefore the attractions of different elliptic

spheroids which have the same center, the same position of the axes and

the same excentricities, upon an exterior point, are to one another as their

masses.

It is easy to see by formula (3) that the dimensions of \J^°\ U^'^, U^^)^

&c. in V^and V v, increase two units at a time, so that s= 2i, s'= 2i+ 2;

moreover we have by the nature of homogeneous functions

this formula will therefore become

(-(2i+|)c*(i^^_^(2i+lM^ + (2i+l).,.]U^')C

(i+ l)(2i + 5){a« + b^+c^) ^*^

By means of this equation, we shall have the value of v in a series very

convergent, whenever the excentricities V 6, V w are very small, or when

the distance V a* + b" + c^'of the point attracted from the center of

the spheroid is very great relatively to the dimensions of the spheroid.
,

If the spheroid is a sphere, we shall have ^ = 0, and w = 0, which

give U") = 0, U(2) -- 0, &c. ; wherefore

1

and

V = U^*^ =

v =

V a^ + b^ + c-

M
V a* + b* + c*

whence it follows that the value of V is the same as if all the mass of .the

sphere were condensed into its center, and that thus, a sphere attracts any

exterior point, as if all its whole mass were condensed into its center ; a

result already obtained in 542.

551. The property of the function of v being independent of k, fur-

nisl\es the means of reducing its value to the most simple form of which it

is susceptible ; for since we can make k vary at pleasure without changing

this value, provided the spheroid retain the same excentricities, V 6 and



Book I.] NEWTON'S PRINCIPIA. 228

V vr, we may suppose k such that the spheroid shall be infinitely flatten-

ed, or so contrived that its surface pass through the point attracted. In
these two cases, the research of the attractions of the spheroid is rendered

more simple; but since we have already determined the attractions of elliptic

spheroids, upon points at the surface, we shall now suppose k such that

the surface of the spheroid passes through the point of attraction.

If we call k', m', n' relatively to this new spheroid what in 545, we
named k, m, n relatively to the spheroid we there considered ; the condi-

tion that the point attracted is at the surface, and that also a, b, c are the

coordinates of a point of the surface, will give

a' + m'b* + n'o*^ = k^;

and since we suppose the excentricities V 6 and V tr to remain the same,

we shall have

whence we obtain

k'2 , k"'
m' =

k'2 + ^' " -k'2 + «r'

we shall therefore have to determine k', the equation

''• + E^,b' + F^- <=" = ''"•
• • • W

It is easy hence to conclude that there is only one spheroid whose sur-

face passes through the point attracted, 6 and ar remaining the same. For

if we suppose, which we always may do, that 6 and w are positive, it is

,
clear that augmenting in the preceding equation, k' ^ by any quantity which

we may consider an aliquot part of k'^, each of the terms of the first

member of this equation, will increase in a less ratio than k' " ; therefore

if in the first state of k' \ there subsist an equality between the two mem-

bers of this equation, this equality will no longer obtain in the second

state ; whence it follows that k' ^ is only susceptible of one real and posi-

tive value.

Let M' be the mass of the new spheroid, and A', B', C its attractions

parallel to the axes of a, b, c ; if we make

m
xMx

^ J V{1 + X^x*). (1 +V^x*)'
by 547, we shall have

^, 3aM'F „, 3bMVd.xFx ^, _ ScMyd. VF^

.
' -^ = —w-"' ^ = ~v^\'~dr')' ^ - ~v^\ dxw
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Changing in these values of A^ B', C, M' into M, we shall have by
the preceding No., the values of A, B, C relatively to the first spheroid

but tlie equations

^'-'^\k'^=6i ^-"\k-^ =
m'

give

k'* being given by equation (5) which we may put under this form

we shall therefore have

A = 3aM „ „ 3bM/d.xrx ^ 3cM/d.X'F\
k'3

These values obtain relatively to all points exterior to the spheroid, and

to extend them to those of the surface, and even to the interior points

we have only to change k' to k.

If the spheroid is one of revolution, so that 6 = sr, the formula (5)

will give

2 k'« = a«+bHc' — 6 + V(a'^+bHc'' — 6)°-+4>a\ 0;

and by 547 we shall have

. 3 aM ., ^ .
,^ = k/^jTl^ ^^^"-^ ^^

o 3 b M /
,

X V

^ = 2F^r3C^-~^-r+T0
^ 3cM/ _,^ X \

Thus we have terminated the complete theory of the attractions of el-

liptic spheroids ; for all that remains to be done is the integration of the

differential expression of F, and this integration in the general sense is

impossible, not only by known methods, but also in itself. The value of F
cannot be expressed in finite terms by algebraic, logarithmic or circular

quantities ; or which it tantamount, by any algebraic function of quantities

whose exponents are constant, nothing or variable. Functions of this kind

being the only ones which can be expressed independently of the symbol

y, all the integrals which cannot be reduced to such functions, are impos-

sible in finite terms.

If the elliptic spheroid is not homogeneous, and if it is composed of

elliptic shells varying in position, excentricity and density according to

any law whatever, we shall have the attraction of one of its shells, by de-
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termining as above the difference of the attractions of two homogeneous

elliptic spheroids, having the same density as the shell, one of which shall

have for its surface the exterior surface of the shell, and the other the in-

terior surface of the shell. Then summing this differential attraction, we
shall have the attraction of the whole spheroid.

THE DEVELOPEMENT INTO SERIES, OF THE ATTRACTIONS OF ANY

SPHEROIDS WHATEVER.

552. Let us consider generally the attractions of any spheroids what-

ever. We have seen in No. 547, that the expression V of the sum of the

elements of the spheroid, divided by their distances from the attracted

points, possesses the advantage of giving by its differentiation, the attrac-

tion of this spheroid parallel to any straight line whatever. We shall see

moreover, when treating of the figure of the planets, that the attraction of

their elements presents itself under this form in the equation of their equi-

librium ; thus we proceed particularly to investigate V.

Let us resume the equation of No. 548,

v= r
^^

J V (a — x)^ + (b — y)^+(c — z)«'

a, b, c being the coordinates of the point attracted ; x, y, z those of the

element d M of the spheroid; the origin of coordinates being in the in-

terior of the spheroid. This integral must be taken relatively to the va-

riables X, y, z, and its limits are independent of a, b, c; hence we shall

find by differentiation,

Vx . /d'-Vx . /d^V
Vl

an equation already obtained in 541,

Let us transform the coordinates to others more commodious. For

that purpose, let r be the distance of the point attracted from the oi'igin

of coordinates ; i the angle which the radius r makes with the axis of a

;

a the angle which the plane formed by the radius and this axis, makes

with the plane of the axis of a, and of b ; we shall have

a = r cos. ^ ; b = r sin. 6 cos. ^ ; c = r sin. ^ sin. -a.

If in like manner we name R, ^, w what r, ^, w become relatively to

the element d M of the spheroid ; we shall have

X = R cos. ^ ; y = R sin. (( cos. w' ; z = R sin. ^. sin. tg.

Moreover, the element d M of the spheroid is equal to a rectangular

parallelopiped whose dimensions are d R, R d ^, R d w' sin. ^, and con-

VOL. II. P
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sequently it is equal to
f.
R -. d K. d d'. d -a', sin. ^', % being its density ; we

siinll tilus have

gR«.d R.d^. d Vsin. b'

JJJ V r s—

S

-2 r R {cos. Q, cos. ^+sin. 6 sin. 6f cos. (»'— w)] -f-R-'

the integral relative to R must be taken from R = to the value of R at

the surface of the spheroid ; the integral relative to ^' must be taken from

18-' = to -Br' equal to the circumference ; and the integral relative to 6'

must be taken from ^' = to 6' equal to the semi-circumference. Differ-

entiating this expression of V, we shall find

,dlVx
/d= Vx cos. & /d Vx , U ^W /d -. r \\ ...

^ = ( d7^) + sinTr ( dT) + -^mJT + ' C-dT^)' • • • (2)

an equation which is only equation (1) in another form.

If we make cos. d = m, we may give it this form

„ r''-{<'-"''(d-^)} V(^). .d...v. ,,» =V rs J+r^^'+<-r^)- '"

We have already arrived at these several equations in 541.

553. First, let us suppose the point attracted to be exterior to the sphe-

roid. If we wish to expand V into a series, it ought in this case, to de-

scend relatively to powers of r, and consequently to be of this form

jj(ff) \j{.\) \j<^)

Substituting this value of V in equation (3) of the preceding No., the

comparison of the same powers of r will give, whatever i may be

')(^)} ^ (^)
m /"^ 1 — m^

It is evident from the integral expression alone of V that U ^'^ is a ra-

tional and entire function of m, V 1 — m ^ sin. ar, and V 1 — m ^ cos. «r,

depending upon the nature of the spheroid. "When i = 0, this function

becomes a constant ; and in the case of i = 1, it assumes the form

m
o=v -^

—

. ;+ \ ,
-H-i(i+i)uw.

^ dm /I — m'^ ^

H m + H' -/ 1 — m«. sin. w -f- H" V 1 — m ^ cos. w

;

H, H', H" being constants.

To determine generally U ''^ call T the radical

1

Vr *—2 R r {cos.^ cos.^'+ sin. 6 sin.^ co6.(«/—«)] -f- R *

'
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we shall have

V dm / ^ l_ni^ ^ drW-
This equation will still subsist if we change & into ^, & into w', and re-

ciprocally ; because T is a similar function of #, w and of 6, -a.

If we expand T, in a series descending relatively to r, we shall have

r r^ r^

Q ^"'' being, whatever i maybe, subject to the condition that

4n.-7(^)}),p^„„„,,..
\ dm / 1— m ^

and moreover it is evident, that Q ^'' is a rational and entire function of m,

and V 1 — m °
. cos. (^ — w) : Q ^'^ being known, we shall have U ^'^ by

means of the equation

U w =/i R(' + 2). d R. d ..r'. d ^ . sin. 6'
. Q '^.

Now suppose the point attracted in the interior of the spheroid : we

must then develope the integral expression of V, in a series ascending re-

latively to r, which gives for V a series of the form

V = v W + r . V ^')
-I- r '^

. v ^2) ^ r ^ . v ® + &c.

V ^') being a rational and whole function of m, V 1 — m ^
. sin. w and

V \ — m * cos. «, which satisfies the same equation of partial differences

that U ^'^ does ; so that we have

dm y 1 — m^
To determine v ^'\ we shall expand the radical T into a series ascending

according to r, and we shall have

OW r r^

the quantities Q^% Q^", Q^% &c. being the same as above; we shall

therefore get

/•e.d R.d^'. d^'. sin. ^. Q«
v^'> =y RT^n

•

But since the preceding expression of T is only convergent so long as

R is equal to or greater than r, the preceding value ofV only relates to the

shells of the spheroid, which envelope the point attracted. This point

being exterior, relatively to the other shells, we shall determine that part

of V which is relative to them by the first series of V.

P2
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554. First let us consider those spheroids which differ but very little

from the sphere, and determine the functions U '^\ U ^'>, U '->, &c. v W,

V (»), V <% &c. relatively to these spheroids. There exists a differential

equation in V, which holds good at their surface, and which is remarkable

because it gives the means of determining those functions without any in-

tegration.

Let us suppose generally, that gravity is proportional to a power n of

the distance ; let d M be an element of the spheroid, and f its distance

from the point attracted; call V the integraiyf " + * d M, which shall ex-

tend to the entire mass of the spheroid. In nature we have n = — 2,

it becomes J—r-— j and we have expressed it in like manner by V in the

preceding Nos. The function V possesses the advantage of giving, by its

differentiation, the attraction of the spheroid, parallel to any straight line

whatever ; lor considering f as a function of the three coordinates of the

point attracted perpendicular to one another, and one of which is parallel

to this straight line. Call r this coordinate, the attraction of the spheroid

along r and directed towards its origin, will bey. f °
. f ^—V d M. Con-

sequently it will be equal to . (t— j , which, in tlie case of nature,

becomes — ( ,— ) , conformably with what has been already shown.

Suppose, however, that the spheroid differs very little from a sphere of

the radius a, whose center is upon the radius r perpendicular to the sur-

face of the spheroid, the origin of the radius being supposed to be arbi-

trary, but very near to the center of gravity of the spheroid ; suppose,

moreover, that the sphere touches the spheroid, and that the point at-

tracted is at the point of contact of the two surfaces. The spheroid is

equal to the sphere plus the excess of the spheroid above the sphere ; but

we may conceive this excess as being formed of an infinite number of

molecules spread over the surface of the sphere, these molecules being

supposed negative wherever the sphere exceeds the spheroid ; we shall

therefore have the value of V by determining this value, 1st, relatively to

the sphere ; 2dly, relatively to the different molecules.

Relatively to the sphere, V is a function of a, which we denote by A

;

if we name d m one of the molecules of the excess of the spheroid above

the sphere, and f its distance from the point attracted ; the value of V rela-
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tive to this excess will bey. f " + ^ . d m ; we shall therefore have, for the

entire value of V, relative to the spheroid,

V = A+/. f" + i.dm.

Conceive that the point attracted is elevated by an infinitely small

quantity d r, above the surface of the spheroid and the sphere upon r or a

produced ; the value of V, relative to this new position of the attracted

point, will become

A will increase by a quantity proportional to d r, and which we shall re-

present by A' . d r. Moreover, if we name 7 the angle formed by the two

radii drawn from the center of the sphere to the point attracted, and to

the molecule d m, the distance f of this element or molecule from the point

attracted, will be in the first position of the point, equal to

V 2a2 (1 — COS. 7);

in the second position it will be

V (a + d r) ^ — 2 a (a + d r) cos. 7 + a ^

or

the integraiy. f » + ^ dm, will thus become

we shall therefore have

substituting fory. f° + i. d m, its value V — A, we shall have

In the case of nature, the equation (1) becomes

The value of V relative to the sphere of radius a, is, by 550, equal to

——
, which gives A = —3— ; A' = — -^ ; we shall therefore

get

We must here observe that this equation obtains, whatever may be the

position of the straight line r, and even in the case where it is not perpen-

P3



230 A COMMENTARY ON [Sect. XII. & XIII.

dicular to the surface of the spheroid, provided that it passes very near its

center of gravity, for it is easy to see that the attraction of the spheroid,

resolved parallel to these straight lines, and which, as we have seen, is

equal to — ^-j—j , is, whatever may be their position, always the same, to

quantities nearly of the order of the square of the excentricity of the

spheroid.

555. Let us resume the general expression of V of 553, relative to a

point attracted exterior to the spheroid,

U^^) U^i) u^-^)V = + ^ + -^3 + &c.
r r^ r'

the function U ^'^ being, whatever i may be, subject to the equation of par-

tial differences

By differentiating the value of V relatively to r, we have

/d Vx U'°> . 2U^') , 3U(^)
, „

-(-dr) = T^ + -T^ + -7^ + ^"-

Let us represent by a (1 + a y) the radius drawn from the origin of

r to the surface of the spheroid, a being a very small constant coefficient,

whose square and higher powers we shall neglect, and y being a function

of m and » depending on the nature of the spheroid. We shall have to

4 cT a ^

quantities nearly of the order a, V = -^ ; whence it follows that in the

preceding expression ofV, 1st, the quantityU ^"^ is equal to—-— plm a very

small quantity of the order a, and which we shall denote by U' ^"^

;

2dly, that the quantities U '^\ U '•'^\ &c. are small quantities of the order a.

Substituting a (1 -f- ay) for r in the preceding expressions of V and of

•— f-i— j, and neglecting quantities of the order a*, we shall have rela-

lively to an attracted point placed at the surface

IjnO) TJCl) TT(2)

If we substitute these values in equation (2) of the preceding No. we

shall have
U/(0) s.u^'^ . 5U(2) 7U(3)
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It thence follows that the function y is of this form

y = Y^o) + YW + Y^^) + &c.

the quantities Y^), Y^'), Y^^ &c. as well as U^, U^^), &c. being subject

to the equation of partial differences

..r^{('-')-('^)} V(^)
V dm /I fi(i+l).YW;

m-

this expression of y is not therefore arbitrary, but it is derived from tlie

developement of the attractions of spheroids. We shall see in the follow-

ing No. that y cannot be thus developed except in one manner only; we

shall therefore have generally, by comparing similar functions,

2 i + 1
• *

'

whence, whatever r may be, we derive

V=*-^V*":-'{v»+.4. Y«+i';Y»+&c.},. . . (3)

To get V, therefore, it remains only to reduce y to the form above de-

scribed ; for which object we shall give, in what follows, a very simple

method.

If we had y = Y ^'^, the part of V relative to the excess of the spheroid

above the sphere whose radius is a, or which is the same thing, relative to

a spherical shell whose radius is a, and thickness a a y, would be

4acra' + 3^Y^'' ,. , ,, , , . ,

-
. . .>—j-qr^ ; this value would consequently be proportional to y,

and it is evident that it is only in this case that the proportionality can

subsist.

356. We may simplify the expression Y^^^ + Y^') + Y^^) + &c. of y,

and cause to disappear the two first terms, by taking for a, the radius of a

sphere equal in solidity to the spheroid, and by fixing the arbitrary origin

of r at the center of gravity of the spheroid. To show this, we shall ob-

serve that the mass M of the spheroid supposed homogeneous, and of a

density represented by unity, is by 552, equal toj^K^ d R d m d w, or to

^y* R' ^ d m d w, R' being the radius R produced to the surface of the

spheroid. Substituting for R' its value a (1 + a y) we shall have

M = —s h a a ^/y d m d ^.

All that remains to be done, therefore, is to substitute for y its value

Y W ^ Y ^') -}- &c. and then to make the integrations. For this purpose

here is a general theorem, highly useful also in this analysis.

P4,
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" IfY ^') and Z '•'^ be rational and entire functions of m, V I— m *
. sin. a-

" and V 1 — m^. cos. w, which satisfy the following equations

:

/d. {(._™=).(iY^)}\ (^')
'">=\——dm y+-T4^+'<'+"-^^''

" we shall have generally

"/Y<'^ Z('').dmd«r = 0,

" whilst i and i' are whole positive numbers differing from one another

.

" the integrals being taken from m = — ltom= 1, and from w =
« to «r = 2 cr."

To demonstrate this theorem, we shall observe that in virtue of the first

of the two preceding equations of partial differences, we have

'dYO,

•^ 1(1+1)'' \ dm y

1 /z"'-(-di^) . .

-iTi+T)-/ i-n.'
•d°'-d';

But integrating by parts relatively to m we have

_(1_„<)Y0..(^)

and it is clear that if we take the integral from m = — ltom=l, the

second member of this equation will be reduced to its last term. In like

manner, integrating by parts relatively to », we get

/Z«.(^).d. = co„s.. + Z«.(^)

and this second member also reduces to its last term, when the integral
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is taken from «r = to w = 2 «•, because the values of Y % (—, )

,

Z^%r—J— j are the same at these two limits; thus we shall have

^ ^ l\ dm / + 1 — m^ )

whence we derive, in virtue of the second of the two preceding equations

of partial differences,

/Y «. Z^\ d m . d ^.= \ f!'+

V

-/Y ^'^ Z^'O. d m . d *,
1(1+1) "^

we therefore have

=/Y« Z('')dm.d--,

when i is different from i'.

Hence it is easy to conclude that y can be developed into a series of

the form Y^"' + Y^') + Y^^) ^ ^q. in one way only; for we have

generally

Ay . Z W d m d « =/Y ^'\ Z »> d m . d .^;

If>we could develope y into another series of the same form, Y, ("' +
Y/i) + Y/2) + &c. we should have

/y . Z « =/Y, ». Z « d m . d «r;

wherefore

/Y, «). Z ». d m d .^r =/Y ('). Z « d m . d ^.

But it is easy to perceive that if we take for Z ^'^ the most general

function of its kind, the preceding equation can only subsist in the case

wherein Y, ^'^ = Y ^'''
; the function y can therefore be developed thus in

only one manner.

If in the integraiyy d m . d w, we substitute for y its value Y^°^ + Y^*^

+ Y^2) + &c., we shall have generally =ryY ^"^ d m . d w, i being

equal to or greater than unity ; for the unity which multiplies d m . d »

is comprised in the form Z ^°', which extends to every constant and quan-

tity independent of m and t?. The integraiyy d m . d w reduces there-

fore toy Y^°^ d m . d ar, and consequently to 4 ^ Y<°) ; we have there-

fore

M = f ca'+ 4affa». YW;

thus, by taking for a, the radius of the sphere equal in solidity to the sphe-

roid, we shall have Y ^°^ = 0, and the term Y ^°^ will disappear from the

expression of y.
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The distance of the element d M, or R * . d R d m . d w, from the

plane of the meridian from wlience we measure the angle w, is equal to

R */ 1 — m* . sin. w; the distance of the center of gravity of the sphe-

roid from this plane, will be therefore^R'dRdm.dw -v^l — m^ sin. w,

and integrating relatively to R, it will be \f^' *dm.d» Vl — m^ sin. «r,

R' being the radius R produced to the surface of the spheroid. In like

manner the distance of the element d M from the plane of the meridian

perpendicular to the preceding, being R *>/ 1 — m *
. cos. w, the distance

of the center of gravity of the spheroid from this plane will be ^y R"*

dm.dw. V I — m*^. cos. ». Finally, the distance of the element d M
from the plane of the equator being m, the distance of the center of gra-

vity of the spheroid from this plane will be \f R' * m . d m . d w. These

functions m, V 1 — m *
. sin. w, V 1 — m ^

. cos. w, are of the form Z ^'^

Z '*^ being subject to the equation of partial diflferences

\ dm y *"
J _m2 2Z(".

If we conceive R' * developed into the series N ^°^ + N ^'^ + N ^^^ + &c.

N ^'^ being a rational and entire function of m, VI — m ' . sin. tf,

V 1 — m ^
. cos. ^, subject to the equation of partial differences.

J'{('—)(*r)}^.(S)+J_^i^_'+i(i+l).N«;
dm y 1 — m

the distances of the center of gravity of the spheroid, from the three

preceding planes, will be, in virtue of the general theorem above demon-

strated,

i/N<«. d m. d w. V 1 — m^. sin. «•,

i/N "^ d m . d « . V 1 — m''
. cos. «

;

4/N<^>m. dm. dtr.

N ^'^ is, by No. 553, of the form A m + B VI — m '^

. sin. «r +
C v 1 — ni^ . COS. w. A, B, C being constants ; the preceding distances

will thus become -J . B, -^ . C, -^ . A. The position of the center of
«> o. <5

gravity of the spheroid, thus depends only on the function N ''). This

gives a very simple way of determining it. If the origin of the radius R'

IS at the center; this origin being upon the three preceding planes, the

distances of the center of gravity from these planes will be nothing. This

gives A = 0, B = 0, C = 0; therefore N ^'^ = 0.
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These results obtain whatever may be the spheroid : when it is very

little different from a sphere, we have R' = a (1 + ay), and R'* =
a* (1 + 4 a y) ; thus, y being equal to Y ^ + Y^^) + Y^2) ^ gj-c.^ ^e

have N ^^- = 4 a a * Y ^^\ the function Y f'- disappears, therefore, from the

expression of y, when we fix the origin of R' at the center of gravity of

the spheroid.

557. Now let the point attracted be in the interior of the spheroid, we
shall have by 553

V = v (0) + r . V (') + r ^ V (2) ^ 1- 3 V (3) ^ g^P^

(i) - /
- d R . d ^^ d ^ . sin. ^ . Q ^'^

Suppose that this value of V is relative to a shell whose interior surface is

spherical and of the radius a, and the radius of whose exterior surface is

a (1 — « y) j" the thickness of the shell is a a y. If we denote by y' what

y becomes when we change d, w into 6', ar^, we may, neglecting quantities

of the order a% change r into a, and d R into a a y', in the integral ex-

pression of V ^') ; thus we shall have

V w = -j^/y' dz^'.dl/. sin. &'
. Q ('>.

Relatively to a point placed without the spheroid, we have, by 553,

V= ^.- +^ + &c.;

U^'^ =fR^ +Kd R. d^'.d^. sin. ^. Q W.

If we suppose this value of V relative to a shell, whose interior and ex-

terior radii are respectively a, a ( 1 + a y ), we shall have

U t'^ = a . a'+^/y'. d «r'. d ^. sin. 6", Q «;
wherefore

~ a2* + »*

We have by 555

TT (i) - 4a^a' + 3. YW
^ - 2i + I

'

therefore

4 a ff Y «>
w —

(2i + I) a'-2'
which gives

V = 4acra2 \ YW+^.Y(')+ ~2-Y®+&c.|.

To this value of V we must add that which is relative to the spherical

shell of the thickness a — r which envelopes the attracted point p/«5 that

which is relative to the sphere of radius r, and which is below the same
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point If we make cos. (f — m\ we shall have, relatively to the first of

the two parts of V,

an integral which, relative to m', must be taken from m' = — 1 to m = 1

Integrating relative to R, from R = r to R = a, we shall have

^ '"= s4t (S^- r-T^^)/'"
"'•''"'• Q '" '

But we have generally, by the theorem of the preceding No.,

yd w' . d m'. Q (') = when i is equal to or greater than unity; when

i =: 0, we have, by 553, Q ^'^ =: 1 ; moreover the integration relative to

tr' must be taken from «r' = to «/ = 2 cr ; we shall therefore have

vW = 2<)r (a^ — r^\

This value of v ^"^ is that part of* V which is relative to the spherical shell

whose thickness is a — r.

The part of V which is relative to the sphere whose radius is r is equal

to the mass of this sphere, divided by the distance of the attracted point from

41 CT r
^

its center : it is consequently equal to —-— . Collecting the different

parts of V,we shall have its whole value

V=2^a«— 7ffr«+4a»a'-rY»^+-^YW + -^Y (2) + &c."l; . (4)
( o a 5 a *

J

Suppose the point attracted, placed within a shell very nearly spherical,

whose interior radius is

a + a a JY^ + Y^') + Y^^) ^ &c.|

and whose exterior radius is

a' + a a' JY'W + Y'^^) + Y'(2) + &c.]

The quantities a a Y ^"^ and a a' Y' ^"^ may be comprised in the quanti-

ties a, a'. Moreover, by fixing the origin of coordinates at the center of

gravity of the spheroid whose radius is

a+ aa {YW + YC) + &c.l,

we may cause Y '*' to disappear from the expression of this radius ; and

then the interior radius of the shell will be of this form,

a + aa JY'^) + Y^^) + &c.|,

and the exterior radius will be of the form,

a' + aa' ^Y'(i) + Y'(2) + &c.].

We shall have the value of V relative to this shell, by taking the differ-

pnce of the values of V relative to two spheroids, the smaller of which

shall have for the radius of its surface the first quantity, and the greater
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the second quantity for the radius of its surface ; calling therefore a . V
what V becomes relatively to this shell, we shall have

fra' r* r^/Y'W VO)* 1
AV= 2<a'^-a^)+4a* j^Y'W+^jY'C^LY^^)] +^{^~) +&c.}

If we wish that the point placed in the interior of the shell, should be
equally attracted on all sides, a . V must be reduced to a constant inde-

pendent of r, tf, or ; for we have seen that the partial differences of a . V,

taken relatively to these variables, express the partial attractions of the

shell upon the point attracted ; we therefore, in this case have Y' ^^^ = 0,

and generally

Y' W = ^^y-2/y«;

so that the radius of the interior surface being given, that of the exterior

surface will be found.

When the interior surface is elliptic, we have Y ^^^ = 0, Y ^*) = 0, &c.

and consequendy Y' ® = 0, Y' ^*) = ; the radii of the two surfaces, in-

terior and exterior, are therefore

a U + aY(2)|; af {1 + a Y^^)};

thus we see that these two surfaces are similar and similarly situated,

which agrees with what we found in 547.

558. The formulas (3), (4) of Nos. 555, and 557, comprehend all the

theory of the attractions of homogeneous spheroids, differing but little from

the sphere; whence it is easy to obtain that of heterogeneous spheroids,

whatever may be the law of the variation of the figure and density of their

shells. For that purpose let a (1 + a y) be the radius of one of the shells

of a heterogeneous spheroid, and suppose y to be of this form

YW + YW + Y(2) + &c.

the coefficients which enter the quantities Y ^"', Y '•^\ &c. being functions

of a, and consequently variable from one shell to another. If we differ-

entiate relatively to a, the value of V given by the form (3) of No. 555

;

and call p the density of the shell whose radius is a (1 + «>')»§ being a

function of a only ; the value of V corresponding to this shell will be, for

an exterior attracted point,

i^ . d a^ + ^-^^^^^ d {a^ Y W +^ . Y W + ^^. Y^^) + &c.};
Sr" r I 3r '5r* J

this value will be, therefore, relatively to the whole spiieroid,

V=i^./fda'+^/sd{a'Y<«'+|-*YO.+^.Y<«+&c.}; . . (5)

the integrals being taken from a = to that value of a which subsists at

the surface of the spheroid, and which we denote by a.
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To get the part of V relative to an attracted point in the interior of the

spheroid, we shall determme first the part of this value relative to all the

shells to which this point is exterior. This first part is given by fonnula

(5) by taking the integral from a = to a = a, a being relative to the

shell in which is the point attracted. We shall find the second part of V
relative to all the shells in the interior of which is placed the point attract-

ed, by differentiating the formula (4) of the preceding No. relatively to a

;

then multiplying this differential by ?, and taking the integral from a = a,

to a = a, the sum of the two parts of V will be its entire value relative to

an interior point, which sum will be

V=^/Ha'+i^/fd.{a'Y(0)+|.Va)4.^^YC2)+&c.}

+ 2flr/gda«+4a«/gd. -[a« YW+^ Y^+L' Y(2)+ &c.} . (6)

the two first integrals being taken from a = to a = a, and the two last

being taken fi*om a = a to a = a; after the integrations, moreover, we

must substitute a for r in the terms multiplied by a, and —"^— •'- for

— in the term ^r— fed. a\
r 3 r"^

^

559. Now let us consider any spheroids whatever. The research of

their attraction is reduced, by 553, to forming the quantities U ^^'> and v ^'^

,

by that No. we have

U» =/gR' + 2.d Rdm'd^'. Q«;
in which the integrals must be taken from R = to its value at the sur-

face, from m' = — 1 to m' = 1, and from v z= to «r' = 2 ir.

To determine this integral, Q (*> must be known. This quantity may
be developed into a finite function of cosines of the angle w— w', and of

its multiples. Let /3 cos. n (w — wQ be the term of Q ^'^ depending on

COS. n (« — •»'), /3 being a function m, m'. If we substitute for Q ''^ its

value in the equation of partial differences in Q ^ of No. 553, we shall

have, by comparing the terms multiplied by cos. n (w— »'), this equation

of ordinary differences,

dm 1 — m* ^

R (i)

Q <*' being the coefficient of -
^ ^ ^

-
, in the developement of the radical

1

Vr«— 2RrImm'+V 1— m'^ V 1— m«. cos. (^— ^')+ ^ *V
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The term depending on cos. n (w — »'), in the developement of this

radical, can only result from the powers of cos. (»— zr'), equal ton, n-f 2

n + 4, &c. ; thus cos. (w— w') having the factor V 1 — m% /3 must have

the factor (1 — m") ^. It is easy to see, by the consideration of the de-

velopement of the radical, that /3 is of this form

(1 — m^)^. JA. m ' n+A^i). m'-n-^+A^^)^ n-ji-n-i^gj.^.^^^

If we substitute this value in the differential equation in /3, the compari-

son of like powers of m will give

Ars>- (i-n-2s+2).(i-n-2s+ 1) .,,_,,^~
2 s (2 i — 2 s + 1)

'^

whence we derive, by successively putting s = 1, s = 2, &c. the values of

A ('), A ^^), and consequently,

(m^ (^-")('-"-^
)mi-n-M

(i-n)(i-n-l)(i-n-2)(i-n-3) ,„^^

B-A(lm^)H 2T2i^^)"^ + 2.4.(2i-l)(2i-3)"^ /
P-AU m;^

(
i-n)(i-n-l)(i-n-2)(i-n-3)(i-n-4)(i-n-5) (•

^ 2.4.6(2i— l)(2i— 3)(2i— 5)
"*"^^* ^

A is a function of m' independent of m ; but m and m' entering alike into

the preceding radical, they ought to enter similarly into the expression of

iS; we have therefore

y being a coefficient independent ofm and m' ; therefore

^=7 (1—m' ^y {m'i-»— ^'~"y|"3^~^^ m' -""H&c. } . (1 — m ^)^ X

f (i—n) (i—n

—

1) ; „ o . o I

i"'""- a(2i-i) ' "-^+&'^-|-

Thus we see that /3 is split into three factors, the first independent of

m and m' ; the second a function of m' alone ; and the third a like function

of m. We have only now to determine y.

For that purpose, we shall observe, that if i — n be even ; we have,

supposing m = 0, and m' = 0,

7. U- 2. ...i — n]2 ^^
8 =

{2. 4....(i— n).(2i— I).(2i— 3)....(i+n+l)r

_ 7 . U- 3. 5. . . . (i— n— 1). 1. 3. 5. . . . (i+n— I )}
«

-
n.3.5.... (2i— l)r
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If i — n is odd, we shall have, in retaining only the first power of ni,

and m',

Q _ y.m.m'

U. 2.. .. (i — n) j
»

• '^ ~
J2. 4.... (i — n— 1) (2i—1) (2i— 3)...(i+ n+ 2)J*

_ y.m.m' n. 3. 5 (i — n) . 1.3. 5.... (i+n)p~
U. 3. 5 (2i— l)p

The preceding radical becomes, neglecting the squares of m, m',

Jr*-2 R r cos.(«r-^')+ R '}~^+ R r. m m' {r^-2r R cos.(^^') + R -|~^
; . (f

)

If we substitute for cos. (w — V), its value in imaginary exponentials,

and if we call c the number whose hyperbolic logarithm is unity, the part

independent ofm m', becomes

Jr— R.cC'^-'OV^irK [T—R . c-i^-^)^'^^^~^.

The coefficient of

71+7. 2 , or of ^nr^ • cos. n (*»— «r')

in the developeraent of this function is

2. 1. 3. 5 (i 4- n — 1). 1. 3. 5 (j — n — 1)

2. 4. 6 (i + n) 2. 4. 6 (i — n)

This is the value of /3 when i — n is even. Comparing it with that

which in the same case we have already found, we shall have

/1.3.5....(2i-lK « i(i-I)....(i-n+ I)

^ ~ V 1. 2. 3 i J ^ (i + 1) (i + 2) (i + n)

When n = 0, we must take only half this coefficient, and then we

have
/ 1.3.5....2i-K '

^ ~\ I. 2. 3 i J
'

Ri
In like manner, the coefficient of —ttt "^ • "^' ^os. n (w— »') in the

function (f) is

2. 1. 3. 5 (i + n) . 1. 3. 5 (i — n)
_

2. 4. 6. (i + n — 1) . 2. 4. 6 (i _ n — 1)
'

this is the coefficient of m m' in the value of /3, when we neglect the

squares of m, m', and when i — n is odd. Comparing this with the va-

lue already found, we shall have

/ I. 3. 5. ...(2i-l) x' i(i-l) (i-n+ 1
.

'^ ~ V 1.2.3 i ;-(i+l)(i+ 2) (i+ n)'

an expression which is the same as in the case of i — n being even.

If n = 0, we also have

_ / I. 3.5 (2i— IK ^

"^ - \ 1. 2. 3 i /
•



Book L] NEWTON'S PRINCIPIA. 241

560. From what precedes, we may obtain the general form of functions

Y ^'^ of m, V 1 — m*. sin. », and V 1 — m* . cos. w, which satisfy the

equation of partial differences

Designating by ^, the coefficient of sin. n w, or of cos. n zr, in the

function Y ('^, we shall have

= j -;
'—-. + 1 (l + 1). ^.dm 1 —m'^^'

n

8 is equal to (1 — m*) ^ multiplied by a rational and entire function of m,

and in this case, by the preceding No., we have

ff = A(")(l-m^)^{m'-»—(^~"^y|~"~^^ m^-"-^4.&c.j,^

A ^") being an arbitrary constant ; thus the part of Y ^') depending on the

angle n w, is

(1— m^)^|mi-"— ^'~"y|~"~^\ m'-n-2+&c.|.{A(")sin.n.>

+ B (") cos. n w}

;

A ^"^ and B ^°5 being two arbitraries. If we make successively in this func-

tion, n = 0, n = 1, n = 2 . . . n = i ; the sum of all the functions which

thence result, will be the general expression of Y ^'\ and this expression

will contain 2 i + 1 arbitraries B ^'°>, A "), B ('), A ^2), B ^^\ &c.

Let us now consider a rational and entire function S of the order s,

of the three rectangular coordinates x, y, z. If we represent by R the

distance of the point determined by these coordinates from their origin

;

by & the angle formed by R and the axis of x ; and by w the angle which

the plane of x, y forms with the plane passing through R and the axis of

X ; we shall have

x = Rm; y = R. V 1 — m*. cos. ts-; z= RV I — m^. sin. w.

Substituting these values in S, and developing this function into sines

and cosines of the angle w and its multiples, if S is the most general func-

tion of the order s, then sin. n «r, and cos. n w, will be multiplied by func-

tions of the form
n

(1 — m«) MA .m=-"+ B.m^-n-i + C.m^-"-^ + &c.|

;

thus the part of S, depending on the angle n w, will contain 2 (s— n+ 1

)

indeterminate constants. The part of S depending on the angle «r and its

multiples will contain therefore s (s + 1) indeterminates ; the part inde-

VoL. II. Q.
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pendent of «r will contain s + 1, and S will therefore contain (s + 1) *

indeterminate constants.

The function Y^^) ^ y^'^ + &c. Y (*) contains in like manner (s + 1) *

indeterminate constants, since the function Y ^'^ contains 2 i + 1 ; we may
therefore put S into a function of this form, and this may be effected as

follows

:

From what precedes we shall learn the most general expression of Y ^"^

,

we shall take it from S and determine the arbitraries of Y ^^^ so that the

pow^ers and products of m and V 1 — m * of the order s shall disappear

from the difference S — Y ^'^ ; this difference will thus become a function

of the order s — 1 which we shall denote by S'. We shall take the most

general expression of Y ^*-^)
; we shall subtract it from S', and determine

the arbitraries of Y^'~^^ so that the powers and products of m and

V 1 — m '^ of the order s — 1 may disappear from the difference

S'— Y ^' ~ '^ Thus proceeding we shall determine the functions Y ^^\

Y («-
1), Y ^^ - 2), &c. of which the sum is S.

561. Resume now, the equation of No. 559,

U <) =/§. R' + 2 d R . d m'. d ^'. Q «.

Suppose R a function of m', or' and of a parameter a, constant for all

shells of the same density, and variable from one shell to another. The

difference d R being taken on the supposition that m', w' are constant we

shall have

therefore

U (i) = ^JL_ .fe(^-^ )d a . d m'. d ^'. Q «.
i + 3'^*V da /

Let R* + ^ be developed into a series of the form

Z'^') being whatever i may be, a rational and entire function of m',

-v/ 1 m' ^ sin. »', and V 1 — m' ^ cos. «•', which satisfies the equation

of partial differences

The difference of Z' ^'^ taken relatively to a, satisfies also this equation,

and consequently it is of the same form ; by the general theorem of 556,

we ought therefore only to consider the term Z' « in the developement of

R ' + 3, and then we have

.=C-t

UO = -JL_./.(l?^Vda.dm'.d,.'.Q«.
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When tlie spheroid is homogeneous and differing but little from a

sphere, we may suppose ^ = 1, and R = a (1 + a y') ; then we have, by
integrating relatively to a

U C') = ,_L JTJ «. d m' . d ^. Q «.

Moreover, if we suppose y' developed into a series of the form

Y^'^ satisfying the same equation of partial difference as Z' ^'^ ; we shall have,

neglecting quantities of the order a.\ Z'^. — (i ^ 3). a. a' + 3 Y'^'^ ; we
shall therefore have

U « = a . a' +3./Y' ^''. d m'. d ^. Q <*).

If we denote by Y ^'' what Y' ^'^ becomes when we change m' and w' into

m and -a ; we shall have by No. 554,

"" 2i + 1
'

we therefore have this remarkable result,

4 « Y (')

/Y'W.dm'.d..'. Q«=|4~^ (1)

This equation subsisting whatever may be Y' ^'^ we may conclude ge-

nerally that the double integration of the function f 7/ ^'^ dm', d w' . Q ^'^

taken from m' = — 1 to m' = 1, and from «/ = to w' = 2 cr, only

4 cr Z ^'^

transforms 7/ ^'^ into . ; Z ^'^ being what 7/ ^'^ becomes when v/e

change m' and v into m and w ; we therefore have

^'' =
(
i + 3)(2i+l/^(-^^)-^"^

and the triple integration upon which U W depends, reduces to one in-

tegration only taken relatively to a, from a = to its value at the surface

of the spheroid.

The equation (1) presents a very simply method of integrating the func-

tion / Y W. Z W. d m . d w, from m = — 1 to m = 1, and from t? =
to w = 2 T. In fact, the part of Y ^ depending on the angle n w, is by

what precedes, of the form X {A^"^ sin. n w + B^"^ cos. n w}, X being

equal to

we shall have therefore

Y' « = X' {A (") sin. n z^' + B (•») cos. n ^\ ;

X' being what X becomes when m is changed into m'. The part of Q '"^

depending on the angle n w, is by the preceding No., / X X' cos. n (ar—w'),

Q2
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or 7 X'. X.Jcos. n ». cos. n -a' + sin. n w. sin. n w} ; thus that part of tlie

integral/Y ^'^ d m. d w'. Q ») which depends on the angle n o-, will be

y A. sin. n ar./X'*. d m'. d «r'. sin. n ??'
JA (°) sin. n w' + B ^"^ cos. n a/]

7 A. cos. n a-y X' *. d m'. d s/. cos. n «»'
JA ^") sin. n w' -f- B (") cos. n «'?.

Executing the integrations relative to ar', that part becomes

y X w {A ^"5 sin. n w + B^°^ cos. n w}./X'% d m';

but in virtue of equation (1), the same part is equal to

„ .-^ . >. JA^") sin. n w + B ^°5 cos. n v\
2 1+1^ *

we therefore have

/^"•<'"'' = (rTT7)^-
Now represent by X {A' ^"> sin. n » 4- B' ^°) cos. n »•} that part of Z ^'^

which depends on the angle n w. This part ought to be combined with

the corresponding part ofY ^'^ ; because the terms depending on the sines

and cosines of the angle « and its multiples, disappear by integration, in

the function/Y ^'^ Z W d m . d ts-, integrated from a' = 0tow = 2T;we
shall thus obtain, in regarding only that part of Y W which depends on

the angle n w,

/Y W. Z W d m d «r =
/X «. d m . d w[A (°) sin. n « + B ^"^ cos. n ^H A' ("^ sin. n w + B' (") cos. n v>\

= ff[A^). A'(°)+BHFW]./x«dm=--ji^ .^AKA'W+BHB'^°;j.

Supposing therefore successively in the last member n = 0, n = 1,

n = 2 . . . n = i ; the sura of all the terms, will be the value of the in-

tegral/Y « Z W d m . d ^.

If the spheroid is one of revolution, so that the axis with which the ra-

dius R forms the angle «, may be the axis of revolution ; the angle » will

disappear from the expression of Z ('^, which then takes the following

form:

1. 2. 3 ... i ^ l"" 2.(21-1)"" +2.4.(2i-l)(2i-3r J'

A ^') being a function of a. Call X (') the coefficient of A (", in this funo-

tion : the product

/ 1.3.5...(2i-l)y f _ i.(i-l)
. &c V,

\ 1.2.3. ..i ;-t^ 2.{2i-l) + ^'''i'

R'
is by the preceding No., the coefficient of -^r^ in the developement of

the radical

Jr»-.2Rr{mm'+V 1 — m». V 1 — m" cos. (w — *^)] + R'|"^'
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when we therein suppose m and m' equal to unity. This coefficient is

then equal to 1 ; we have therefore

1.3.5. ..(2i-l) r i(i-l) g^^l
J

1.2.3. ..i t 2(2i— 1)^^"^ j - *'

that is to say, X W reduces to unity, when m = 1. We have then

TT(n
4c7X(i) -/dA«N,

U'^ =
(i + 3).(2i + l) '/K^d7-)^"-

Relatively to the axis of revolution, m = 1, and consequently,

therefore if we suppose that relatively to a point pliaced upon this axis

produced, we have

BW B« B(»)V = — +-^ +^ +&C.;

we shall have the value of V relative to another point placed at the mean

distance from the origin of coordinates, but upon a radius which makes

with the axis of revolution, an angle whose cosine is m ; by multiplying

the terms of this value respectively by X ^^\ X ^'), X '-^^ &c.

In the case when the spheroid is not of revolution, this method will

give the part of V independent of the angle « : we shall determine the

other part in this manner. Suppose for the sake of simplicity, the sphe-

roid such that it is divided into two equal and similar parts by the equa-

tor, whether by the meridian where we fix the origin of the angle w, or

by the meridian which is perpendicular to the former. Then V will be

a function ofm % sin. * «, and cos. ^ w, or which comes to the same, it v/ill

be a function of m % and of the cosine of the angle 2 « and its multiples

;

U ^') will therefore be nothing, when i is odd, and in the catse when it is

even, the term which depends on the angle 2 n «r, will be of the form

C W. (1 -m^)°{m'-2°—
^'"I'l^^^.'^'^-

^^ m'-2n-2 4.&c.}cos. 2n .^.

Relatively to an attracted point placed in the plane of the equator,

where m = 0, that part of V which depends on this term becomes

.
C.W 1. 3. 5 . . . (i — 2 n — 1) 2^^.— r'+^ • 2 (i + 2 n + 1) (i + 2 n -f- 2) . . . (2 i -ir- 1)

*
^^^'

whence it follows that having developed V into a series ordered according

to the cosines of the angle 2 w and its multiples, when the point attracted

is situated in the plane of the equator j to extend this value to any attract-

ed point whatever, it will be sufficient to multiply the terms which depend

cos. 2 n =r
, . „ .

on :—;— by the lunction

Q3
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2(i+2n+l)...(2i-l) ,i_^sxn/„,i-2„ (i-2n)(i-2n-l)
-1.3.5...(i—2n— 1)'^^ m

;
^m

^ ^^
^____

m i — 2n—

2

+ &C.};

we shall hence obtain, therefore, the entire value of V, when this value

shall be determined in a series, for the two cases where the part attracted

is situated upon the polar axis produced, and where it is situated in the

plane of the equator ; tliis greatly simplifies the research of this value.

The spheroid which we are considering comprehends the ellipsoid.

Relatively to an attracted point situated upon the polar axis, which we

shall suppose to be the axis of x, by 546, we have b = 0, c = 0, and

then the expression of V of No. 549, is integrable relatively to p. Rela-

tively to a point situated in the plane of the equator, we have a = 0, and

the same expression of V still becomes, by known methods, integrable re-

latively to q, by making tan. q = t. In the two cases, the integral being

taken relatively to one of these variables in its limits, it then becomes

possible relatively to the other, and we find that M being the mass of

V
the spheroid, the value of ^r^ is independent of the semi-axis k of the

spheroid perpendicular to the equator, and depends only on the ex-

centricities of the ellipsoid. Multiplying therefore the different terms

V
of the values of ^ relative to these two cases, and reduced into se-

ries proceeding according to the powers of - , by the factors above men-

tioned, to get the value of -jrj relative to any attracted point whatever; the

function which thence results will be independent of k, and only depend

on the excentricities ; this furnishes a new demonstration of the theorem

already proved in 550.

If the point attracted is placed in the interior of the spheroid, the at-

traction which it undergoes, depends, as we have seen in No. 553, on the

function v ^^>, and by the No. cited, we have

„_ ^gdRdm-d^^QW .

an equation which we can put under this form

^ '" = a^Ti-Zs i^ir) d »
•

d >"'• <! -'• Q '"•

Suppose R2-' developed into a series of the form
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z' W satisfying the equation of partial differences,

\ dm / \ — m' ^

if moreover we call z ^'^ what z' (•' becomes when we change m' into m, and

V into w, we shall have by what precedes,

fn
^"^ r yd z Wv

'^"=
(2i+i)(2-i) -^e(iri-)'''"

thus therefore we shall get the expression of V relative to all the shells of

the spheroid which envelope the point attracted. The value of V relative

to shells to which it is interior, we have already shown how to deter-

mine.

ON THE FIGURE OF A FLUID HOMOGENEOUS MASS IN EQUILIBRIUM,

AND ENDOWED WITH A ROTATORY MOTION.

562. Having exposed in the preceding Nos. the theory of the attrac-

tions of spheroids, we now proceed to consider the figure which they

must assume in virtue of the mutual action of their parts, and the other

forces which act upon them. We shall first seek the figure wliich satis-

fies the equilibrium of a fluid homogeneous mass endowed with a rotatory

motion, and of that problem we shall give a rigorous solution.

Let a, b, c be the rectangular coordinates of any point of the surface of

the mass, and P, Q, R the forces which solicit it parallel to the coordi-

nates, the forces being supposed as tending to diminish them. We know

that when the mass is in equilibrium, we have

= P. da + Q. db + R.dc;
provided that in estimating the forces P, Q, R, we reckon the centi'ifugal

force due to the motion of rotation.

To estimate these forces, we shall suppose that the figure of the fluid

mass, is that of the ellipsoid of revolution, whose axis of rotation, is the axis

itself of revolution. If the forces P, Q, R which result from this hypothe-

sis, substituted in the preceding equation of equilibrium give the differen-

tial equation of the surface of the ellipsoid ; the preceding hypothesis is

legitimate, and the elUptic figure satisfies the equilibrium of the fluid

mass.

Suppose that the axis of a is that also of revolution ; the equation of

the surface of the ellipsoid will be of this form

a^ + m (b« + c^) =k^;
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the origin of the coordinates a, b, c being at the center of the ellipsoid,

k will be the semi-axis of revolution, and if we call M the mass of the el-

lipsoid, by 546, we shall have

TiT 4 T p k'M = —^—
3 m

I ^— m
f being the density of the fluid. If we make as in 547, = X', wem

shall have m = . ^ , and consequently

M = ^kMi+x^);

an equation which will give the semi-axis k, when X is known.

Let

A- = i^,±Ji!)(x_ta„.-.x)

B' = |^Ul+^')tan.-'x_X)};

we shall have by 547, regarding only the attraction of the fluid mass

P = A'a; Q = B'b; R= B' c.

If we call g, the centrifugal force at the distance 1, from the axis of

rotation ; this force at the distance V b ^
-f- c '^ from the same axis, will

be g V h- + c': resolving this parallel to the coordinates b, c there will

result in Q the term — g b, and in R the term— g c; thus we shall have,

reckoning all the forces which animate the molecules of the surface,

P = A'a; Q = (B'-g)b; R = (B'-g).cj

the preceding equation of equilibrium, will therefore become

= a d a H ^y-= (b d b + c d c).

The difierential equation of the surface of the ellipsoid is by substitut-

ing for m its value .
^ ,

^ -, .bdb-fcdc= ada+ ^^^, ;

by comparing this with the preceding one, we shall have

(1 + >.^)(B'-g) = A'; (1)

if we substitute for A', B' their values, and if we make 4-^ = q ; we shall

have
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determining therefore X by this equation which is independent of the co-

ordinates a, b, c, the equation of equilibrium will coincide with the equa-

tion of the surface of the ellipsoid ; whence it follows, that the elliptic fi-

gure satisfies the equilibrium, at least, when the motion of rotation is such

that the value of X^ is not imaginary, or when being negative, it is neither

equal to nor greater than unity. The case where X'^ is imaginary would

give an imaginary solid ; that where X ^ = — 1, would give a paraboloid,

and that where X ^ is negative and greater than unity, would give a hy-

perboloid.

563. If we call p the gravity at the surface of the ellipsoid, we shall

have

p = V P ^ + Q ^ + R «. • '
'^

In the interior of the ellipsoid, the forces P, Q, R, are proportional to

the coordinates a, b, c ; for we have seen in No. 547, that the attractions

of the ellipsoid, parallel to these coordinates, are respectively proportional

to them, which equally takes place for the centrifugal force resolved pa-

rallel to the same coordinates. Hence it follows, that the gravities at dif-

ferent points of a radius drawn from the center of the ellipsoid to its sur-

face, have parallel directions, and are proportional to the distances from

the center ; so that if we know the gravity at its surface, we shall have

the gravity in the interior of the spheroid.

If in the expression of p, we substitute for P, Q, R, their values given

in the preceding No., we shall have

p = V A'^a'^ + (B'— g)^ (b^ + c');

whence we derive, in virtue of equation (1) of the preceding No.

= aV«' ^ b^ + c

(1 + X2)2'

b^ + c*
bat the equation of the surface of the ellipsoid gives , ^g = k*— a';

we shall therefore have

, , / k* + X^a*
P = A-V I + x^ '

a is equal to k at the pole, and it is nothing at the equator ; whence it fol-

lows, that fhe gravity at the pole is to the gravity at the equator, as

V 1 + X2 is to unity, and consequently, as the diameter of the equatoi

is to the polar axis.

Call t the perpendicular at the surface of the ellipsoid, produced to

meet the axis of revolution, we shall have

t = V (1 + X^) (k^ + X^a^)

;
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wherefore

P =
A't

1 + X"
thus gi'avity is proportional to t.

Let -^ be the complement of the angle which t makes with the axis of

revolution ; -vj^ will be the latitude of the point of the surface, which we

are considering, and by the nature of the ellipse, we shall have

V 1 + X2C0S.*^^*

we therefore shall have

_ A^k
^ "" VX+TVcosTM' *

and substituting for A' its value, we shall get

4Tf .k.(l + X2).(x— tan.-'x) ...

p r= 2 \ ^ -; .... (3)^ \^ V I + X\ cos.2^|. ^
'

this equation gives the relation between gravity and the latitude; but we

must determine the constants which it contains.

Let T be the number of seconds in which the fluid mass will effect a

revolution ; the centrifugal force at the distance 1 from the axis of revo-

lution, will be equal to -rpY » ^^ therefore have

which gives

12. cr*
4 cr p z= rp 2 •

q
The radius of curvature of the elliptic meridian is

(l+^')k .

(1 + X 2 cos. 2 s}.) t

'

calling therefore c the length of a degree at the latitude -4^, we shall have

(1 + X^) crk—^^

—

— '-

3- = 200 c.

(1 + X^cos.'^-^)^

This equation combined with the preceding one, gives

^-^i^ + ^')'^ = 200 c (1 + X« cos.^ ^). i^;V 1 +x^cos.H q Jt

thus we shall have

p = 200c(l + X'cos.^-4.)^~^""-'"'^.lll,r V T Y/ yj qT*
Let 1 be the length of the simple pendulum which oscillates seconds

;
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from dynamics it results that p = tM (see§X.) ; comparing these two

expressions of p, we get

_ 2400 c (X — tan.-' X) (1 + X^ cos.^ -4/)

q — iTTTTTl 5 • • • • WIT^X
this equation and equation (2) of the preceding No. will give the values

of q and X by means of the length 1 of the seconds' pendulum, and the

length c of the degree of the meridian, both being observed at the lati-

tude 4/.

Suppose 4* = 50°, these equations will give

__ 800 c ^ /800c \
2

^ ~ crlT'^""* Wlt^J + ^^•'

^^=|-q+Iiq^ + ^^-'

observations give, as we shall see hereafter,

c = 100000; 1 = 0.741608;

moreover we have T = 99727 ; we shall thus obtain

q = 0.00344957 ; X ^ = 0.00868767.

The ratio of the axis of the equator to the polar axis, being V 1+ X %

it becomes in this case 1.00433441 ; these two axes are very nearly in

the ratio of 231.7 to 230.7, and by what precedes, the gravities at the

pole and at the equator are in the same ratio.

We shall have the semi polar axis k, by means of the equation

200_c_(l_+P^ _ 200_c^-
cr(l+X'^) -

cr
^^ 4X+&C.I,.

which gives

k = 6352534.

To get the attraction of a sphere, whose radius is k, and density any

whatever ; we shall observe that a sphere, having the radius k and density

g, acts upon a point placed at its surface, with a force equal to | ^ g . k,

, . . ,. • /«v 1 x^p-zT+Tx^
and consequently, m virtue 01 equation (6) equal to .

"
_i.,^v »

or to p (1 —^ ^"^ + &c.), or finally to 0.998697. p, p being the gravi-

ty upon the parallel of 50°. Hence it is easy to obtain the attractive force

of a sphere of any radius and density whatever, upon a point placed with-

in or without it.

564. If the equation (2) of No. 562, were susceptible of many real

roots, many figures of equilibrium might result from the same motion of

rotation ; let us examine therefore whether this equation has several real
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9 X -4- 2 a X

'

roots. For that purpose, call <p the function — ' tan.-%

which being equated to zero, produces the equation (2). It is easy to see,

that by making X increase from zero to infinity, the expression of p begins

and ends by being positive ; thus, by imagining a curve whose abscissa is

X and ordinate f, this curve will cut its axis when X = ; the ordinates

will afterwards be positive and increasing ; when arrived at their maxi-

mum, they will decrease; the curve will cut the axis a second time at a

point which will determine the value of X corresponding to the state of

equilibrium of the fluid mass j the ordinates will then be negative, and

since they are positive when X = oo ; the curve necessarily cuts the axis

a third time, which determines a second value of X which satisfies the

equilibrium. Thus we see, that for one and the same value of q, or for

one given motion of rotation, there are several figures for which the

equilibrium may subsist.

To determine the number of these figures, we shall observe, that we

have

, __ 6 X« d X {q X'^ + (10 q — 6) X'+ 9 q}^- (3x2+9)^(l + :^'^)

The supposition of d
f>

=r 0, gives

= qX*+ (lOq — 6)x2+9q;
whence we derive, considering only the positive values of X

= N/^-^±^(f-^y-^-
3 . _!_ TT

q

These values of X determine the maxima and minima of the ordinate f ;

there being only two similar ordinates on the side of positive abscissas, on

that side the curve cuts its axis in three points, one of them being the

origin ; thus, the number of figures which satisfy the equilibrium is reduc-

ed to two.

The curve on the side of negative abscissas being exactly the same as

on the side of positive abscissas ; it cuts its axis on each side in corre-

sponding points equidistant from the origin of coordinates ; the negative

values of X which satisfy the equilibrium, are therefore, as to the sign

taken, the same as the positive values ; which gives the same elliptic fi-

gures, since the square of X only enters the determination of these figures

;

it is useless therefore to consider the curve on the side of negative ab-

scissas.

If we suppose q very small, which takes place for the earth, we may

satisfy equation (2) of 562, in the two hypotheses of X * being very small,
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and of X 2 being very great. In the first, by the preceding No., we
have

To get the value of X - in the second hypothesis, we shall observe that

then tan.~ ' X differs very little from ^ w, so that if we suppose X = - — a,

a will be a very small angle of which the tangent is -
; we shall there-

A

fore have, p. 27. Vol. I.

X 3 X^ ^ 5X
and consequently

tan.-X = |-l +^,_^ + &c.;

equation (2) of No. 562, will thus become

9X+2q.X3 rr 1.1^ — 4. . __ fir/. .

9 + 3X2 - 2 X ^3X3 ^ '

whence by the reversion of series we get

3cr 8.4q/, 64\.„
X = + —^(1 — ^-A + &c.

= 2.356195. -L— 2.546479 — J-.4*r8885 q + &c.

We have seen in the preceding No., th^t relatively to the earth,

q = 0.00344957 ; this value of q substituted in the preceding expression,

gives X = 680.49. Thus the ratio of the two axes equatorial and polar,

a ratio which is equal to V 1 + X 2, is in the case of a very thin spheroid,

equal to 680.49.

The value of q has a limit beyond which the equilibrium is impossible,

the figure being elliptic. Suppose, in fact, that the gurve cuts its axis

only at its origin, and that in the other points it only touches; at the

point of contact we shall have f = 0, and d p = ; the value of
f>

will

never therefore be negative on the side of positive abscissas, which are

the only ones we shall here consider. The value of q determined by the

two equations ^= 0, d f= 0, will therefore be the limit of those with which

the equilibrium can take place, so that a greater value will render the

equilibrium impossible ; for q being supposed to increase by f, the func-

2 f X^
tion <p increases by the term ^ ^ ; thus, the value of <p correspond-

ing to q, being never negative, whatever X may be, the same function cor-

responding to q + f, is constantly positive, and can never become no-
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thing; the eqwilibrium is then therefore impossible. It results also from

this analysis, that there is only one real and positive value of q, which

would satisfy the two equations p = 0, and d ^ = 0. These equations

give

q =

(1 + x^:) (3 + X*) (9 + X^)
^an. A.

(1 +X^)(9 + X^)

7x^ + 30 X3 +
(1 + x'=)(3 + ^*)

The value of X which satisfies this last equation is X =z 2.5292 ; whence

we get q = 0.337007 ; the quantity V 1 4- X % which expresses the ra-

tio of the equatorial axis to the polar axis, is in this case equal to 2.7197.

The value of q relatively to the earth is equal to 0.00344957. This

value corresponds to a time of rotation of 0.99727 days; but we have

generally q = 4-^— , so that relatively to masses of the same density, q is

3 5

proportional to the centrifugal force g of the rotatory motion, and conse-

quently in the inverse ratio of the square of the time of rotation ; whence

it follows, that relatively to a mass of the same density as the earth, the

time of rotation which answers to q = 0.337007, is 0.10090 days. Whence
.result these two theorems.

" Every homogeneous fluid mass of a density equal to the mean density

of the earth, cannot be in equilibrium having an elliptic figure, if the time

of its rotation is less than 0.10090 days. If this time be greater, there

will be always two elliptic figures and no more which satisfy the equili-

brium."

" If the density of the fluid mass is different from that of the earth ; we

shall have the time of rotation in which the equilibrium ceases to be pos-

sible under an elliptic figure, by multiplying 0.10090 days by the square

root of the ratio of the mean density of the earth to that of the fluid

mass."

This relatively to a fluid mass, whose density is only a fourth part of

that of the earth, which nearly is the case with the sun, this time will be

0.20184 days; and if the density of the earth supposed fluid and homo-

geneous were about 98 times less than its actual density, the figure which

it ought to take to satisfy its actual motion of rotation, would be the limit

of all the elliptic figures with which the equilibrium can subsist. The

density of Jupiter being about five times less than that of the earth, and

the time of its rotation being 0.41377 days; we see that this duration is

in the limits of those of equilibrium.
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It may be thought that the limit of q, is that where the fluid would be-

gin to fly off" by reason of a too rapid motion of rotation ; but it is easy to

be convinced of the contrary, by observing that by 563, the gravity at the

equator of the ellipsoid is to that at the pole in the ratio of the polar axis

to that of the equator, a ratio which in this case, is that of 1 to 2.7197
;

the equilibrium ceases therefore to be possible, because with a motion of

rotation more rapid, it is impossible to give to the fluid mass, an elliptic

figure such that the resultant of its attraction and of the centrifugal force,

may be perpendicular to the surface.

Hitherto we have supposed X " positive, which gives the spheroids flat-

tened towards the poles ; let us now examine whether the equilibrium can

subsist with a figure lengthened towards the poles, or with a prolate sphe-

roid. Let X * = — X' ^ ; X' ^ must be positive and less than unity, otherwise,

the ellipsoid will be changed into a hyperboloid. The preceding value

of d f gives

- Z'
^^' d X fq X'* + (10 q — 6) X^ + 9 q} ^

^ -y
(1 + X'') (9 + 3 X2)2 '

,

the integral being taken from X = 0. Substituting for X its value + X' V -I,

we shall have

-—-
^
V'=dV[q.(l-V^).(9-X^«)+6X-^K

but it is evident that the elements of this last integral are all of the same

sign from X'^ = 0, to X'^ = 1 ; the function p can therefore never be-

come nothing in this interval. Thus then the equilibrium cannot subsist

in the case of the prolate spheroid.

565. If the motion of rotation primitively impressed upon the fluid

mass, is more rapid than that which belongs to the limit of q, we must

not thence infer that it cannot be in equilibrium with an elliptic figure

;

for we may conceive, that by flattening it more and more, it will take a

rotatory motion less and less rapid ; supposing therefore that there exists,

as in the case of all known fluids, a force of tenacity between its mole-

cules, this mass, after a great number of oscillations, may at length arrive

at a rotatory motion, comprised within the limits of equilibrium, and may
continue in that state. But this possibility it would also be interesting to

verify ; and it would be equally interesting to know whether there would

not be many possible states of equilibrium ; for what we have already de-

monstrated upon the possibility of two states of equilibrium, correspond-

ing to one motion of rotation, does not infer the possibility of two states

of equilibrium corresponding to one primitive force; because the two
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states of equilibrium relative to one motion of rotation, require two pri-

mitive forces, either different in quantity or differently applied.

Consider therefore a fluid mass agitated primitively by any forces what-

ever, and then left to itself, and to the mutual attractions of all its parts.

If through the center of gravity of this mass supposed immoveable, we

conceive a plane relatively to which the sum of the areas described upon

this plane, by each molecule, multiplied respectively by the correspond-

ing molecules, is a 7naximum at the origin of motion; this plane will

always have this property, whatever may be the manner in which the

molecules act upon one another, whether by their tenacity, by their attrac-

tiori, and their mutual collision, even in the very case where there is finite

loss of motion in an instant of time ; thus, when after a great number of

oscillations, the fluid mass shall take a uniform rotatory motion about a

fixed axis, this axis shall be perpendicular to the plane above-mentioned,

which will be that of the equator, and the motion of rotation will be such

that the sum of the areas described during the instant d t, by the mole-

cules projected upon this plane, will be the same as at the origin of mo-
tion ; we shall denote by E d t this last sum.

We shall here observe, that the axis in question, is that relatively to

which the sum of the moments of the primitive forces of the system was a

maximum. It retains this property during the motion of the system, and

finally becomes the axis of rotation ; for what is above asserted as to the

plane of the maximum of projected areas, equally applies to the axis of the

greatest moment offorces j since the elementary area described by the pro-

jection of the radius-vector of a body upon a plane, and multiplied by its

mass, is evidently proportional to the moment of the finite force of this

body relatively to the axis perpendicular to this plane.

Let, as above, g be the centrifiigal force due to the rotatory motion at

the distance 1 from the axis; V g will be the angular velocity of rotation

(p. 166. Vol. I.) ; then call k the semi-axis of rotation of the fluid mass,

and k V 1 -H X * the semi-axis of its equator. It is easy to show that

the sum of the areas described during the instant d t, by all the molecules

projected upon the plane of the equator and multiplied respectively by the

corresponding molecules, is

1^(1 +x')^k^dt Vg

we shall therefore have

1^^(1 +x^)'.k»yg = E.
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Then calling M, the fluid mass, we shall have

|^k^^(l +>J) = M;

the quantity 5—— j which we have called q, in No. 562, thus becomes

— ~ 25E*f'*Tp)*
q' (i + >.-) ^, denoting by q' the function —^^^^

'
^' The equa-

tion of the same No. becomes

- 9>+2q->-Ml+^^)'g _ tan -U
This equation will determine X ; we shall then have k by means of the

preceding expression of M.
Call p the function

9X + 2q-X3(l +x^)-g
9 + 3X2 ^^"' ^'

which, by the condition of equilibrium, ought to be equal to zero : this

equation begins by being positive, when X is very small, and ends by being

negative, when X is infinite ; there exists therefore between X = 0, and

X = infinity, a value of X which renders this function nothing, and conse-

quently, there is always, whatever q' may be, an elliptic figure, with which

the fluid mass may be in equilibrium.

The value of <p may be put under this integral form

dx|?^+ 18q'— {q'X2+ 18(l + X°-)Sj}

(9 + 3X"-)2(1 + x'-)f

When it becomes nothing the function

±LR + i8q'_Jq'X2 + 18(1 + X2)3},

has already passed through zero to become negative ; but from the in-

stant when this function begins to be negative, it continues to be so as X

27 q'
increases, because the positive part ^ - + 18 q' decreases whilst the ne-

X
2

gative part — ^q' X^ + 18 (1 + X^) 3] increases ; the function p cannot

therefore twice become nothing ; whence it follows, that there is but one

real and positive value of X which satisfies the equation of equilibrium,

and consequently, the fluid can be in equilibrium with one elliptic figure

. only.

Vol. II. tt



258 A COMMENTARY ON [Sect. XII. 5c XIH.

ON THE FIGURE OF A SPHEROID DIFFERING VERY LITTLE FROM A SPHERE,

AND COVERED WITH A SHELL OF FLUID IN EQUILIBRIUM.

566. We have already discussed the equilibrium of a homogeneous

fluid mass, and we have found that the elliptic figure satisfies this equili-

brium; but in order to get a complete solution of the problem, we must

determine a priori all the figures of equilibrium, or we must be certified

that the elliptic is the only figure which will fulfil these conditions; be-

sides, it is very probable that the celestial bodies have not homogeneous

masses, and that they are denser towards the center than at the surface.

In the research, therefore, of their figure, we must not rest satisfied with

the case of homogeneity ; but then this research presents great difficul-

ties. Happily it is simplified by the consideration of the little difference

which exists between the spherical figure and those of the planets and

satellites ; by which we are permitted to neglect the square of this differ-

ence, and of the quantities depending on it. Notwithstanding, the research

of the figure of the planets is still very complex. To treat it with the

greatest generality, we proceed to consider the equilibrium of a fluid mass

which covers a body formed of shells of variable density, endowed with

n rotatory motion, and sollicited by the attraction of other bodies. For

that purpose, we proceed to recapitulate the laws of equilibrium of fluids,

as laid down in works upon hydrostatics.

If we name f the density of a fluid molecule, II the pressure it sustains,

F, F', F", S:c. the forces which act upon it, and d f, d i', d i" the ele-

ments of the directions of these forces ; then the general equation of the

equilibrium of tlie fluid mass will be

— = F d f + F d f -h F" d f" + &c.
f

Suppose that the second member of this equation is an exact difference;

designating by d <p this difference, o will necessarily be a function of n and

of p: the integral of this equation will give 9 in a function of n; we may
therefore reduce to a function of n only, from which we can obtain n in

a function of p; thus, relatively to shells of a given constant density, we

shall have d n =: 0, and consequently

= F d f + F' d f ' -I- F'' d f '' -f &c.

;

an equation which indicates the tangential force at the surface of those

shells is nothing, and consequently, that the resultant of all the forces

F, F', F'', &c. is perpendicular to this surface; so that the shells are

spheiicaL
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The pressure n being nothing at the exterior surface, g must there be

constant, and the resultant of all the forces which animate each molecule

of the surface is perpendicular to it. This resultant is wnat we call gravi-

ty. The conditions of equilibrium of a fluid mass, are therefore 1st, that

the direction of gravity be perpendicular to each point of the exterior sur-

face : 2dly, that in the interior of the mass the directions of the gravity of

each molecule be perpendicular to the surface of the shells of a constant

density. Since we may take, in the interior of a homogeneous mass, such

shells as we wish for shells of a constant density, the second of two pre-

ceding conditions of equilibrium, is always satisfied, and it is sufficient for

the equilibrium that the first should be fulfilled ; that is to say, that the

resultant of all the forces which animate each molecule of the exterior

surface should be perpendicular to the surface.

567. In the theory of the figure of the celestial bodies, the forces F, F',

F'', &c. are produced by the attraction of their molecules, by the centrifu-

gal force due to their motion of rotation, and by the attraction of distant

bodies. It is easy to be certified that the difference F d f -|- F d f -|-&c.

is there exact ; but we shall clearly perceive that, by the analysis which

we are about to make of these different forces, in determining that part of

the integraiy(F d f + F' d f ' + &c.) which is relative to each of them.

If we call d M any molecule of the spheroid, and f its distance from the

point attracted, its action upon this latter will be —py- . Multiplying this

action by the element of its direction, which is — d f, since it tends to

diminish f, we shall have, relatively to the action of the molecule d M,

yF d f = —r- ; whence it follows that that part of the integral y (F d f

-|- F d f' + &c.), which depends on the attraction of the molecules of

the spheroid, is equal to the sum of all these molecules divided by their

respective distances from the molecule attracted. We shall represent this

sum by V, as we have already done.

We propose, in the theory of the figure of the planets, to determine

the laws of the equilibrium of all their parts, about their common center of

gravity ; we must, therefore, transfer into a contrary direction to the mole-

cule attracted, all the forces by which this center is animated in virtue of

the reciprocal action of all the parts of the spheroid; but we know

that, by the property of this center, the resultant of all the actions upon

this point is nothing. To get, therefore, the total effect of tlie attraction

R 2
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of the spheroid upon the molecules attracted, we have nothing to add

toV.

To determine the effect of the centrifugal force, we shall suppose the

position of the molecule determined by the three rectangular coordinates

x'j y', z', whose origin we fix at the center of gravity of the spheroid.

We shall then suppose that the axis of x' is the axis of rotation, and that

g expresses the centrifugal force due to the velocity of rotation at the dis-

tance I from the axis. This force will be nothing in the direction of x'

and equal to g y' and g t! in the direction of y' and of z' ; multiplying,

therefore, these two last forces respectively by the elements d y', d z' of

their directions, we shall have ^ g (y' " + z' ^) for that part of the integral

y (F d f + F' d f ' + &c.), which is due to the centrifugal force of the

rotatory motion.

If we call, as above, r the distance of the molecule attracted from the

center of gravity of the spheroid, 6 the angle which the radius r forms with

the axis of x', and « the angle the plane which passes through the axis

of x', and through the molecule, forms with the plane of x'jy'; finally, if

we make cos. ^ = m, we shall have

x' = r m ; y' = r V 1 —m ^
. cos. w ; z' = r V 1 — m *

. sin. w ;

whence we get

We shall put this last quantity under the following form :

to assimilate its terms to those of the expression V which are given in No.

559; that is to say, to give them the property of satisfying the equation of

partial differences

/d(l-™').(iT^')\ (^') '

in which Y ^'' is a rational and entire function of m, V 1 — m ^
.
cos. «

and V 1 m ^ sin. w of the degree i ; for it is clear that each of the two

terms ^gr* and — |gr^ (m« — i) satisfies for Y «, the preceding

equation.

It remains now for us to determine that part of the integral

^(F d f + F'd f' + &c.) which results from the action of distant bodies.

Let S be the mass of one of these bodies, f its distance from the molecule

attracted, and s its distance from the center of gravity of the spheroid.

Multiplying its action by the element— d f of its direction, and then inte-
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S
grating we shall have -jr- . This is not the entii'e part of the integral

/(F d f + F' d f ' + &c.) which is due to the action of S; we have still

to transfer, in a contrary direction to the molecule, the action of this body

upon the center of gravity of the spheroid. For that purpose, call v the

angle which s forms with the axis of x', and -^ the angle which the plane

passing through this star and through the body S, makes with the plane of

S
x', y'. The action of—j- of this body upon the center of gravity of the

spheroid, resolved parallel to the axes of x', y', z', will produce the three

following forms

:

S S S
—J COS. v; —J- sin. v cos. -v}/; —v- sin. v sin. -]^.

Transferring them hi a contrary direction to the molecule attracted,

which amounts toprefixing to them the sign—, then multiplying them by

the elements d x', d y', d z', of their directions, and integrating them, the

sum of the integrals will be

S
^ .{x' cos. V + y' sin. v. cos. -^ + z' sin. v sin. 4| + const.

;

the entire part of the integral y*(F d f + F' d f + &c.), due to the ac-

tion of the body S, will therefore be

S S
-p j{x' COS. V + y' sin. v cos. -vj^ + z' sin. v sin. •^]-\- const.;

and since this quantity ought to be nothing relatively to the center of gra-

vity of the spheroid, which we suppose immoveable, and that relatively to

this point, f becomes s, and x', y', z', are nothing, we shall have

S
const. = .

s

However, f is equal to

{(s COS. v— x') ^ + (s. sin. v cos. -^ — yO * + (s sin. v sin. -vj^— ^O'l^j

which gives, by substituting for x', y', z', their preceding values

S_^ S
f Vs^— 2 s r{cos. V cos. 6 { sin. v sin. ^cos. («r— %}/) + r*^}'

If we reduce this function into a series descending relatively to powers

of s, and if we thus represent the series,

- jp(0) + I P(i) + ^'
P(2) + &c.|;si s S* ' J

we shall have generally by 561 and 562,

,_ l.3.5..(2i-l)
I

i(i-l) 3^^ i(i-l)(i-2)(l-3)
I

.

. ^ -1.2.3 i t 2(2i—ir +2.4(2i— ])(2i—sr i*
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d being equal to cos. v cos. 6 -|- sin. v sin. . cos. (^

—

^); it is evident

thai by 55S, we have

d m / ' 1—m *

so that the terms of the preceding have this property, common with those

of V. This being shown, we have

S S S
—rT j(x' cos. V + y' sin. v cos. -^ + z sin. v sin. -v}/)

= ^3- { P ''' +7P ^^' +TtP '*^ + &c.
}

If there were other bodies S', S", &c. ; denoting by s', v', -v}/', P' ^'> ; s",

v", %}/", P" ^% &c. what we have called s, v, -vl/, P W, relatively to the body

S, we shall have the parts of the integral /(F d f + F' d f' + &c.) due

to their action, by marking with one, two, &c. dashes, the letters s, v, -v^,

and P in the preceding expression of that part of this integral, which is

due to the action of S.

If we collect all the parts of this integral, and make

-^ = a Z W

:

S„.. . S'

s
PC"^) +-|iP'^'^ + &c.— |-(m» — ^)= ocZ^^;

S (6 » O '

4-P^^ +-f^P'®+ &C. = a Z^^'
s s .

&C.

a being a very small coefficient, because the condition that the spheroid is

very little different from a sphere, requires that the forces which produce

this difference should themselves be very small ; we shall have

/(Fd f + Fdf + &c.) = V + a rMZ ^0) + Z^^^+ r Z®+ r " Z ^ + &c.i

Z ''^ satisfying, whatever i maybe, in the equation of partial differences

= (
<• ^ dm J

, WL^l/.+ i (i + J) Z^«.
dm / I —

m

The general equation of equilibrium will therefore be

fAlL= V + a r» {ZW + Z(2) ^ r z(3) ^^ Z^') + &c.l . (1)

If the extraneousbodies are very distant from the spheroid, we may ne-

glect the quantities r ' Z ®, r * Z <*', &c., because the different terms of these

quantities being divided respectively by s *, s \ &c. s' *, s' ', &c. these terms

become very small when s, >*', &c. are very great compared wiih r. 1 his
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case subsists for the planets and satellites with the exception of S.ituni,

whose ring is too near his surface for us to neglect the preceding terms.

In the theory of the figure of that planet, we must therefore prolong the

second member of equation (1), which possesses the advantage of forming

a series always convergent; and since then the number of corpuscles ex-

terior to the spheroid is infinite, the values of Z ^% Z ^^\ &c.' are given in

definite integrals, depending on the figure and interior constitution of the

ring of Saturn.

568. The spheroid may be entirely fluid ; it may be formed of a solid

nucleus covered by a fluid. In both cases the equation (1) of the preced-

ing No. will determine the figure of the shells of the fluid part, by con-

sidering, that since n must be a function of f,
the second member of this

equation must be constant for the exterior surface, and for that of the

shells in equilibrium, and can only vary from one shell to another.

The two preceding cases reduce to one when the spheroid is homoge-

neous ; for it is indifferent as to the equilibrium whether it is entirely

fluid, or contains an interior solid nucleus. It is suflicient by No. 556, that

at the exterior surface we have

constant = V -f a r= jZ(o'+ Z<''^+ r Z'3)+ &c.}.

If we substitute in this equation for V its value given by formula (3) of

No. 555, and if we observe that by No. 556, Y '°^ disappears by taking for

a the radius of a sphere of the same volume as the spheroid, and that

Y ^^' is nothing when we fix the origin of coordinates at the center of the

spheroid ; we shall have

constant = 3^ + ^rj— {-Y^^^+fT
^^ +97'^+ ^^'Z

+ « r ^ fZ'o) + Z^2) ^ r Z^3) + r« Z(*5 ^ &c.]

Substituting in the equation of the surface of the spheroid for r its value

at the surface 1 + a y, or

a + a a |Y(2) ^ y(3>
.J.
y a, ^ g^e.^

which gives

const. =±^a^ ^7^'
{I

YC-^) +-|-Y«) +-^Y^^^ + &c.}

+ a a» {ZW + Z^^ + a Z(3) + a^ Z^*' + &c.}

We shall determine the arbitrary constant of the first member of this

equation, by means of this equation,

4
const. =-5-'^ a ^ + a a * Z ^"'

;

we shall then have by comparing like functions, that is to say, such as are

subject to the same equation of partial differences,

R4
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Yd) ^lijl+ll. a i-2Z(i)
8 (i — 1) w

1 being greater than unity. The preceding equation may be put under the

form

4 cr 8 acr "^

the integral being taken from r = to r = a. The radius a (I — ay)

of the surface of the spheroid will hence become

f 1 +-f-^{Z(^) + a Z(3) + a« Zt^) + &c.? )
a(l + ay)=a; \- ^,(2)

( +-8^^^^ ^^^'^ + ' Z^'^ + r«Z(*)+ &c.])

We may put this equation under a finite form, by considering that we
have by the preceding No.

a^Z(2) + rZ® + r'ZW + &c.| =_-|-(m2— ^) - ^'^
sr-* s " r

S'

' r^ Vs^— 2sr6 + r* s' r-
'

so that the integraiyd r JZ^) + r Z '^^ + &c.] is easily found by known

methods.

569. The equation (1) of 567 not only has the advantage of showing the

figure of the spheroid, but also that of giving by differentiation the law of

gravity at its surface ; for it is evident that the second member of this

equation being the integral of the sum of all the forces with which each

molecule is animated, multiplied by the elements of their respective direc-

tions, we shall have that part of the resultant which acts along the radius

r, by differentiating the second member relatively to r; thus calling p
the force by which a molecule of the surface is sollicited towards the center

of gravity of the spheroid, we shall have

p = — (^) ^~ d {v^ ZW + r2 Z(2) + r^ Z® + r* Z^*) + &:.].

If we substitute in this equation for — (-^— j, its value at the surface

2 V .

-x-^ a + Q—J
given by equation (2) of No. 554, and for V, its value given

by equation (1) of No. 567; we shall have

p = |*r a— i a a JZ(2) + a Z(3) a * Z W + &c.?

— ^.d.{r«ZW + r«Z'2)4.r'Z«^ +r*ZW+&c.] (3)
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r must be changed into a after the differentiations in the second mem-
ber of this equation, which by the preceding No. may always be reduced

to a finite function.

p does not represent exactly gravity, but only that part of it which is

directed towards the center of gravity of the spheroid, by supposing it re-

solved into two forces, one of which is perpendicular to the radius r, and

the other p is directed along this radius. The first of these two forces is

evidently a small quantity of the order a ; denoting it therefore by a 7,

gravity will be equal to V'p'* -f a" y% a quantity which, neglecting the

terms of the order a % reduces to p. We may thus consider p as express-

ing gravity at the surface of the spheroid, so that the equations (2) and

(3) of the preceding No. and of this, determine both the figure of ho-

mogeneous spheroids in equilibrium, and the law of gravity at their

surfaces ; they contain the complete theory of the equilibriuni of these

spheroids, on the supposition that they differ very little from the sphere.

If the extraneous bodies S, S', &c. are nothing, and therefore the

spheroid is only sollicited by the attraction of its molecules, and the cen-

trifugal force of its rotatory motion, which is the case of the Earth and

primary planets with the exception of Saturn, when we only regard the

permanent state of their figures ; then designating by a p, the ratio of

the centrifugal force to gravity at the equator, a ratio which is very nearly

equal to •—-, the density of the spheroid being taken for unity; we shall

find,

a(l+ay) = aU-^^m«-iH;

p = 4^an-i«P + ^^{ni^-i)J;

the spheroid is then therefore an ellipsoid of revolution, upon which in-

crements of gravity, and decrements of the radii, from the equator to

the poles, are very nearly proportional to the square of the sine of the

latitude, m being to quantities of the order a, equal to this sine.

a, by what precedes, is the radius of a sphere, equal in solidity to the

spheroid
; gravity at the surface of this sphere will be 5 ^ a ; thus we shall

have the point of the surface of the spheroid, where gravity is the same as

at the surface of the sphere, by determining m by the equation

= -|.|.f (m^ — i);

which gives

/13
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370. The preceding analysis conducts us to the figure of a homoge-

neous fluid mass in equilibrium, without employing other hypotheses than

that of a figure differing very little from the sphere: it also shows that

the elliptic figure which satisfies this equilibrium, is the only figure

which does it. But as the expansion of the radius of the spheroid into

a series of the form ajl+ aY^^^+aY^' + Sec] may give rise to some

difficulties, we proceed to demonstrate directly, and independently of this

expansion, that the elliptic figure is the only figure of the equilibrium of

a homogeneous fluid mass endowed with a rotatory motion ; which by con-

firming the results of the preceding analysis, will at the same time serve

to remove any doubts we may entertain against the generality of this ana-

lysis.

First suppose the spheroid one of revolution, and that its radius is a

( 1 + 05 y), y being a function of m, or of the cosine of the angle 6 which this

radius makes with the axis of revolution. If we call f any straight line

drawn from the extremity of this radius in the interior of the spheroid; p
the complement of the angle which this straight line makes with the plane

which passes through the radius a ( 1 + ay) and through the axis of revolu-

tion
; q the angle made by the projection of f upon this plane and by the

radius ; finally, if we call V the sum of all the molecules of the spheroid,

divided by their distances from the molecules placed at the extremity of

the radius a (1 -f- a y) j each molecule being equal to f ^ d f. d p. d q .

sin. p, we shall have

V = ^/r^dp.dq.sin. p,

{' being what f becomes at its quitting the spheroid. We must now de-

termine f' in terms of p and q.

For that purpose, we shall observe that if we call 6', the value of d rela-

tive to this point of exit, and a (1 + ay'), the corresponding radius of the

spheroid, y' being a similar function of cos. ^ or of m' that y is of m ; it

is easily seen that the cosine of the angle formed by the two straight lines

F and a (1 + a y) is equal to sin. p . cos. q ; and therefore that in the

triangle formed by the three straight lines f, a (1 -f- ay) and a (1 + ay')

we have

a« (1 + ay')* = f'*— 2af'(l + a y) sin. p . cos. q + a" {I +«}')'•

This equation gives for f ' two values ; but one of them being of the

order a^ is nothing when we neglect the quantities of that order; the

other becomes

f* = 4 a'sin. « p cos.«q (1 + 2 ay) + 4aa=(y'— y);

which gives
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V = 2 a 'fd p d q sin. p ^1 + 2 a y) sin. ' p cos. ' q + « (y — y) j.

It is evident that the integrals must be taken from p = 0, to p = ^r, and

from q = — ^ «• to q = ^ -r; we shall therefore have

V = f«ra'^ — la^a^y + 2aa -yd p . d q . y'sin. p .

y' being a function of cos. ^, we must determine this cosine in a function

of p and q; we may therefore in this determination neglect the quantities

of the order a, since y' is already multiplied by a ; hence we easily find

a cos. 6' = (51— f sin. p cos. q) cos. 1^ + f' sin. p . sin. q . sin. 6 ;

whence we derive, substituting for f its value 2 a sin. p cos. q,

m' = m COS. ^ p — sin. "^ p cos. (2 q -f- 6).

Here we must observe, relatively to the integral y y' d p . d q . sin. p,

taken relatively to q from 2 q = — w to 2 q =r cr, that the result would

be the same, if this integral were taken from 2q = — ^to2q =2^— d,

because the values of m', and consequently of y' are the same from 2 q =.

— crto2q = — ^as from 2q = crto2q = 2 'it — 6', supposing there-

fore 2 q + ^ = q'» which gives

m' = m cos. ^ p — sin. ^ p cos. q'

;

we shall have

V = fca^ — fa^a^y + aa '/y' d p d q' sin. p

;

the integrals being taken from p = to p = t and from q' = to q' =
2 a-.

Now if we denote by a ^ N the integral of all the forces extrinsic to the

attraction of the spheroid, and multiplied by the elements of their direc-

tions ; by 568 we shall have in the case of equilibrium

constant = V + a ^ N,

and substituting for V its value, we shall have

const. = 7 a T . y — ay y' d p . d q' sin. p — N

;

an equation which is evidently but the equation of equilibrium of No. 568,

presented under another form. This equation being linear, it thence results

that if any number i of radii a (1 + ay), a (1 + a v), and satisfy it; the

radius a{+— (y + v + &c.)] will also satisfy it.

Suppose that the extraneous forces are reduced to the centrifugal force

due to the rotation, and call g this force at the distance 1 from the axis of

rotation; we shall have, by 567, N = ^ g (1 — m') ; the equation of

equilibrium will therefore be

const. = I a ff y — ayy d p d q' sin. p — 2 g (1 — "i^).

Differentiating three times successively, relatively to m, and observing

tliat (s— ) = COS. - p, in virtue of the equation
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m' =: m COS. * p — sin. * p cos. q'
;

we shall have

»= ^ "& -/ d P d q' sin. p COS/ p (_^;) ,

but we havey d p d q' sin. p cos. ^ p = — ; we may therefore put the

preceding equation under this form,

0=/d p d q sin. p COS. « p {f {^,) - (^) } .

This equation subsists, whatever m may be; but it is evident, that

amongst all the values between m = — 1 and m = 1, there is one which

we shall designate by h, and which is such that, abstraction being made
1 3

of the sign, each of the values of (^—^^ will not exceed that which is re-

lative to h ; denoting therefore by H, this latter value, we shall have

=/d p d q' sin. p cos.«p || H- (^^3)}-

The quantity ^ H — (-,—^3) has evidently the same sign as H, and

the factor sin. p . cos. ^ p, is constantly positive in the whole extent of the

integral; the elements of this integral have, therefore, all of them the

same sign as H ; whence it follows that the entire integral cannot be no-

thing, at least H cannot be so, which requires that we have generally

= (t—^\ whence by integrating we get

y z= 1+ m. m -{- n. m";

1, 7», n, being arbitrary constants.

If we fix the origin of the radii in the middle of the axis of revolution,

and take for a the half of this axis, y will be nothing when m = 1 and

when m = — 1, which gives m = and n = — 1 ; the value of y thus

becomes, 1 (1 — m'); substituting in the equation of equilibrium,

const = I a «• y— a/y d p d q sin. p — 3^g(l — m');

we shall find a 1 = r-r-^ = -7- a ©, a being the ratio of the centrifugal
16 «• 4

3 g
force to the equatorial gravity, a ratio which is very nearly equal to r— ;

the radius of the spheroid will therefore be

„{, + 1^(1 -„.)};

whence it follows that the spheroid is an ellipsoid of revolution, which is

conformable to what precedes.
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Thus we have determined dii-ectly and independently of series, the

figure of a homogeneous spheroid of revolution, which turns round its

axis, and we have shown that it can only be that of an ellipsoid which

becomes a sphere when ^ = ; so that the sphere is the only figure of

revolution which would satisfy the equilibrium of an immoveable homo-
geneous fluid mass.

Hence we may conclude generally, that if the fluid mass is sollicited

by any very small forces, there is only one possible figure of equilibrium

.

or, which comes to the same, there is only one radius a (1 + « y) which

can satisfy the equation of equilibrium,

const. = I a T . y — «y^y d p . d q' sin. p — N

;

y being a function of & and of the longitude »•, and y' being what y be-

comes when we change 9 and w into 6^ and w'. Suppose, in fact, that

there are two different rays a ( 1 + ay) and a(l + ay-f-av) which

satisfy this equation ; we shall have

const. z= I a cr (y + v) — "/{y' + V) d p d q' sin. p — N.

Taking the preceding equation from this, we shall have

const. = f T V —y v' d p d q sin. p.

This equation is evidendy that of a homogeneous spheroid iii equili-

brium, whose radius is a ( 1 + a v), and which is not sollicited by any

force extraneous to the attraction ofits molecules. The angle w disappear-

ing in this equation, the radius a ( 1 + a v) will still satisfy it if w be suc-

cessively changed to w + d «, « + 2 d w, &c., whence it follows, that if

we call Vi, V2, &c. what v becomes in virtue of these changes; the

radius

ajl +avda-+avidw + "V2dar-|- &c.|,

or

a (1 + a/vd«r),

will satisfy the preceding equation. If vve take the integral /v d w from

w r= to w = 2 -r, the radius a (1 -j- a^v d w) becomes that of a sphe-

roid of revolution, which, by what precedes, can only be a sphere : see

the condition which results for v.

Suppose that a is the shortest distance of the center of gravity of the

spheroid whose radius is a (1 + a v), to the surface, and fix the pole or

origin of the angle 6 at the extremity of a ; v will be nothing at the pole,

and positive every where else; it will be the same for the integraiyvd w.

But, since the center of gravity of the spheroid whose radius is a (l+a v),

is at the center of the sphere whose radius is a, this point will, in like

manner, be the center of gravity of the spheroid whose radius is
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a (1 4. a.fs d tr) ; the different radii drawn from this center to the sur-

face of this last spheroid are therefore unequal to one another, if v is not

notliing ; there can only therefore be a sphere in the case of v = ; thus we

learn for a certainty, that a homogeneous spheroid, solhcited by any small

forces whatever, can only be in equilibrium in one manner.

571. We have supposed that N is independent of the figure ol

the spheroid; which is what very nearly takes place when the forces,

extraneous to the action of the fluid molecules,* are due to the centri-

fugal force of rotatory motion, and to the attraction of bodies exterior

to the spheroid. But if we conceive at the center of the spheroid a finite

force depending on the distance r, its action upon the molecules placed at

the surface of tlie fluid, will depend on the nature of this surface, and

consequently N will depend upon y. This is the case of a homogeneous

fluid mass which covers a sphere of a density different from that of the

fluid ; for we may consider this sphere as of the same density as the fluid,

and may place at its center a force reciprocal to the square of the dis-

tances ; so that, if we call c the radius of the sphere, and f its density, that

of the fluid being taken for unity, this force at the distance r will be equal

to I <r .
—^2—

j

. Multiplying by the element — d r of its direction

the integral of the product will be ^ tt. —— ^, a quantity which we

must add to a* N ; and since at the surface we have r = a (1 + « y)j hi

the equation of equilibrium of the preceding No., we must add to N,

J..(l^>l^\(l-cj.).

This equation will become

const. = -^ { 1 + (?— 1) • ^} y— «/y' d p . d q shi. p — N.

If we denote by a (1 -|- ay 4- a v), a new expression of the radius of

the spheroid in equilibrium, we shall have to determine v, the equation

Const. = f^|l + (?--l)^j —/v'dpdq'sin.p;

an equation which is that of the equilibrium of the spheroid, supposing it

immoveable, and abstracting every external force.

If the splieroid is of revolution, v will be a function of cos. ^ or m only;

but in this case we may determine it by the analysis of the preceding No,

;

for if we differentiate this equation i + 1 times successively relatively to

m, we shall have

0=1 . {1 + (.- 1)^-:} f^i^)-/(§i±;^:)<lpdqs.:n.pcos." + n.
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but we have

/d p d q' sin. p COS. - + « p = ^t:^ '

the preceding equation may therefore be put under this form,

0=/dpdq'sin.pcos.-+^p|-3-(l+
.-1.^3)(^,-.)-(^^,^.)J

We may take i such that, abstraction being made of the sign, we have

Supposing, therefore, that i is the smallest positive whole number whicJi

renders this quantity greater than unity, we may see, as in the preceding No.,

((J i ^ 1 y

-J
-.—j) = 0,

which gives

V = mi 4- Am'-' + Bm '-2 + See.

Substituting in the preceding equation of equilibrium for v, this value,

and for v'

m' i + A m' ' -
1 + B m"-2 ^. s^c.

m' being by the preceding No. equal to m cos. - p — sin, * p cos. q', first

we shall find

which supposes p equal to or less than unity ; thus, whenever a, c, and
g

are not such as to satisfy this equation, i being a positive whole number,

the fluid can be in equilibrium only in one manner. Then we shall have

A = »- ^ = -w^y'''-
so that

""-"' 2(2i-l)-"' +2.4.(21-1) (2i-3)"'
*^'^"

there are, therefore, generally two figures of equilibrium, since a v is sus-

ceptible of two values, one of which is given by the supposition of a = 0,

and the other is given by the supposition of v being equal to the preced-

ing function of m.

If the spheroid has no rotatory motion, and is not sollicited by any ex-

traneous force, the first of these two figures is a sphere, and the second

has for its meridian a curve of the order i. These two curves coincide in

die case of i = 1, because the radius a (1 + am) is that of a sphere in

which the origin of the radii is at the distance « from its center , but then

it is easy to see that f
=; 1, that is, the spheroid is homogeneous, a result

agreeing with that of the preceding No.
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572. When we have figures of revolution which satisfy the equiHbriuni,

it is easy to obtain those which are not of revolution by the following

metliod. Instead of fixing the origin of the angle 6 at the extremity of

the axis of revolution, suppose it at the distance y from this extremity, and

call ^ the distance from this same extremity of the point of the surface

whose distance from the new origin of the angle is 6. Call, moreover,

w — /3 the angle comprised between the two arcs 6 and y ; we shall

have
cos. 6' =s cos. 7 cos. 6+ sin. y sin. 6 . cos. (w— j3)

;

designating therefore by r. (cos. 6') the function

COS. '^— 2^7̂ 27+^1) •

^°^" '"' ^ + ^^-

'

the radius of the immoveable spheroid in equilibrium, which we have seen

is equal to a [1 + « r. (cos. ^)}, will be

a + a a r. Jcos. y . cos. 6 -f sin. / . sin. 6 cos. (w— (3)] ;

and although it is a function of the angle w, it belongs to a solid of revo-

lution, in which the angle 6 is not at the extremity of the axis of revo-

lution.

Since this radius satisfies the equation of equilibrium, whatever may be

a, /3, and 7, it will also satisfy in changing these quantities into a', /3', y',

«"j ^"> y'\ &c. whence it follows that this equation being linear, the radius

a -f-
a a r . ^cos. y cos. & -f- sin. 7 sin. & cos. (w— ^ )]

+ a' a r . Jcos. / cos. d -f- sin. / sin. & cos. (w— /3')}

+ &c.

will likewise satisfy it. The spheroid to which this radius belongs is no

longer one of revolution ; it is formed of a sphere of the radius a, and ot

any number of shells similar to the excess of the spheroid of revolution

whose radius is a + a a r . (m) above the sphere whose radius is a, these

shells being placed arbitrarily one over another.

If we compare the expression of r. (cos. <J') with that of P ^'^ of No. 567,

we shall see that these two functions are similar, and that they differ only

by the quantities 7 and jS, whicli in P ^'^ are v and -vj^, and by a factor in-

dependent of m and w ; we have, therefore.

It is easy hence to conclude, that if we represent by a Y ^'> the function

a . r . ^cos. 7 cos. 6 + sin. 7 sin. <) . cos. (ar — /3 )}

+ a' . r . JcGs. 7' cos. 6 + sin. y' sin. ^ . cos. (sr — ^')\

+ &c.
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Y ^'^ will be a rational and entire function of m, V 1 — m~ cos. w,

VI — m '^ sin. w, which will satisfy the equation of partial differences,

choosing for Y W, therefore, the most general function of that nature, the

function a ( 1 + « Y ^'^) will be the most general expression of the equili-

brium of an immoveable spheroid.

We may arrive at the same result by means of the series for V in 655

;

for the equation of equilibrium being, by the preceding No.,

const. = V + a ^ N

;

ifwe suppose that all the forces extraneous to the reciprocal action ofthe fluid

molecules, are reducible to a single attractive force equal to f ir. ^ ^ ,

placed at the center of the spheroid, by multiplying this force by the ele-

ment — d r of its direction, and then integrating, we shall have

r

and since at the surface r = a(l + ay) the preceding equation of equi-

librium will become

c ^

const. = V + facr.— (1 — f)y.

Substituting in this equation for V its value given by formula (3) of

No. 555, in which we shall put for r its value a (1 + a y), and by sub-

stituting for y its value

YW + YW + Y(8) + &c.;

we shall have

0= {(l_s)£l+2} V<o. + (l_j)^Y<')+ {(l-rf^-llYO

+ {(i-f)-^-ii^?}Y"'+^-=
the constant a being supposed such, that const = f ^ a *. This equation

gives Y (°) = 0, Y ^'> = 0, Y f^) = 0, &c. unless the coefficient of one of these

quantities, ©f Y ^'^ for example, is nothing, which gives

n ,c^ _ 2i —

2

\'—
^^a» ~ 2i + 1'

i being a positive whole number, and in this case all these quantities ex-

cept Y ^'^ are nothing ; we shall therefore have y = Y ^'\ which agrees

with what is found above.

Thus we see, that the results obtained by the expansion ofV into a se-

VOL. II. S
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lies, have all possible generality, and that no figure of equilibrium has

escaped the analysis founded upon this expansion ; which confirms what

we have seen a priori, by the analysis of 555, in which we have proved

that the form which we have given to the radius of spheroids, is not arbi-

trary but depends upon the nature itself of their attractions.

573. Let us now resume equation (1) of No. 567. If we therein sub-

stitute for V its value given by formula (6) of No. 558, we shall have rela-

tively to the different fluid shells

yAH=2^/^da«4 4aT/^ d {a' YW+^Y0)+^Y(2)+|^Y(3)+&c.}

+|^/Sda3 +i^/gd {a3 Y(o^+|^Y(')-|-|pYC^)+|^3Y<B)+&c.}

+ arMZ('>)+ Z(2) 4- r Z(3) + r«ZW + &C.1; .... (1)

the differentials and integrals being relative to the variable a ; the two first

integrals of the second member of this equation must be taken from a = a to

a = 1, a being the value of a, relative to the leveled^md shell, which we are

considering, and this value at the surface being taken for unity : the two last

integrals ought to be taken from a = to a = a : finally, the radius r

ought to be changed into a (1 + ay) after all the differentiations and in-

tegrations. In the terms multiplied by a it will suffice to change r into

a; but in the term -5-7-y^ d . a^ we must substitute a (1 + « y) for r ;o r

which changes it into this

and consequently, into the following

4^n — a Y W _ a Y(^) — a Y^^^— &c.?. fp d a^

Hence if in equation (1) we compare like functions, we shall have

/'l^- = 2 ^/g d a^ + 4 a V^ d (a^ Y^) +4|-/f ^ ^

^

**''.y(o)ygda3 +±?LI/^d(a3 Y^O +«a2Z(0);
3 a -^ * 'a

the two first integrals of the second member of this equation being taken

from a = a to a = 1, the three other integrals must be taken from a

= to a = a. This equation determining neither a nor Y ^"^, but only a

relation between them, we see that the value of Y ^°^ is arbitrary, and may

be determined at pleasure. We shall have then, i being equal to, or

greater than unity.
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+ (2Tir^7TTr/s<l('''+'Y») + a>Z«; . . (2)

the first Integra] being taken from a = a, to a = ], and the two others

being taken from a = to a = a. This equation will give the value of

Y ^') relative to each fluid shell, when the law of the densities g shall be

known.

To reduce these different integrals within the same limits, let

the integral being taken from a =: to a = 1 ; Z' ''' will be a quantity in-

dependent of a, and the equation (2) will become

= {2i+l)a'YW/fda^+3a^i +^/gd(X^)
— 3/g d (a i + 3 Y «) — 3 a 2 i+i Z' W

;

all the integrals being taken from a = to a = a.

We may make the signs of integration disappear by differentiating re-

latively to a, and we shall have the differential equation of the second

order,

^'Y»\ _ Ji(i-H) _ 6ga ) y ^^ __ 6ga^ /d Y ('K

VdaW~ I a^ fgda'i fid.a'\daJ'
The integral of this equation will give the value of Y ^^ with two arbi-

trary constants ; these constants are rational and entire functions of the

order i, of m, VI— m ^ . sin. w, and VI — m ^
. cos. sr, such, that re-

presenting them by U ^'\ they satisfy the equation of partial differences,

•^ {n-"')-g)} V(^-^)
dm y 1—m

One of these functions will be determined by means of the function

2/ {') which disappears by differentiation, and it is evident that it will be a

multiple of this function. As to the other function, if we suppose that

the fluid covers a solid nucleus, it will be determined by means of the

equation of the surface of the nucleus, by observing that the value of

Y '^ relative to the fluid shell contiguous to this surface, is the same as

that of the surface. Thus the figure of the spheroid depends upon the

figure of the internal nucleus, and upon the forces which sollicit the

fluid.

574. If the mass is entirely fluid, nothing then determining one of the

arbitrary constants, it would seem that there ought to be an infinity of

S2

= 1 —^^ ,

V dm /) j+ \^-
:
+i(i+ 1).U«.
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figures of equilibrium. Let us examine this case particularly, which is

the more interesting inasmuch as it appears to have subsisted primi-

tively for the celestial bodies.

First, we shall observe that the shells of the spheroid ought to decrease

in density from the center to the surface ; for it is clear that if a denser

shell were placed above a shell of less density, its molecules would pene-

trate into the other in the same manner that a ponderous body sinks into

a fluid of less density ; the spheroid will not therefore be in equilibrium.

But whatever may be its density at the center, it can only be finite ; re-

ducing therefore the expression of f into a series ascending relatively to

the powers of a, this series will be of the form ^— 7 . a "— &c. /3, 7 and

n being positive ; we shall thus have

/gd.a^ -'
(n + 3)/3+^^-

and the differential equation in Y ^"^ will become

/d^ Y Wx ( 6 n -y . a" ) Y W

(t^) = i('-^) (' + «' + ^rro- «'4 • i^

To integrate this equation, suppose that Y ^^ is developed into a series

ascending according to the powers of a, of this form

Y« = a*.U('^ + a*'. V'^^ + &c.;

the preceding differential equation will give

(s + i+3)(s— i + 2)a«-2UW+(s'+ i + 3)(s'— i + 2)a*'-2U'« + &c.

= T^^j^Us+ l)a-2.U«+(s'+l)a'''-2U'«+&c.] . (e)

Comparing like powers of a, we have (s + i + 3) (s — i + 2) = 0,

which gives s = i — 2, and s = — i — 3. To each of these values of

s, belongs a particular series, which, being multiplied by an arbitrary, will

be an integral of the differential equation in Y ^'>
; the sum of these two in-

tegrals will be its complete integral. In the present case, the series which

answers to s = — i — 3 must be rejected; for there thence results for a

Y ^'' , an infinite value, when a shall be infinitely small, which would render

infinite the radii of the shells which are infinitely near to the center. Thus

of the two particular integrals of the expression ofY ^'^ , that which answers

to s = i— 2 ought alone to be admitted. This expression then, contains

no more than one arbitrary which will be determined by the function Z ^'^
.

Z '') being nothing by No. 567, Y "> is likewise nothing, so that the

center of gravity of each shell, is at the center of gravity of the entire



Book I.] NEWTON'la PRINCIPIA. g-^ir

spheroid. In fact the differential equation in Y W of the preceding No.
gives

/liXii^ - /2n ___6j^ y(,, 6ga» /dY")x
VdaW-VaV /_ed. a^-^ /g d. a'* V"dT"r

We satisfy this equation by making Y w ^^ ^ u ^'^ being indepen-

dent of a. This value of Y^^^ is that which answers to the equation

s = i— 2 ; it is, consequently, the only one which we ought to admit.

Substituting it in the equation (2) of the preceding No., and supposing

Z -'^ = 0, the function U ^^'> disappears, and consequently remains arbitrary;

but the condition that the origin of the radius r is at the center of gravity

of the terrestrial spheroid, renders it nothing ; for we shall see in the follow-

ing No. that then Y ^^^ is nothing at the surface of every spheroid covered

over with a shell of fluid in equilibrium ; we shall have, therefore, in the

present ease U ^'^ = ; thus, Y ^^^ is nothing relatively to all the fluid shells

which form the spheroid.

Now consider the general equation,

Y« = a^ U« + a^'.U'«+ &c.;

s being, as we have seen, equal to i — 2, s is nothing or positive, when i

is equal to or greater than 2; moreover, the functions U' ^'^, U''^'^, &c. are

given in U ^'\ by the equation (e) of this No. ; so that we have

Y« = h.U«;
h being a function of a, and U ^'^ being independent of it. If we substi-

tute this value ofY ''^ in the differential equation in Y ''), we shall have

d^h _ f

.

6ga^ ) h 6 ga^ d_h

'da2~t^^'+ ^ /gd.a^j'a^ /gd.a^'da*

The product i (i + 1) is greater than ^ ( 5-, when i is equal to or

p a^
greater than 2, for the fraction ^

,

j is less than unity ; in fact its

denominator f gd . a ^ is equal to ga' — f ^^ d g, and the quantity

—ya^ d g is positive, since g decreases from the center to the surface.

Hence it follows that h and j— are constantly positive, from the

center to the surface. To show this, suppose that both these quantities are

positive in going from the center; d h ought to become negative before h,

and it is clear that in order to do this it must pass through zero ; but

from the instant it is nothing, d * h becomes positive in virtue of the pre-

ceding equation, and consequently d h begins to increase ; it can never

therefore become negative. Whence it follows that h and d h always pre-

S3
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serve the same sign from the center to the surface. Now both of these

quantities are positive in going from the center ; for we have in virtue of

equation (e), s'— 2=s+ n — 2, which gives s' = i + n — 2 ; hence
we have

(s' + i + 3) (s'-i +2) U'«) = «"(^+')yU"'
;

[n -^ o) p
whence we derive

rrm^ 6(i^l)y.UC0
(n + S)(2i + n + l).^'

we shall therefore get

'•-'' +(n + 3)(2i + n+l)^+^<=-'

^ = (i-2)a-»+ ^('-'H- + ".-^'^-°;;°-V &c.da ^ (n+ 3) (2i + n+ 1) /3

7, ^, n, being positive, we see that at the center h and d h are positive,

when i is equal to or greater than 2 j they are therefore constantly positive

from the center to the surface.

Relatively to the Earth, to the Moon, to Jupiter, &c. Z ^'^ is nothing or

insensible, when i is equal to or greater than 3; the equation (2) of the

preceding No. then becomes

0= J3a2i + i/gd (-j^)— (2i+l)a'h/gda3 + 3/gd(a'+3h)}.U('5;

the first integral being taken from a = a, to a = 1, and the two others

being taken from a = 0, to a = a. At the surface where a = 1, this equa-

tion becomes

0= J
— (2i+I)h/f d.a3+3/gd(a' + 3h)i. U«;

an equation which we can put under this form

= {— (2i— 2)fh+ {2i+l)hfa'ds—S/a' + -'h.ds] U «.

d f is negative from the center to the surface, and h increases in tlie

same interval; the function (2 i + 1) h/a ^ do— 3/a ' + ^ ^ j ^ jg therefore

negative in the same interval ; thus in the preceding equation the coeffi-

cient of U ^'5 is negative and cannot be nothing at the surface ; U ^'^ ought

therefore to be nothing, which gives Y ^'^ = ; the expression of the ra-

dius of the spheroid thus reduces to a + a a JY ^°^ + Y ^^ ; that is to say,

that the surface of each leveled shell of the spheroid is elliptic, and conse-

quently its exterior surface is elliptic.

Z ^2), relatively to the Earth is, by No. 567, equal to —^ (m - — ^)

;

the equation (2) of the preceduig No. gives therefore
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0= [fcray^dh—|cra«h./|da3 + |^/gd(a5h)?U«-|-a5(m«~»).

At the surface, the first integral^g d h is nothing ; we have tlierefore at

this surface where a = 1,

U (2) — '^ "

ff.h./gd.a^— f^/gd(a^h)-
Let a <pj be the ratio of the centrifugal force to the equatorial gravity ;

the expression of gravity to quantities of the order «, being equal to

I "^J's d a^j we shall have g = ^ r: a (pfg d . a^; wherefore

TT (2) - — P(m-— ^)

comprising therefore in the arbitrary constant a, what we have taken for

unity, the function

5 ' /g.a-^ d a

the radius of the terrestrial spheroid at the surface will be

ahy (1— m^)

"*"gh
2 /gd(aMi) -

5 ' y^.a^ da
The figure of the earth supposed fluid, can therefore only be that of an

ellipsoid of revolution ; aU of whose shells of constant density are elliptic,

and of revolution, and in which the ellipticities increase, and the densities

decrease from the center to the surface. The relation between the ellip-

ticities and densities is given by the differential equation of the second

order,

d'h _ 6_h / ga' \ _ 2ga^ dh
d a^ "~ a^ V Sy'ga^da/ y^.a^da'da'

This equation is not integrable by known methods except in some par-

ticular suppositions of the densities g ; but if the law of the ellipticities

were given, we should easily obtain that of the corresponding densities.

We have seen that the expression of h given by the integral of this equa-

tion contains, in the present question, only one arbitrary, which disappears

from the preceding value of the radius of the spheroid ; tliere is therefore

only one figure of equilibrium differing but little from a sphere, which is

possible, and it is easy to see that the limits of the flattening of this figuie

are^ and | a f, the former of which corresponds to the case where all

S4
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the mass of the spheroid is collected at its center, and the second to the

case where this mass is homogeneous.

The directions of gravity from any point of the surface to the center do

not form a straight line, but a curve whose elements are perpendicular to

the leveled shells which they traverse : this curve is the orthogonal tra-

jectory of all the ellipses which by their revolution form these shells. To
determine its nature, take for the axis, the radius drawn from the center

to a point of the surface, d being the angle which this radius forms with

the axis of revolution. We have just seen that the general expression of

any shell of the spheroid isa+ak.ah.(l — m*), k being independent

of a : whence it is easy to conclude that if we call a y', the ordinate let

fall from any point of the curve upon its axis, we shall have

ay' = a a k . sin. 2 ^ "1 c — f \ ,

c being the entire value of the integral
/"

, taken from the center to

the surface.

575. Now consider the general case in which the spheroid always fluid

at its surface, may contain a solid nucleus of any jBgure whatever, but dif-

fering but little from the sphere. The radius drawn from the center of

gravity of the spheroid to its surface, and the law of gravity at this sur-

face have some general properties, which it is the more essential to con-

sider, inasmuch as these properties are independent of every hypothesis.

The first of these properties is, that in the state of equilibrium the

fluid part of the spheroid must always be disposed so, that the function

Y ^'^ may disappear from the expression of the radius drawn from the cen-

ter of gravity of the whole spheroid to its surface ; so that the center of

gravity of this surface coincides with that of the spheroid.

To show this, we shall observe that R being supposed to represent the

radius drawn from the center of gravity of the spheroid to any one of its

molecules, the expression of this molecule will be f R ^ d R . d m . d w,

and we shall have by 556, in virtue of the properties of the center of

gravity,

=/^ R'. dR.dm.dw.m;

^ 0=/gR». dR.dm.dw.V 1— m^ sin. t;r;

0=/gR3. dR.dm.dt*. V 1 — m 2. cos. «r.

Conceive the integral yg R \ d R taken relatively to R from the origin

of R to the surface of the spheroid, and then developed into a series of

the form
NW + N(>)-fN(2) + &c.;
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N ^'^ being whatever i may be, subject to the equation of partial differ-

ences,

" = V d-s J + T^^^ + ( + I'N'";

we shall have by No. 556, when i is different from unity,

=/NW.mdm.d*; =/N('). dm . d tr . V 1— m^sin.^;

and

0=yN""'.dm.d«. VI — m*. cos. w.

The three preceding equations given by the nature of the center of

gravity, will become

=/N(i)mdm.dw; =/N(i)dm.dw. V ]— m^.sin.w;

=/N (') d m . d w . VI— m^ cos. w.

N ^' is of the form

H m + H'. V 1 — m^ sin. w + H^ V 1— m \ cos. z,.

Substituting this value, in these three equations, we shall have

H = 0; H' = 0; H'' = 0;

where N ^'^ = ; this is the condition necessary that the origin of R is at

the center of gravity of the spheroid.

Now let us see, what N ^^^ becomes relatively to the spheroids differing

little from the sphere, and covered over with a fluid in equilibrium. In

this case we have R = a (1 + a y), and the integral y^. R^ d R, be-

comes \/i d . Ja* (1 + 4 a y)}, the differential and integral being rela-

tive to the variable a, of which ^ is a function. Substituting for y its va-

lue Y ») + Y (1) + Y (2) + &c., we shall have

N^i) = a/gd(a^Y^i)).

The equation (2) of No. 5T3 gives, at the surface where a = 1, and

observing that Z **) is nothing

/^d(a^Y"0 = Y^Vfd.a',
the value of Y ^^^ in the second member of this equation, being relative to

the surface ; thus, N ^'^ being nothing, when the origin of R is at the cen-

ter of gravity of the spheroid, we have in like manner Y ^^^ = 0.

576. The permanent state of equilibrium of the celestial bodies, makes

known also some properties of their radii. If the planets did not turn ex-

actly, or at least if they turned not nearly, round one oftheir three principal

axes of rotation, there would result in the position of their axes of rota-

tion, changes which for the earth above all would be sensible; and since

the most exact observations have not led to the discovery of any, we may

conclude that long since, all the parts of the celestial bodies, and princi-
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pally the fluid parts of their surfaces, are so disposed as to render stable

their state of equilibrium, and consequently their axes of rotation. It is

in fact very natural to suppose that after a great number of oscillations,

they must settle in this state, in virtue of the resistances which they suffer.

Let us see, however, the conditions which thence result in the expression

of the radii of the celestial bodies.

If we name x, y, z the rectangular coordinates of a molecule d M of

the spheroid, referred to three principal axes, the axis of x being the axis

of rotation of the spheroid ; by the properties of these axes as shown in

dynamics, we have

0=/xy.dM; 0=/xz.dM; 0=/yz.dM;
the integrals ought to be extended to the entire mass of the spheroid,

R being the radius drawn from the origin of coordinates to the molecule

d M ; ^ being the angle formed by R and by the axis of rotation ; and

« being the angle which the plane formed by this axis and by R, makes

with the plane formed by this axis and by that of the principal axes, which

is the axis of y ; we shall have

x = Rm; y = R V 1 — m*. cos. sr;z=Rv'l— m^ sin. w

;

dM = gR*dRdm.d«r.
The three equations given by the nature of the principal axes of rota-

tion, will thus become

=yg.R*. dR.dm.dw.m VI — m^ cos. w

;

zry^.R*. dR.dm.dw.mVl — m^ sin. w

;

=/f.R\ d R.dm.d«r.(l— m'') sin. 2^.

Conceive the integral /g R* d R taken relatively to R, from R = 0,

to the value of R at the surface of the spheroid, and developed into a

series of the form U W + U ^^^ + \J^^^ + &c. ; U ^'^ being, whatever i may

be, subject to the equation of partial differences,

dm y "^
1 — m«

We shall have by the theorem of No. 656, where i is different from 2,

a^ by observing that the functions m V 1—m \ cos. w, m V 1—m ^. sin. ar,

and (1 — m*) sin. 2 w, are comprised in the form U ^^-
;

=/U ^'\ d m . d w . m . VI — m *. cos. »

;

=yU ^). d m.d w. m . V 1 — m*. sin. w;

=/U^'>. dm.d«r.(l — m «). sin. 2 «..

«=v^

—

in: y+i^fsrr+'(i+i)-u''i
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The three equations relative to the nature of the axes of rotation, will

thus become

=yU '•>-''. dm.d w.m.V 1 — m^. cos. =r

;

=/U^^l dm.dw.m.Vl — m^ sin. w;

=/U(2). dm.dt^. (1 — m=^) sin. 2^.

These equations therefore depend only on the value of U ^"^^
: this value

is of the form

H (m '^ — |> + H' m V 1 — m ^ sin. * + H" m V 1 — m^ cos. w +
H'" (1 — m^) sin. 2 * + H'"' (1 — m^) cos. 2 =r:

substituting it in the three preceding equations, we shall have

H' = 0; H'' = 0; H'^' = 0.

It is to these three conditions that the conditions necessary to make the

three axes of x, y, z the true axes of rotation are reduced, and then U ^
will be of the form

H (m" — 1) + H'"' (1 — m^) cos. 2 «r.

When the spheroid is a solid differing but little from the sphere, and

covered with a fluid in equilibrium, we have R = a ( 1 + « y), and con-

sequently

/f R\ d R = ^/g d. {a^ (1 + 5 a y)].

If we substitute for y, its value Y ^"^ + Y ^') + Y ^2) ^ g^c, . ^e shall ^

have

The equation (2) of No. 573, gives for the surface of the spheroid,

^fs d (a^ Y<^) = I T Y'V^ d. a^- Z^'^;

Y ^^' and Z ^^^ in the second member of this equation being relative to the

surface ; we have therefore,

U(2) = f «Y^^)/gd.a^ — ""

, .

The value of Z ^^^ is of the form

—r -S- (m "— J) + g' m V 1 — m ^ sin. w + g'' m V 1 — m ^ cos. zr

;

+ g'// (1_m «) sin. 2 «r + g"" (1— m*) cos. 2w;
and that ofY ^^ is of the form

— h (m '^— ^) + h' m VI — lA^. sin. w + h'' m V 1 — m *. cos.

^

+ h"'. ( 1 — m 2) sin. 2 «r + h"" (1—m ») cos. 2 w.

Substituting in the preceding equation, these values, and H (m ' — ^)

+ H"" (1 — m ==) cos 2 «r, for U ^2) ; we shall have

jj/ S. . jj// S
. . jj/// _ s ^

4*yg.a*da' ^^y^.a^da' 4'n-yg.aMa*
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Such are the conditions which result from the supposition that the sphe-

roid turns round one of its principal axes of rotation. This supposition

determines the constants h', h", W" by means of the values g', g", g"'

;

but it leaves indeterminate the quantities h and h"" as also the functions

Y<^ Y(«, &c.

If the forces extraneous to the attraction of the molecules of the sphe-

roid are reduced to the centrifugal force due to its rotatory motion ; we

shall have g' = 0, g'' = 0, g" = ; wherefore h' = 0, h'' = 0, h"' = 0,

and the expression of Y '^^j will be of the form

— h(m2— J) + h''"(l— m2)cos.2w.

577. Let us consider the expression of 'gravity at the surface of the

spheroid. Call p this force ; it is easy to see by No. 569, that we shall

have its value by differentiating the second member of the equation (1) of

573 relatively to r, and by dividing its differential by — d r ; which gives

at the surface

— ar {2Z»> + 2Z(2) + 3r. Z^^) + 4 r^ Z^ + &c.h
these integrals being taken from a = 0, to a = I. The radius r at the

surface is equal to 1 + « y, or equal to

1 + a JY(^) + Y w + Y® + &C.J

;

we shall hence obtain

P = X^f d.a^--P JYW + YW + Y^2) + &c.l/gd.a^

+ 4acr/f d. Ja^YW + £|l! Y(i)+ -|-'y (2)+ &c.]

— a J2 Z^o) + 2 Zf2) ^ 3 Z(3) ^. 4 z(^) + &c.j.

The integrals of this expression may be made to disappear by means of

equation (2) of No. 573, which becomes at the surface,

^^./gd.(a' + 3Y«) = |:rY^Vgd.a3-Z");

supposing therefore

P=*flr/g<i-a'— ^YW) + 4acr/gd.(a^Y^''0— 2aZW;
o

we shall have

p = P + aP. {Y<2) + 2Y(3) + 3Y^*)4-... + (i— 1)Y« + &c.}

— aJ5 Z(2) +7Z(3) + 9ZW + .. . + (2i+l)Z«+&c.J.

By observations of the lengths of the seconds' pendulum, has been re-

cognised the variation of gravity at the surface of the earth. By dy-

namics it appears that these lengths are proportional to gravity; let
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therefore 1, L be the lengths of the pendulum corresponding to the gravi-

ties p, P ; the preceding equation will give

1 = L + aLJY(2) + 2Y;) + 3Y(*) + ... + (i— 1)Y:'1}

--p^.{5 Z(2) +7Z(3)+ +(2i+l)Z«|.

Relatively to the earth a Z(^> reduces by 567, to — -^ (m^— i)> or,

which comes to the same, to — . P. (m^ — \)i "- 9 being the ratio of

the centrifugal force to the equatorial gravity; moreover, Z^% Z<^'*\ &c.

are nothing ; we have therefore

1 = L + a L. jyw + 2 ¥(=«> + 3 YW + . . . + (i _ 1) Y«}
+ f a p.L. (m« — 1).

The radius of curvature of the meridian of a spheroid which has for its

radius 1 + a y, is

^ + 'K-A^) + ''\ dTS J
designating therefore by c, the magnitude of the degree of a circle whose

radius is what we have taken for unity ; the expression of the degree of

the spheroid's meridian, will be

|i+« d.my. . f
'^- {('—') (ji)}/a.myx , i^

\-dir)+"\ dTiT

y is equal to Y^"^ + Y^'^ + Y^*^ + &c. We may cause Y^"^ to disap-

pear, by comprising it in the arbitrary constant which we have taken for

the unit ; and Y ^'^ by fixing the origin of the radius at the center of gravity

of the entire spheroid. This radius thus becomes,

1 + a {Y(2) + Y(3) + YW + &C.1.

If we then observe that

r4(--)-(S}^ „. (^')
= — i(i + l)YW

\ dm / ^
1 — m"

the expression of the degree of the meridian will become

c— ac{5Y^^>+ 11Y(^)+ ... + (i«+i— l)Y«-h&c]
f /dY(2\ , /d YWv

, 3 \

/d^Y(2\ , /d^Y('\ , .
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If we compare these expressions of the terrestrial radius with the length

of the pendulum, and the magnitude of the degree of the meridian, we

see that the term a Y ^'' of the expression of the radius is multiplied by

i — 1, in the expression of the length of the pendulum, and by i*+i— 1

in that of the degree ; whence it follows, that whilst i— 1 is considerable,

this term will be more sensible in the observations of the length of the

pendulum than in that of the horizontal pai'allax of the moon which is

proportional to the terrestrial radius ; it will be still more sensible in the

measures of degrees than in the lengths of the pendulum. The reason of

it is, that the terms of the expression of the terrestrial radius undergo two

variations in the expression of the degree of the meridian ; and each dif-

ferentiation multiplies these terms by the corresponding exponent of m,

and this renders them the more considerable. In the expression of the

variation of two consecutive degrees of the meridian, the terms of the ter-

restrial radius undergo three consecutive differentiations; those which

disturb the figure of the earth from that of an ellipsoid, may thence be-

come very sensible, and the ellipticity obtained by this variation may be

very different from that which the observed lengths of the pendulum give.

These three expressions have the advantage of being independent of the

interior constitution of the earth, that is to say, of the figure and density

of its shells; so that if we are going to determine the functions Y^% Y^^\

&c. by measures of degrees of meridians and parallaxes, we shall have

immediately the length of the pendulum; we may therefore thus ascertain

whether the law of universal gravity accords with the figure of the earth,

and with the observed variations of gravity at its surface. These remark-

able relations between the expressions of the degrees of the meridian and

of the lengths of the pendulum may also serve to verify the hypotheses

proper to represent the measures of degrees of this meridian : this will be

perceptible from the application we now proceed to make to the hypothe-

sis proposed by Bouguer, to represent the degrees measured northward

in France and at the equator.

Suppose that the expression of the terrestrial radius is 1 + a Y^^^ -f-

a Y ^% and that we have

Y(2) = — A(m^— ^); Y(') = — B (m*— f m=^-l- A);

it is easy to see that these functions of m satisfy the equations of partial

differences which Y'^'^^ and Y^'*^ ought to satisfy. The variation of the de-

grees of the meridian will be, by what precedes,

acja A — ^b} 2+ 15«cB.m*.
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Bouguer supposes this variation proportional to the fourth power of the

sine of the latitude, or, which nearly comes to the same, to m"*; the term
multiplied by m ^, therefore, being made to disappear from the precedino-

function, we shall have

7

thus In this case the radius drawn from the center of gravity of the earth

at its surface, will be in Uiking that of the equator for unity.

The expression of the length 1 of the pendulum, will become, denoting

by L, its value at the equator,

L + f a f . L m^— ^^^^i (16 m= + 21 m-^).

Finally, the expression of the degree of the meridian, will be, calling c

its length at the equator,

c + ^.aA.c.m^

We shall observe here, that agreeably to what we have just said, the

term multiplied by m * is three times more sensible in the expression of

the length of the pendulum than in that of the terrestrial radius, and five

times more sensible in the expression of the length of a degree, than in

that of the length of the pendulum ; finally, upon the mean parallel it

would be four times more sensible in the expression of the variation of

consecutive degrees, than in that of the same degree. According to Bou-

959
guer, the difference of the degrees at the pole and equator is

^
; it is

the ratio which, on his hypothesis, the measures of degrees at Pello, Paris

105

34

105
and the equator, require. This ratio is equal to -^7- • " A ; we have

therefore

a A = 0. 0054717.

Taking for unity the length of the pendulum at the equator, the va-

riation of this length, in any place whatever, will be

0.0054717 ,_ 2 , oi 4, . 5 ^ ^i— . {16 m^ + 21 m *} + | a p. m*.

By No. 563, we have a<p= 0, 00345113, which gives | ap=0. 0086278,

and the preceding formula becomes

0. 0060529. m 2 — 0. 0033796. m \
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At Pello, where m = sin. 74°. 22', this formula gives 0. 0027016 for

the variation of the length of the pendulum. According to the observa-

tions, this variation is 0. 0044625, and consequently much greater ; thus,

since the hypothesis of Bouguer cannot be reconciled with the observations

made on the length of the pendulum, it is inadmissible.

578, Let us apply the general results which we have just found, to the

case where the spheroid is not sollicited by any extraneous forces, and

where it is composed of elliptic shells, whose center is at the center of

gravity of the spheroid. We have seen that this case is that of the earth

supposed to be originally fluid : it is also that of the earth in the hypo-

thesis where the figures of the shells are similar. In fact, the equation

(2) of No. 573 becomes at the surface where a = 1,

0=YCVfa^da-.^/jd(ai4^Y«)_2^.

The shells being supposed similar, the value of Y ^'^ is, for each of

them, the same as at the surface ; it is consequently independent of a, and

we have

When i is equal to or greater than 3, Z ''^
is nothing relatively to the

2 + 3
earth; besides the factor 1 — . . a ' is always positive ; therefore Y ^')

is then nothing. Y ^^^ is also nothing by No. 575, when we fix the origin

of the radii at the center of gravity of the spheroid. Finally, by No. 577,

we have Z ^^^ equal to

— -|-(m*-i)4^/f.aMa; Y^ )=-|-. (^^-^)/gaMa;

we have therefore

Y(2) =
-|-(m«_i)/ga^da

/fa«da(l— a*) *

Thus the earth is then an ellipsoid of revolution. Let us consider there-

fore generally the case where the figure of the earth is elliptic and of re-

volution.

In this case, by fixing the origin of terrestrial radii at the center of

gravity of the earth, we have

Yd) = 0; Y(3) = 0; Y^*^ = 0; &c.

Y(2) = _h(m*-l).
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li being a function of a ; moreover we have

Z^') = 0; Z(3) = 0; Z^ = ; &c.

«Z(^)=-^^m^-^).^/,d.a-

the equation (2) of No. 573 will therefore give at the surface

= 6.fsd{a'h) + 5. {(p — 2h)fpd.a' . . . (1)

This equation contains the law which ought to exist to sustain the

equilibrium between the densities of the shells of the spheroid and their

ellipticities ; for the radius of a shell being a
J
1+ a Y ^"^ — a h (/i ^— ^)]l

if we suppose, as we may, that Y ^"^ = — ^ h, this radius becomes

a (1 — a h . ,<A ^), and a h is the ellipticity of the shell.

At the surface, the radius is 1 — a h . /i ^ ; whence we see that the de-

crements of the radii, from the equator to the poles, are proportional to

fi ', and consequently to the square of the sines of the latitude.

The increment of the degrees of the meridian from the equator to the

poles is, by the preceding No., equal to 3 a h c . jw ', c being the degree

of the equator ; it is therefore also proportional to the square of the sine

of the latitude.

The equation (1) shows us that the densities being supposed to decrease

from the center to the surface, the ellipticity of the spheroid is less than

in the case of homogeneity, at least whilst the ellipticities do not increase

from the surface to the center in a greater ratio than the inverse ratio of

the square of the distances to this center. In fact, if we suppose h = —,

,

we shall have

/gd(a^h)=/fd(a^u) = u/^d.a^+/(du./a^df).

If the ellipticities increase in a less ratio than —j- , u increases from the

center to the surface, and consequently d u is positive ; besides, d f is ne-

gative by the supposition that the densities decrease from the center to the

surface; thusjy( d nfa^ d ^) is a negative quantity, and making at the

surface

/jd(a«h) = (h_f)/gd.a^

f will be a positive quantity. Hence equation (1) will give

, 5©—-ef

a h will therefore be less than —-^ , and consequently it will be less than

Vot. II. T



290 A COMMENTARY ON [Sect. XII. & Xm.

in the case of homogeneity, where d § being equal to nothing f is also equal

to zero.

Hence It follows, that in the most probable hypotheses, the flattening of

the spheroid is less than —~ ; for it is natural to suppose that the shells

of the spheroid are denser towards the center, and that the ellipticities

increase from the surface to the center in a less ratio than — , this ratio
a

giving an infinite radius for shells infinitely near to the center, which is

absurd. These suppositions are the more probable, inasmuch as they

become necessary in the case where the fluid is originally fluid ; then the

denser shells are, as we have seen, the nearer to the center, and the ellip-

ticities so far from increasing from the surface to the center, on the con-

trary, decrease.

If we suppose that the spheroid is an ellipsoid of revolution, covered

with a homogeneous fluid mass of any depth whatever, by calling a' the

semi-minor axis of the solid ellipsoid, and a h' its ellipticity, we shall have

at the surface of the fluid,

/fd(aMi) =h — a''h'+/^d(aMi);
the integral of the second member of this equation being taken relatively

to the interior ellipsoid, from its center to its surface, and the density of

the fluid which covers it being taken for unity. The equation (1) will

give for the expression of the ellipticity a h, of the terrestrial spheroid,

_ 5a<p{l —a'^+f^dsi^—GaW. a^ ^+ 6a/gd (a^h)
^"

4 — lOa'3 + lO./gd. a^
'

the integrals being taken from a = to a = a'.

Let us now consider the law of gravity, or which comes to the same,

that of the length of the pendulum at the elliptic surface in equilibrium.

The value of 1, found in the preceding No., becomes in this case

1 = L + « L Jl ?) — h] (m'^ — ^)

;

making, therefore, L'=L — ^ a L (| ?>— h), we shall have, in neglecting

quantities of the order a %

I = L' + aL'd f>
— h)fj,';

an equation from which it results that L,' is the length of the seconds'

pendulum at the equator, and that this length increases from the equator

to the poles, proportionally to the square of the sine of the latitude.

If we call a t the excess of the length of the pendulum at the pole above

its length at the equator, divided by the latter, we shall have

as = a {^ <p — h);
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and consequently

a i -{• ah = ^ a <p;

a remarkable equation between the ellipticity of the earth and the varia-

tion of the length of the pendulum from the equator to the poles. In the

case of homogeneity a h = | a p ; hence in this case a g z= a h ; but //*

the spheroid is heterogeneous^ as much as a h is above or below fa?', so

much is a e above or below the same quantity.

579. The planets being supposed covered with a fluid in equilibrium, it

is necessary, in the estimate of their attractions, to know the attraction of

spheroids whose surface is fluid and in equilibrium : we may express it

very simply in this way. Resume the equation (5) of No. 558 ; the signs

of integration may be made to disappear by means of equation (2) of No.

573, which gives at the surface of the spheroid,

2i^/gd(ai + '.YW) = ^Y«/?d.a^-Z';

thus fixing the origin of the radii r at the center of gravity of the spheroid

which makesY ('^ disappear; then observing that Z ^'^ is nothing, and thatY ("'

being arbitrary, we may suppose -^ Y^°^ — Z^"^ = 0, the equation (5)

of 558, will give

an expression in which we ought to observe that -^J% d . a ^ expresses the

mass of the spheroid, since, in the case of r being infinite, the value of V
is equal to the mass of the spheroid divided by r. Hence the attraction

of the spheroid parallel to r will be — (-j—) ; the attraction perpendicu-

lar to this radius, in the plane of the meridian will be

T-T—) ; finally, the attraction perpendicular to this same radius in the

direction of the parallel will be

r V 1 — m *

The expression of V, relatively to the earth supposed elliptic, becomes

V=^+ *°"7"'' M,m'-i);
r r^ v.

M being the mass of the earth.
T2
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580. Although the law of attraction in the inverse ratio of the square

of the distance is the only one that interests us, yet equation (1) of 554
affords a determination so simple of the gravity at the surface of homoge-

neous spheroids in equilibrium, whatever is the exponent of the power of

the distance to which the attraction is proportional, that we cannot here

omit it. The attraction being as any power n of the distance, if we de-

note by d m a molecule of the spheroid, and by f its distance from the

point attracted, the action of d m upon this point multiplied by the element

— d f of its direction, will be— d /u, f •*. d f. The integral of this quantity,

d /ct f* + *

taken relatively to f, is , and the sum of these integrals ex-

V
tended to the entire spheroid is j—z ; supposing, as in 554, that V =

/f " + I d ^.

If the spheroid be fluid, homogeneous, and endowed with rotatory mo-

tion, and not soUicited by any extraneous force, we shall have at the sur-

face, in the case of equilibrium, by No. 567,

V
const. = —

^^-pi + ^ g r 2 (I — m 2),

r being the radius drawn from the center of gravity of the spheroid at its

surface, and g the centrifugal force at the distance 1 from the axis of ro-

tation.

The gravity p at the surface of the spheroid is equal to the differential

of the second member of this equation taken relatively to r, and divided

by — d r, which gives

Let US now resume equation (1) of 554, which is relative to the sur-

fd V^ _ (n + 1) A (n+ 1)V
.

this equation, combined with the preceding ones, gives

p = const. +{(^L±ill_i} gr(l-m*).

At the surface, r is very nearly equal to a ; by making them entirely so,

for the sake of simplicity, we shall have

p = const. H 7— g (1 — 11) *)

Let P be the gravity at the equator of the spheroid, and « <p
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the ratio of the centrifugal force to gravity at the equator; we shall

have

= P{1 + ?-^a?>.in«};

whence it follows that, from the equator to the poles, gravity varies as the

square of the sine of the latitude. In the case of nature, where n = — 2,

we have

p = P U + f ap.m'h
which agrees with what we have before found.

But it is remarkable that if n = 3, we have p = P, that is to say, that

if the attraction varies as the cube of the distance, the gravity at the sur-

face of homogeneous spheroids is every where the same, whatever may be

the motion of rotation.

581. We have only retained, in the research of the figure of the celestial

bodies, quantities of the order a ; but it is easy, by the preceding analysis,

to extend the approximations to quantities of the order a \ and to superior

orders. For thai purpose, consider the figure of a homogeneous fluid

mass in equilibrium, covering a spheroid differing but little from a sphere,

and endowed with a rotatory motion ; which is the case of the earth and

planets. The condition of equilibrium at the surface gives, by No. 557,

the equation

const. = V — -|- r« (m«— i).

The value of V is composed, 1st, of the attraction of the spheroid co-

vered by the fluid upon the molecule of the surface, determined by the

coordinates r, ^, and w; 2dly, of the attraction of the fluid mass upon this

molecule. But the sum of these two attractions is the same as the sum of

the attractions, 1st, of a spheroid supposing the density of each of its shells

diminished by the density ofthe fluid; 2dly, of a spheroid of the same density

as the fluid, and whose exterior surface is the same as that of the fluid.

Let V be the first of these attractions and Y" the second, so that

V=V'+V''; we shall have, supposing g of the order a and equal to a g',

const. = V 4- V' — '^ . r^ (m *— i).

We have seen in 553 that V may be developed into a series of the form

— + — + T^ + &c.

U ('^ being subject to the equation of partial differences.

o=\ _1 j^' ; + -f^^rT;r^,'+i(i+')U«.
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and by the analysis of 561, we may determine U^'^ with all the accuracy

that may be wished for, when the figure of the spheroid is known.

In like manner V" may be developed into a series of the form

Uy ^*^ being subject to the same equation of partial differences as U (*\ If

we take for the unit of density that of the fluid, we have, by 561,

"^^ -
(i + 3) (2 i + 1 • ^ '

t\ + 3 being supposed developed into the series

ZW + ZW + zw +&C.
in which Z ^'^ is subject to the same equation of partial differences, as U ^'^

The equation of equilibrium will therefore become

const. = i^ + a^' + . .^ I U « + ,-.*f,rT, Z (4
r r r'+*t ^(i + 3)(2i+l) J

— ag'r'Cm'— i);

i being equal to greater than unity.

If the distance r from the molecule attracted to the center of the sphe-

roid were infinite, V would be equal to the sum of the masses of the sphe-

roid and fluid divided by r ; calling, therefore, m this mass, we have

UW + U/") = m. Carrying the approximation only to quantities of the

order a\ we may suppose

r = 1 + «y + «*y'j

which gives

ri+3=l+ (i+3)„y+(i±ili^a^y^+ (i+ 3)a^y'.

Suppose

y = Y") + Y^-' + YW 4- &c.

y _ Y'"' 4- Y'(2) -I- Y'® + &c.

y//_ M(o) ^ MW + M(2^ + &c.

Y ^'', Y' % and M (^^ being subject to the same equation of partial differ-

ences as U ('^ ; we shall have

Z« = (i + 3) «Y« +
(i + 2)a + 3) „, j^(o + (i + 3) u^ Y'O-).

Then observe that U ® is a quantity of the order a, since it would be

nothing if the spheroid were a sphere ; thus carrying the approximation

only to terms of the order a % U « will be of this form « U' ^'^ + « ' U" «.

Substituting therefore these values in the preceding equation of equili-

brium, and there changing r into 1 + a y 4- aV' ^^ shaU have to quan-

tities of the order a %
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const, zr (J, \\ — ay-f a'^y^ — "''y']

'a U' « + a 2 U'' «) — (i + 1) a* y U' <')

+ 2<|^2i+l'' 2i+l ^* +2i + l

2(2i+]) ^^

Equating separately to zero the terms of the order a, and those of the

order a% we shall have the two equations,

-g'y(m«-i);
C being an arbiti'ary constant. The first of these equations detects Y ('-'

and consequently the vahie of y. Substituting in the second member of

the second equation, we shall develope by the method of No. 560. in a

series of the form

NW + NW+ NC2) + &c.

N ('> being subject to the same equation of partial differences as U ("\ and

we shall determine the constant C in such a manner that N^"^ is nothing;

thus we shall have

N«
Y' ('^ =

4 «*

2i + 1

and consequently

_ N^*> N(2) N^-''^
J,^'

- A.-|cr +inrTir + ^~f^ + *^-

The expression of the radius r of the surface of the fluid will thus be

determined to quantities of the order a ^ and we may, by the same process,

carry tlie approximation as far as we wish. We shall not dwell any longer

upon this object, which has no other difficulty than the length of calcula-

tions; but we shall derive from,tlie preceding analysis this important con-

clusion, namely, that we may affirm that the equilibrium is rigorously pos-

sible, although we cannot assign the rigorous figure which satisfies it ; for

we may find a series of figures, which, being substituted in the equation of

equilibrium, leave remainders successively smaller and smaller, and which

become less than any given quantity.
T4
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COMPARISON OF THE PRECEDING THEORY WITH OBSERVATIONS.

582. To compare with observations the theory we have above laid down,

we must know the curve of the terrestrial meridians, and those which we

trace by a series of geodesic operations. If through the axis of rotation

of the earth, and through the zenith of a plane at its surface we imagine

a plane to pass produced to the heavens ; this plane will trace a great cir-

cle which will be the meridian of the plane : all points of the surface of

the earth which have their zenith upon this circumference, will lie under

the same celestial meridian, and they will form, upon this surface, a curve

which will be the corresponding terrestrial meiidian.

To determine this curve, represent by u = the equation of the surface

of the earth ; u being a function of three rectangular coordinates x, y, z.

Let x', y', z', be the three coordinates of the vertical which passes through

the place on the earth's surface determined by the coordinates x, y, z ; we

shall have by the theory of curved surfaces, the two following equations,^

«=(^)'>^'-(a-DO'''-
Adding the first multiplied by the indeterminate X to the second, we

get

d z' =2iil ^Ay . dx'— X d/.

(D
This equation is that of any plane parallel to the said vertical : this ver-

tical produced to infinity coinciding with the celestial meridian, whilst its

foot is only distant by a finite quantity from the plane of this meridian,

may be deemed parallel to that plane. The differential equation of this

plane may therefore be made to coincide with the preceding one by suita-

bly determining the indeterminate X.

Let

d z' = a d x' + b d y',

be the equation of the plane of the celestial meridian ; comparing it with

the preceding one, we shall get

(<o)-''(K)-''(a^) = o= .... .(a)

To get the constants a, b, we shall suppose known the coordinates of
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the foot of the vertical parallel to the axes of rotation of the earth and that

of a given place on its surface. Substituting successively these coordi-

nates in the preceding equation, we shall have two equations, by means of

which we shall determine a and b. The preceding equation combined

with tliat of the surface u = 0, will give the curve of the terrestrial meri-

dian which passes through the given plane.

If the earth were any ellipsoid whatever, n would be a rational and

entire function of the second degree in x, y, z; the equation (a) would

therefore then be that of a plane whose intersection with the surface of the

earth, would form the terrestrial meridian : in the general case, this me-

ridian is a curve of double curvature.

In this case the line determined by geodesic measures, is not that of

the terrestrial meridian. To trace this line, we form a first horizontal

triangle of which one of the angles has its summit at the origin of

this curve, and whose two other summits are any visible objects. We de-

termine the direction of the first side of the curve, relatively to two sides

of the triangle, and to its length from the point where it meets the side

which joins the two objects. We then form a second horizontal triangle

with these objects, and a third one still farther from the origin of the

curve. This second triangle is not in the plane of the first; it has nothing

in common with the former, but the side formed by the two first objects

;

thus the first side of the curve being produced, lies above the plane of

this second triangle ; but we bend it down upon the plane so as always to

form the same angles with the side common to the two triangles, and it is

easy to see that for this purpose it must be bent along a vertical to this

plane. Such is therefore the characteristic property of the curve traced

by geodesic operations. Its first side, of which the direction may be

supposed any whatever, touches the earth's surface; its second side is this

tangent produced and bent vertically ; its third is the tangent of the se-

cond side bent vertically, and so on.

If through the point where the two sides meet, we draw in the tangent

plane at the surface of the spheroid, a line perpendicular to one of the

sides, it is clear that it will be perpendicular to the other ; whence it followsj

that the sum of the sides is the shortest line which can be drawn upon the

surface between their extreme points. Thus the lines traced by geodesic

operations, have the property of being the shortest we can draw upon the

surface of the spheroid between any two of their points; andp.294,Vol.I.

they would be described by a body moving uniformly in this surfece.
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Let X, y, z be the rectangular coordinates of any part wliatever of the

curve ; X + d x, y + d y, z + d z will be those of points infinitely near to

it. Call d s the element of the curve, and suppose this element produced

by a quantity equal tods; x + 2dx, y + 2dy, z + 2dz will be the

coordinates of extremity of the curve thus produced. By bending it ver-

tically, the coorduiates of this extremity will become x 4- 2dx + d^x,

y + 2dy + d*y, z + 2dz-}-d2z; thus — d ^ x, — d' y, — d = z

will be the coordinates of the vertical, taken from its foot ; we shall there-

fore have by the nature of the vertical, and by supposing that u = is

the equation of the earth's surface,

d

<'=(a")''— (K)'"-
equations v/hich are different from those ofthe terrestrial meridian. In these

equations d s must be constant ; for it is clear that the production of

d s meets the foot of the vertical at an infinitely small quantity of the fourth

order nearly.

Let us see what light is thrown upon the subject of the figure of the earth

by geodesic measures, whether made in the directions ofthe meridians, or in

directions perpendicular to the meridians. We may always conceive an ellip-

soid touching the terrestrial surface at every point of it, and upon which, the

geodesic measures of the longitudes and latitudes from the point of contact,

for a small extent, would be the same as at the surface itself. If the entire

surface were that of an ellipsoid, the tangent ellipsoid would every where

be the same ; but if, as it is reasonable to suppose, the figure of the meri-

dians is not elliptic, then the tangent ellipsoid varies fi-om one country to

another, and can only be determined by geodesic measures, made in diffe-

rent directions. It would be very interesting to know the osculating ellip-

soids at a great number of places on the earth's surface.

Let urrx'^-f-y' + z* — 1 — 2au', be the equation to the surface

of the spheroid, which we shall suppose very little different from a sphere

whose radius is unity, so that a is a very small quantity whose square may

be neglected. We may always consider u' as a function of two variables

x, y ; for by supposing it a function of Xj y, z, we may eliminate z by

means of the equation z = V 1 — x '^ — y'\ Hence, the three equa-

tions found above, relatively to the shortest line upon the earth's surface,

become
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Kd.y-yd.x = a(^')d«y_»(^)d'x-

xd'^z — zd^x = a f -,

—

\ d * z

;

du'
yd'^z — zd'y = a (-j—) . d * z.

299

(O)

This line we shall call the Geodesic line.

Call r the radius drawn from the center of the earth to its suiface, 6 the

angle which this radius makes with the axis of rotation, which we shall

suppose to be that of z, and <p the angle which the plane formed by this

axis and by r makes with the plane of x, y ; we shall have

X = r sin. 6. cos. 9 ; y = r sin, 6 sin. f ; z = r cos. 6

;

whence we derive

r * sin. ^ 6.d (p = xdy — ydx;
— r*d^= (xdz — zdx) cos. p + (ydz — zdy) sin. p

d s* = dx«+dy'+dz2=dr«+r'd^Hr2dp^sin.2^.
Considering then u', as a function of x, y, and designating by 4 the lati-

tude ; we may suppose in this function r= 1, and -4/= 100°— d, which gives

X = cos. -v}/ cos. p ; y = cos. -vj/ sin. f>

;

thus we shall have

(^>'' + (^V^ = (a^V + + (^>^=
but we have

+ y = cos, 2^^; i. = tan. p;

whence we derive

,, xdx + ydy , xdy — ydx
d^I/ = : j

—

^—
f-; d<p = i ^ ,

sm. -vf- cos. -vf-
"^ X-

cos. ' <p.

Substituting these values of d -v)/ and of d p in the preceding differential

equation in u', and comparing separately the coefficients of d x and d y

;

we shall have
/d u\ _ cos, p /d u\ sin. p /d u\
varJ ~ "~

sin. 4 * yJ^J ~ ^3s7^ • \3~J

'

/d u\ _ sin. g> /d n\ cos. p /d u'\
^

\d y / — sin. -v}/ ' vd -^^ / cos. -vj^
* Vd ? /

'

which give

'd

im^'
rdu Vd V(gii)d'x = - .

^^^
,

.(xd'y-yd'x)
Vd y / sm. "4/ cos. -vl/

^ J j '

\dq>)

cos. '^ 4"
(xd*x + yd*y).
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But neglecting quantities of the order a, we have xd*y— yd«x=0;
and tlie two equations

xd-z — zd^x = 0, yd'z — zd^y =0,
give

,d'- - z'(xd^x+yd°y)
x^ + y^

and

x«+y« + z«=l
gives

xd«x + yd*y + zd»z + ds'^ = 0;

substituting for z d * z its preceding value, we shall have

xd2x + yd*y = — (x« + y«)ds* = — d s^ cos.' •>!/;

wherefore

The first of equations (O), will thus give by integration,

r^ d f sin.* ^ = c d s + a d sy*d sT^— ); (p)

c being the arbitrary constant.

The second of equations (O) gives

d. (x d z — z d x) = a (^— \ d ^ z j

but it is easy to see by what precedes, that we have

d^z = — ds^ sin. 4*

;

we have therefore

d(xdz — zdx) = — ads *^-r—^-^sin. %}/;

in like manner we have

d(ydz — zdy) = — ads' (-1-7) sin. -^i

we shall therefore have

r ' d ^ = c' d s sin. ^ + c" d s cos. <p

— ads cos. f>yd s < (ttt) *^®^' ^ + ("1—) ^^^' f ^"* "^
f

— ads sin. p/d s| (~)sin. f — (~-)cos. <p tan. -^y, . (q)

First consider the case in which the first side of the Geodesic line is

parallel to the corresponding plane of the celestial meridian. In this case

d p is of the order a, as also d r ; we have, therefore, neglecting quantities

of the order a%ds = — rd^, the arc s being supposed to increase from
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the equator to the poles. -^ expressing the latitude, it is easy to see tliat

we have 6 rr lOQo— -^ —
(di) > which gives

rd
d^ = -d^-ad^^(^);

we have therefore

ds=d+.{i+«u' + <.(|i^;)}.

Thus naming s the difference in latitude of the two extreme points of

the arc s, we shall have

^ = = + -{«/ + (^)} + ^-{(^>(^)} + --
u/ being here the value of u' at the origin of s.

If the earth were a solid of revolution, the geodesic line would be al-

ways in the plane of the same meridian ; it departs from it if the parallels

are not circles ; the observations of this deflection may therefore clear up

this important point of the theory of the earth. Resume the equation (p)

and observe that in the present case, d f and the constant c of this equa-

tion are of the order a, and that we may there suppose r = 1, d s = d -^j

6 = 100° — -vj/ ; we shall thus get

d p cos. ^-vl/zrcd-vlz-j-ad -vj^y d -v}/ (^— )

.

However, if we call V the angle which the plane of the celestial meri-

dian makes with that of x, y, whence we compute the origin of the angle

p; we shall have d x' = tan. V = d y'; x', y', z' being the coordinates

of that meridian whose differential equation, as we have seen in the pre-

ceding No., is

d z' = a d x' + b d y'.

Comparing it with the preceding one, we see that a, b are infinite and

such that r- = tan. V, the equation (a) of the precedmg No. thus

gives

0=(i^).ta„.V-(^).

whence we derive

= X tan. V - y _ a(^')tan. V + a{^).

We may suppose V = f, in the terms multiplied by «; moreover

•^ = tan. © : w have therefore
X ^

'
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COS. -4/ COS. (p } tan. ® — tan. \\ = —^ ,^ *
COS. -v]/ COS. p

*

which gives

^
cos.«4

Tlie first side of the Geodesic line, being supposed parallel to the plane

of the celestial meridian, the differentials of the angle V, and of the dis-

tance {p — V) cos. -vj/ from the origin of the curve to the plane of the

celestial meridian ought to be nothing at this origin ; we have therefore

at this point

j;j; = (j.-V)tan.4-=
Zs.'

^

-

'

and consequently, the equation (p) gives

'd

u, and •4'^ being referred to the origin of the arc s.

At the extremity of the measured arc, the side of the curve makes with

the plane of the corresponding celestial meridian an angle very nearly

equal to the differential of {<p — V) cos. •4', divided by d 4/, V being sup-

posed constant in the differentiation ; by denoting therefore this angle by

w, we shall have

w = j-| cos. ^—{<p—\) sin. ^.

If we substitute for -r— its value obtained from the equation (p), and for

f — V, its preceding value, we shall have

the integral being taken from the origin of the measured arc, to its extre-

mity. Call £ the difference in latitude of its two extreme points ; s being

supposed sufficiently small for i '^ to be rejected, we shall have

" = - "-^St^ { (Jf )
^^"- ^ + (d7^) }

'

in which the values of 4j (^— )> andT-i—-,—r^must be referred, for the

greater exactness, to the middle of the measured arc. The angle « must be
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supposed positive, when it quits the meridian, in the direction of the in-

crements of <p.

To obtain the difference in longitude of the two meridians correspond-

ing to the extremities of the arc, we shall oljserve, that u/, V^, -v}/,, and

P/j being the values of u', V, %}/, and <p, at the first extremity, we have

^' '
COS.2>|./ ^ cos.2>|>

'

but we have very nearly, neglecting the square of e,

c i /d u/\

we shall have, therefore,

cos.^^1./ {(T^)^^-^'+(dyd"i)|'
V — V = — "'

whence results this very simple equation,

(V - V,) sin. -v]., = ^j

thus we may, by observation alone, and independently of the knowledge

of the figure, determine the difference in longitude of the meridians cor-

responding to the extremities of the measured arc ; and if the value of the

angle w is such that we cannot attribute it to errors of observations, we

shall be certain that the earth is not a spheroid of revolution.

Let us now consider the case where the first side of the Geodesic line

is perpendicular to the corresponding plane of the celestial meridian. If

we take this plane for that of x, y, the cosine of the angle formed by this

V d x ^ + d z"**

side upon the plane, will be r—^-
; thus this cosine bemg no-

thing at the origin, we have d x = 0, d z = 0, which gives

d . r sin. 6 cos. p = ; d . r cos. ^ = ;

and consequently

r d ^ = r d p sin. 6 . cos. & . tan. p

;

but we have, to quantities of the order o% ds = rdp sin. 6; we shall

have, therefore, at the origui,

d ^ _ tan. (p . COS. 6

d s
"~

r

The constant c", of the equation (q), is equal to the value of x d z —
z d x, at the origin ; it is therefore nothing, and the equation (q) gives at

the origin,

d ^ c' .

-T- = —T sm. (p

;

as r *
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we have, therefore, observing that 9 is here of the order a, and that thus

neglecting quantities of the order a *, we have sin. <p = tan.
f»,

c' = r, COS. 0^

the quantities r, and 6^ being relative to the origin ; therefore, if we con

sider that at this origin the angle <p is what we have before called it,

a. — V,, and whose value we have found equal to ^-r-; we shall^' ' ^ COS. ^-vl//

have at this point

d s v d p / COS. * ^,

'

The equation (q) then gives

d'J, _ cosJ, df, _ ^ f^f\

.

ds^"" r, 'ds \d-^J'

but we have

p^ = -i—; r,= H-au/; ^, = 100o-^^,- «(^');ds T^sm.6/ '
T^

/ » / T/ \d-v}//'

we shall get therefore

^' = (1 _ 2 . u/) ta... 4, + «
(^;|)

tan. ' +,

Observing that at the origin,

d s r^ sm. ^, cos. -^,1. ^^ d 4'' J

the equation (p) gives

c = r^ sin. ^, j

whence we get

d u/ « d (). . /d u/\
J9 2 a. -5-^ 2.T—'cos. ^, « l-nr)d' ^^ d_s_ __ d s \A (pj

d s*
""

r, sin. 6^ r, sin. * &,
"^

cos. ^
>J/,

'

and consequently

d^ _ /d u/\ 2 — cos. » ^;/^

ds*"" "vdf/ cos. '^

-^f

The equation

.=100»-+-a(^),

gives, by retaining amongst the terms of the order s ^, only those which are

independent of a,

S'— S'/-— s.^^— ts .^g, cos. •s}//^dfd^^;'
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wherefore

The difference of latitudes at the two extremities of the measured arc,

will therefore give

It is remarkable, that for the same arc, measured in the direction of the

meridian, this function, by what precedes, is equal to r- ; it may thus
tan. "4/^

be determined in two ways, and we shall be able to judge whether the

values thus found of the difference of latitudes, or of the azimuthal

angle «, are due to the errors of observations, or to the excentricity of the

terrestrial parallels.

Retaining only the first power of s, we have

^-^'— a-f = 5^/{>—/ + <-%»•+'}•
(p — p^ is not the difference in longitude of the two extremities of the arc

s ; this difference is equal to V — V, ; but we have, by what precedes,

which gives

/ d'^ u/ N /d* u/\

17 / 17 \
vd a . d s/ \ii fi~ J

wherefore

-17 Ar ^ < ^ , , r^ "A. 1

^tl p^J I.
V — V , = r- .11 — a u/ + a

( J—r 1 tan. -^^ =^-r— i
' cos. 4/ C ' ^ \d -v}/ / ' cos. " -v}^, J

For greater exactness, we must add to this value of V — V^ the term

depending on s ^, and independent of «, which we obtain in the hypothesis

tan. * -vl/

of the earth being a sphere. This term is equal to — ^ s ' .
—

—

-j^ ;

thus we have

^-^'=ci;k-{l-«-/+«.(^^)tan.+,-;^-M'.a„.'+-}-

It remains to determine the azimuthal angle at the extremity of the

arc s. For that purpose, call x', and y', the coordinates x, y, referred to

Vol. II. U
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the meridian of the last extremity of the arc s ; it is easy to see that the

cosine of the azimuthal angle is equal to j . If we refer

the coordinates x, y, to the plane of the meridian corresponding to the

first extremitj-^ of the arc ; its first side being supposed perpendicular to

the plane of this meridian, we shall have

ds - "' d7 - "' dl - ^'

wherefore, retaining only the first power of s,

d x _ d ' x, <^ z _ d ' Z/

dT~^'dT^' dl-^*d7'''
but we have

x' = x cos. (V — V,) + y sin. (V — VJ

;

thus V T— V, being, by what precedes, of the order a, we shall have

di^ = s.i!^+{V-V,)^.
ds ds^^ "^ds

Again, we have

x = r sin. & cos. p ; z = r cos. 6',

we therefore shall obtain, rejecting quantities of the order a % and observ-

ing that f,, J—^j and ,—' are quantities of the order a,

d^x, d«u/ . ,
,

d^^,
"

. , d ?/
"dT^- = «--dT^ ^^"- ^' + '> d7^

^°^- ''-'' ^^"- ^'- d s«-

Thence we have

d ' u/_ /d^x d p/ /d u/x d ^ ^,_nd_W „ /d uA ,

«•T^-"ld7^;d7^~"vz^^^I^p-cos.^^^,-HdTJ^'^ •^''

moreover, d s = r, sin. ^^ • d
f>^

; we shall, therefore, have by substituting

for r,, ^^, -— , and -j—j-, their preceding values,

d'^f/ _f^ /N
sin.'-vj// /d u,"X, ,, ,, sm. *

S'. , /« u/\^ _ , . ,

dT^ =(1 -"<^- ^^t; + "(d^ )''''"• ^^ ''"• ^^

/d^u/N

1 r /d uA 1 "vd?>W^ . ] I — a u, + a (-T-f ) tan. ^^, [ + V-cos. -v}/^ t
' \d v|/

/

^') cos. -vj//

Neglecting the superior powers of s, we have, as we have seen,

V_V - ^^ k /du\ "va©0 I,
^' - cos.^/|l-au/ + a(^-^y.n.^,^-^^y

and —-^ = 1 ; we therefore have
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els " COS. -4/^ vd-vj^/ ^' ^' V dp* /COS. 3 4//
in like manner we shall find

^=-s(l-„u/)si„.+,-.a(^)ta„.H,eo..4,+»s(^)J^;

the cosine of the azimuthal angle, at the extremity of the arc s, will thus

be

s tan. -v^J .d u/x
^ ,

"("dT^) I.

This cosine being very small, it may be taken for the complement of

the azimuthal angle, which consequently is equal to

100° — s tan. -4.J
,

. /du/x^ ., "C^dT^) i.

For the greater exactness, we must add to this angle that part depend-

ing on s', and independent of a, which we obtain in the hypothesis of the

earth's sphericity. This part is equal to ^ s ^
(^ + tan. ^

-vj/J tan. -v}/^, Thus

the azimuthal angle at the extremity of the arc s is equal to

• ^^1 1_« U/+ U (iHZ) tan.4.-^^ -^ s^ (itan. H,) j'

The radius of curvature of the Geodesic line, forming any angle what-

ever with the plane of the meridian, is equal to

ds'

V (d^x)*^ + (d'^y)' + (d^z)^'

d s being supposed constant; let R be this radius. The equation

X* 4- y2 4- z^ = 1 -I- 2 a u' gives

xd^x-h yd^y + zd^z = -— ds^+ ad*u';

if we add the square of this equation to the squares of equations (O), we

shall have, rejecting terms of the order a*,

(x«+y2 + z^) J(d^x)2+ (d^y)«+(d2z)*l=ds* — 2«ds*d = u'

whence we derive

d^ u'R= 1 + au' + ci-^jT'

In the direction of the meridian, we have

d^u' /d°u\
"• dT^ ="(cr;p)'

wherefore
12 /

R= I +au'4-a (j:;p).

U2

100°-Stan,
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In the direction perpendicular to the meridian, we have by what pre-

cedes.

-- 11/ ^daV /a u.'\
« . -r-T = rS " (

T-^
J tan. 4/,

:

>
* COS. ^ -vj/ V d p / ^"

d«u/ VdpV /du

wherefore

R = i + „„/_„ (^'),„.^,+:1l^_cl

s.

If in the preceding expression of V — V^, we make^ = s', it takes
MX

this very simple form relative to a sphere of the radius R,

V— V, = —^. |l—4-s'^tan.2^^,}-.'
COS. ^^/ t 3 'J

The expression of the azimuthal angle becomes

100« — s' tan. ^|,^ {I _ 1 s' 2 (^ + tan. ^ 4>,)].

Call X, the angle which the first side of the Geodesic line forms with the

plane corresponding to the celestial meridian, we shall have

d«u'__ /du\ d>
/lii^\

dS^
,

/dVx d^'' / d^u^ N d^cH /d^u\ d^'^

da*~-\d <p) ds*"^ Vd -v}./ d s ^+ Vd p^^ da^'^ \d^d^) ds d s+ VdvJ.V d
s^*

But supposing the earth a sphere, we have

d <p. sin. X d^ p. 2 sin. X cos. X ^ ,~i —
. :

'' —
. tan. w x

d s COS. -^f d s
^ cos 4"/

'

A'l, d^ -vl/

-V'= COS. X; . V = — sin.'^ X tan. -v^,;

d s d s*

wherefore,

d*u' sin. X COS. X f /d u/\ . .
/d*u/\l • ?^ ^ ,

/du/\

^^= 2-3^i:^i (-4)^^"' ^'+ (dp$) \-''^'''^'-^Mdt)

/d'u/s sin.'X /d^u/x

+ Vd^J^^S^J^;',^ \d^) '"''' ^'

the radius of curvature R, in the direction of this Geodesic line, is there-

fore

, ^ sin.Xcos.X J /du/\ ^ , ,
/d*u/\ 1 . o,.„, /^W\

'+''"'+2''-^5ir4ri (dF)''"-*''+(d^) /-''''"•^'*"-^'(d+)

To abridge this, let

fd^u/y

K

/aj_u/\

= 1 +«u/-i«tan.4^,(^) +^_-J^+^«(^jp-p-);
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A = f /d u/\
. / d * u/ \ 1

'd^a /a* U \

^ = T^'^"- ^'(d^) - COS. '^, +-2W)'
we shall have

R = K + A sin. 2 X + B cos. 2 X.

The observations of azimuthal angles, and of the difference of the lati-

tudes at the extremities of the two geodesic lines, one measured in the

direction of the meridian, and the other in the direction perpendicular to

the meridian, will give, by what precedes, the values of A, B and K ; for

the observations give the radii of curvature in these two directions. Let

R, and R' be these radii ; we shall liave

j^ __ R' + R"

B =

2 '

R' -- R"
2

and the value of A will be determined, either by the azimuth of the ex-

tremity of the arc measured in the direction of the meridian, or by the

difference in latitude of the two extremities of the arc measured in a di-

rection perpendicular to the meridian. We shall thus get the radius of

curvature of the geodesic line, whose first side forms any angle whatever

with the meridian.

A
If we call 2 E, an angle whose tangent is-^, we shall have

R = K -f VA^ H- B^ cos. (2X — 2 E);

the greatest radius of curvature corresponds with X = E ; the correspond-

ing geodesic line forms therefore the angle E, with the plane of the me-

ridian. The least radius of curvature corresponds with X = 100"+ E;
let r be the least radius, and r' the greatest, we shall have

R = r + (r — r) cos.* (X— E),

X —^ E being the angle which the geodesic line corresponding to P^ forms

with that which corresponds with r'.

We have already observed, that at each point of the earth's surface,

we may conceive an osculatory ellipsoid upon which the degrees, in all

directions, are sensibly the same to a small extent around the point of os-

culation. Express the radius of this ellipsoid by the function

1 — a sin. * vl' U + h cos. 2 {<p + jS)],

tlie longitudes p being reckoned from a given meridian. The expression

U3
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of the terrestrial meridian measured in the direction of the meridian,

will be, by what precedes,

s — ^. [I + h cos. 2(<p + ^)].{l+ B cos. 2 -v}/ — 3 e sin. 2 -4.}.

If the measured arc is considerable, and if we have observed, as in

France, the latitudes of some points intermediate between the extremity;

we shall have by these measures, both the length of the radius taken for

unity, and the value of a Jl + h cos. 2 (p + (3)]. We then have, by

what precedes,

^ , tan.«-vKl + cos.'^-v^) . ^, ,
_,w = — 2 a h . g . ^—

^

^j 1^. sm. 2 ((p 4- 3):
COS. -4/

\r I I / 5

the observation of the azimuthal angles at the two extremities of the arc

will give a h sin. 2 (f + (3). Finally, the degree measured in the direc-

tion perpendicular to the meridian, is

P + 1°. a{l +h cos. 2 {(p + /3)}sin.2-4y+ 40. a h tan. ^ ^|/ cos. 2 (9 + /3);

the measure of this degree will therefore give the value of a h sin. 2 (p+,S).

Thus the osculatory ellipsoid will be determined by these several mea-

sures: it would be necessary for an arc so great, to retain the square of «

in the expression of the angle w; and the more so, if, as it has been ob-

served in France, the azimuthal angle does not vary proportionally to

the measured arc : at the same time we must add a term of the form

a k sin. -^ COS. -v)/ sin. {<p + jS'), to get the most general expression of this

radius.

583. The elliptic figure is the most simple after that of the sphere : we
Jiave seen above that this ought to be the figure of the earth and planets,

on the supposition of their being originally fluid, if besides they have

retained their primitive figure. It was natural therefore to compare

with this figure the measured degrees of the meridian ; but this compari-

son has given for the figure of the meridians different ellipses, and which

disagree too much with observations to be admissible. However, before we

renounce entirely the elliptic, we must determine that in which the greatest

defect of the measured degrees, is smaller than in every other elliptic

figure, and see whether it be within the limits of the errors of observations.

We arrive at this by the following method.

Let a ^^\ a^^^ , a ^\ &c. be the measured degrees of the meridians ; p ^^\

P ®> P ^^3 &c. the squares of the sines of the coi*responding latitudes

:

suppose that in the ellipse required, the degree of the meridian is expressed

by the formula z -j- p y ; calling x ^'>, x ^^\ x <3), &c. the errors of observation,

we shall have the following equations, in which we shall suppose that p ^'^j

p^% pW^ gjc. form an- increasing progression,
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a") — z — p")y = x(i)

a(2)_z — p(2^y = x(2) (A)

a^n) — z — p^"> y = x^")

n being the number of measured degrees.

"We shall eliminate from these equations the unknown quantities z and y,

and we shall have n — 2 equations of condition, between the n errors

X ^^\ X ®, X ^"). We must, however, determine that system of errors,

in which the greatest, abstraction being made of the signs, is less than in

every other system.

First suppose that we have only one equation of condition, which may
be represented by

a = m X ^') + n X '2) + p X '3) + &c.

a being positive. We shall have the system of the values of x ^^\ x ^'^\ &c.

which gives, not regarding signs, the least value to the greatest of them

;

supposing them all nearly equal, and to the quotient of a divided by the

sum of the coefficients, m, n, p, &c. taken positively. As to the sign

which each quantity ought to have, it must be the same as that of its co-

efficient in the proposed equation.

If we have two equations of condition between the errors, the system

which will give the smallest value possible to the greatest of them will be

such that, signs being abstracted, all the errors will be equal to one ano-

ther, with the exception of one only which will be smaller than the rest,

or at least not greater. Supposing therefore that x "^ is this error, we

shall determine it in function x ^-^ x '% &c. by means of one of the proposed

equations of condition ; then substituting this value of x ^'^ in the other

equation of condition, we shall form one between x ^^\ x ^^\ &c. ; which re-

present by the following

a = m x (2) ^ n X (3) + &c.

a being positive ; we shall have, as above, the values of x '•^, x ^, &c. by

dividing a by the sum of the coefficients m, n, &c. taken positively, and by

giving successively to the quotient the signs ofm, n, &c. These values sub-

stituted in the expression ofx ^'^ in terms of x ^'^, x ^^\ &c. will give the value

of X ^'^
; and if this value, abstracting signs, is not greater than that of x ^^\

this system of values will be that which we must adopt ; but ifgreater, then

the supposition that x ^^^ is the least error, is not legitimate, and we must

successively make the same supposition as to x ^^\ x ^^, &c. imtil we arrive

at an error which is in this respect satisfactory.

If we have three equations of condition between the errors ; the system

which will give the smallest value possible to the greatest of them, will be

U4
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such, that, abstracting signs, all the errors will be equal, with exception of

two, which will be less than the others.

Supposing therefore that x ^'^, x ^^^ are these two errors, we shall elimi-

nate them from the third of the equations of condition by means of the

other two, and we shall have an equation between the errors x ^^\ x ^*\ &c.

:

represent it by

fiiTj a = m x^^ + 11 x^*) + Sec.

a being positive. We shall have the values of x ®, x ^'^', &c. by dividing

a by the sum of the coefficients m, n, &c. taken positively, and by giving

successively to the quotient, the signs of m, n, &c. These values substi-

tuted in the expressions of x ^'^, and of x '2) in terms of x <% x W, &c. will

give the values of x ^^\ and of x ^-^, and if these last values, abstracting

signs, do not surpass x *^', we shall have the system of errors, which we
ought to adopt ; but if one of these values exceed x ^^\ the supposition that

X ^'^, and X ^' are the smallest errors is not legitimate, and we must use

the same supposition upon another combination of errors x '•^\ x (% &c.

taken two and two, until we arrive at a combination in which this suppo-

sition is legitimate. It is easy to extend this method to the case where

we should have four or more equations of condition, between the errors x ^'',

X ®, &c. These errors being thus known, it will be easy to obtain the

values of z and y.

The method just exposed, applies to all questions of the same nature

;

thus, having the number n of observations upon a comet, we may by this

means determine that parabolic orbit, in which the greatest error is, ab-

stracting signs, less than in any other parabolic orbit, and thence recog-

nise whether the parabolic hypothesis can represent these observations.

But when the number of observations is considerable, this method be-

comes too tedious, and we may in the present problem, easily arrive at

the required system of errors, by the following method.

Conceive that x ^'\ abstracting signs, is the greatest of the errors

X ^^\ X ^^, &c. ; we shall first observe, that therem must exist another error

X ^'\ equal, and having a contrary sign to x ^'^ ; otherwise we might, by

making z to vary properly in the equation

a «) — z — p ^'l y = X «,

diminish the error x ^\ retaining to it the property of being the extreme

error, which is against the hypothesis. Next we shall observe that x ^'^

and x^''^ being the two extreme errors, one positive, and the others nega-

tive, and equal to one another, there ought to exist a third error x ^'"',

equal, abstracting signs, to x ^'\ In fact, if we take the equation corre-
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spending to x W, from the equation corresponding to x ^''), we shall

have

a « _ a (') — {p «) — p (')J. y = X ('') — X «.

The second member of this equation is, abstracting signs, the sum of

the extreme errors, and it is clear, that in varying y suitably, we may di-

minish it, preserving to it the property of being the greatest of the sums
which we can obtain by adding or subtracting the errors x ^^\ x <2), &c.
taken two and two

; provided there is no third error x ('"> equal, abstract-

ing signs, to X (')
J but the sum of the extreme errors being diminished,

and these errors being made equal, by means of the value of z, each of

these errors will be diminished, which is contrary to the hypothesis.

There exists therefore three errors x % x ^% x ^'"^ equal to one another,

abstracting signs, and of different signs the one from the other two.

Suppose that this one is x ^"^
; then the number i' will fall between the

two numbers i and i'\ To show this, let us imagine that it is not the

case, and that i' is below or above both the numbers i, i''. Taking the

equation corresponding to V, successively from the two equations corre-

sponding to i and to i", we shall have

a « _ aW — (p W — p ('')) y = X W — x^'');

a (i")— a (»') — (p
('")— p (•')) y = X «")— x «\

The second members are equal and have the same sign ; these are also,

abstracting signs, the sum of the extreme errors ; but it is evident, that

varying y suitably, we may diminish each of these sums, since the coeffi-

cient of y, has the same sign in the two first members : moreover, we may,

by varying z properly, preserve to x^''^ the same value j x ^'^ and x^'"^ will

therefore then be, abstracting signs, less than x ^'^ which w'Jl become the

gi'eatest of the errors without having an equal ; and in this case, we may,

as we have seen, diminish the extreme error ; which is contrary to the hy-

pothesis. Thus the number i' ought to fall between i and i".

Let us now determine which of the errors x '^^\ x ^^', &c. are the extreme

errors. For that purpose, take the first of the equations (A) successively

from the following ones, and we shall have this series of equations,

a(2i — a «) — (p (2) — p (D) y = X (2) _ X (»,

a(3) __ a^) _ (p(3) _ pW) y := X (3) __ x^') ; . . . . (B)

&c.

Suppose y infinite ; the first members of these equations will be nega-

tive, and then the value of x ^^^ will be greater than x '^\ x ^^\ &c. : dimin-

ishing y continually, we shall at length arrive at a value that will render

positive one of the first members, which, before arriving at this state, will
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be nothing. To know which of these members first becomes equal to zero,

we shaU form the quantities,

a^^) — aW a ^3) _ ^w a^^^^ — a^'^

p W _ p W ' p ^3) __ p U) 5 p (*)_ p CD '
^^'

fl{T) a (1)

Call /3 1^) the greatest of these quantities, and suppose it to be —
^^

^j-, ;

if there are many values equal to jS^'', we shall consider that which cor-

responds to the number r the greatest, substituting |S^^^ for y, in the

(r — l)'** of the equations (B), x ^""^ will be equal to x^^, and diminishing

y, it will be equal to x ^^\ the first member of this equation then becoming

positive. By the successive diminutions of y, this member will increase

more rapidly than the first members of the equations which precede it

;

thus, since it becomes nothing when the preceding ones are still nega-

tive, it is clear that, in the successive diminutions of y, it will always be

the greatest which proves that x ^^'> will be constantly greater than x ^D,

x^\ . • . x^'^~D, when y is less than jS'^,

The first members of the equations (B) which follow the (r — l)'"* will

be at first negative, and whilst that is the case, x ^"^ + D, x ^"^ + ^\ &c. will be

less than x ^^\ and consequently less than x ^^\ which becomes the greatest

of all the errors x ^'5, x ^% . . . x ^°), when y begins to be less than jS ^D. But

continuing to diminish y, we shall get a value of it, such that some of the

errors x ^"^ + ^\ x ^"^ + ^\ &c. begin to exceed x ^"^^

To determine this value of y, we shall take the r*'' of equations (A) suc-

cessively from the following ones, and we shall have

a(' + i) — aW — Jp (' + ») — p«ly = x> + ') — xW;

a(' +2)_a« — Jp('^ + ^) — pW}y = x^'^ + 2) — x^.

Then we shall form the quantities

aC' + D — a^') a^' + 2) — aW .

p (r+ 1) p W » p(r + 2) p (r) ' "'^•

Call iS®, the greatest of tbese quantities, and suppose that it is

^
,^ ^

,, : if many of these quantities are equal to /3 ®, we shall suppose
p ^^— p cw ''

that r' is the greatest of the numbers to which they correspond. Then x W

will be the greatest of the errors x <D, x ^^\ &c. . . . x (°) so long as y is com-

prised between jS ^^\ and jS ® ; but when by diminishing y, we shall arrive at

8 (2) ; then x '^'> will begin to exceed x ^'^, and to become the greatest of the

errors.

To determine within what limits we shall form the quantities

aCr'+D — aCO ay+^)_--a>2
ptr'+l)_p(r'J> ptr'+ 2) _ p tr') 5

^^'

Let iSC3) ]jQ tJie greatest of these quantities, and suppose that it is
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^
' ^ : if several of the quantities are equal to ^^% we shall sup-

pose that r'' is the greatest of the numbers to which they correspond, x ^'^

will be the greatest of all the errors from y = (3(% to y = ^^K When
y = /3<^^), then x^'^') begins to be this greatest error. Thus preceding, we

shall form the two series,

xO); x«; x("); xC'');...x(°>

oo; /3(0; ^(2). /3(3);...j8(^ ;->(»; (C)

The first indicates the errors x(^), x^""^, x^'*^, &c. which become succes-

sively the greatest : the second series formed of decreasing quantities, in-

dicates the limits of y, between which these errors are the greatest ; thus,

x^'^ is the greatest error from y = oo, to y = iS^*) ; x W is the greatest er-

ror from y =: /3('^, to y = jS^'^; x'^'^ is the greatest error from y = ^^%

to y = jS (% and so on.

Resume now the equations (B) and suppose y negative and infinite.

The first members of these equations will be positive, x^^^ will therefore then

be the least of the errors x ^*\ x ^^\ &c. : augmenting y continually, some

of these members will become negative, and then x ^^^ will cease to be the

least of the errors. If we apply here the reasoning just used in the case

of the greatest errors, we shall see that if we call X^'^ the least of the

quantities

a(2) -_ a(^) a^^^ — a(i> a^ _ a^)

,(2) p(i)» p(3)— p(i)* pW — p(i) &c.

a (s) a ('>

and if we suppose that it is —-j ^^ , s being the greatest of the num-

bers to which X(') corresponds, if several of these quantities are equal to

X(*)j x^'^ will be the least of the errors from y = — oo, to y = X^^K In

like manner if we call X^^^ the least of the quantities

a(« + i)
a('> a(''+2) — a^'^

p(8 + i) pW pi»+^) — pW' &c.

a (s') a ^^^

and suppose it to be —rj: ^ , s' being the greatest of the numbers to

which X (^) corresponds, if several of these quantities are equal to XW j x ^"^

will be the smallest of the errors from y = X('), to y = X^^^; and so forth.

In this manner we shall form the two series

x(i)j xW; x^^'^j x^^'^; ...x^p^

— x; XO); x(2); x(3);...x(i'); 00 ; (D)

The first indicates the errors x ^^\ x ^^\ x ^*'^, &c. which are successively

the least as we augment y : the second series formed of increasing terms,

indicates the limits of the values of y between which each of these errors
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is the least; thus x^') is the least of the errors fromy = — go, to y = X(*>

x^'^ is the least of the errors, from y = >.(^\ to y = X^% and thus of the

rest

Hence the value of y which, to the required ellipse, will be one of the

quantities ^^^\ jS^, /3W; &c. X('\x(%&c.; it will be in the first series,

if the two extreme errors of the same sign are positive. In fact, these

two errors being then the greatest, they are in the series x^'\ x^'"\ x^'^^

&c. ; and since one and the same value of y renders them equal they

ought to be consecutive, and the value of y which suits them, can only

be one of the quantities ^^% ^^% &c.; because two of these errors cannot

at the same time be made equal and the greatest, except by one only of

these quantities. Here, however, is a method of determining that of the

quantities /3^'^, jS^^^, &c. which ought to be taken for y.

Conceive, for example, that jS^^) is this value; then there ought to be

found by what precedes between x*^"^, and x^'"^, an error which will be the

minimum of all the errors, since x^"^, and x^'"-* will be the maxima of these

errors; thus in the series x^, xW, x^"'^, &c. some one of the numbers

s, s', &c. will be comprised between r and r'. Suppose it to be s. That

X ^'^ may be the last of the value of y, it ought to be comprised between

>. ^'^ and X ^-' ; therefore if ^ ^^^ is comprised by these limits, it will be the

value sought of y, and it will be useless to seek others. In fact, suppose

we take that of the equations (A), which answers to x^'^ successively from

the two equations which respond to x^"^) and to x^"^"); we shall have

aCO _ aW — [p ('') — p WJ y = x^^) — x(»)

;

aM—. a(«) — Jp^""^— P^''] y = x^'")— x^*).

All the members of these equations being positive, by supposing

y = ^(3)^ it Js clear, that if we augment y, the quantity x^"^ — x^'^ will

increase ; the sum of the extreme errors, taken positively, will be there-

fore augmented. If we diminish y, the quantity x ^^'^ — x ^'^ will be aug-

mented, and consequently also the sum of their extremes ; /S^^) jg therefore

the value of y, which gives the least of these sums; whence it follows that

it is the only one which satisfies the problem.

We shaU try in this way the values of /S^i), /S^^), ^0), &c., which is easily

done by inspection ; and if we ai-rive at a value which fulfils the preced-

ing conditions, we shall be assured of the value required of y.

If any of these values of /3 does not fulfil these conditions, then this

value of y will be some one of the terms of the series X ^^\ X ^% &c. Con-

ceive, for example, that it is X®, the two extreme errors x^^^ and x^"') will

then be negative, and it will have, by what precedes, an intermediate error,
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which will be a maximum^ and which will fall consequently in the series

X ^^\ X W, X (^, &c. Suppose that this is x W, r being then necessarily-

comprised between s and s'; X^^) ought, therefore, to be comprised be-
tween ^ (1) and /3 ^^. If that is the case, this will be a proof that X (2) jg jj^^

value required of y. We shall try thus all the terms of the series X (% x (=),

A W, &c. up to that which fulfils the preceding conditions.

When we shall have thus determined the value of y, we shall easily ob-
tain that of z. For this, suppose that /S^^) is the value of y, and that the
three extreme errors are x% x ^''\ x («) ; we shall have x ^^^ = — x '^'\ and
consequently

a ('^J — z — p W. y = X ^''

;

a <'^ — z — p ^'\ y = — X ^'^

;

whence we get

a (0 4. a (s) p W 4. p (s)

z = i^
i- —^— . V

;

2 2 •^'

then we shall have the greatest error x ^^^, by means of the equation

a ('5 — a w p (s) — p (r)

X ^"^^ = 4- i- i- V.2^2^
584. The ellipse determined in the preceding No. serves to recognise

whether the hypothesis of an elliptic figure is in the limits of the errors of

observations ; but it is not that which the measured degrees indicate with

the greatest probability. This last ellipse, it seems, should fulfil the

following conditions, viz. 1st, that the sum of the errors committed in the

measures of the entire measured arcs be nothing : 2dly, that the sum of

these errors, all taken positively, may be a minimum. Thus considering

the entire ones instead of the degrees which have thence been deduced,

we give to each of the degrees by so much the more influence upon the

ellipticity which thence results for the earth, as the corresponding arc is

considerable, as it ought to be. The following is a very simple method

of determining the ellipse which satisfies these two conditions.

Resume the equations (A) of 589, and multiply them respectively

by the numbers which express how many degrees the measured arcs

contain, and which we will denote by i ^'), i ^^\ i ®, &c. Let A be the sum

of the quantities i ^'^ a ^'^\ i ^^'. a ^^\ &c. divided by the sum of the numbers

i ^", i (% &c. ,• let, in like mannei', P denote the sum of the quantities

i (*\ p (1), i (2). p (2)j &c. divided by the sum of the numbers i ^'^\ i ®, &c. ;

the condition that the sum of the errors iW. x^'^, i^^^ x^% &c. is nothing,

gives

= A — z — P.y.
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Form the series of quotients ^^^ , —^ , &c. and dispose them according
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If we take this equation from each of the equations A of the preceding

No., we shall have equations of the following form

:

bCD — qCi). y = xW-|

bW — q(2). y = x(2)

b ® — q ^^. y = X ^^^

&c
b(') b®
^)' q*

to their order of magnitude, beginning with the greatest ; then multiply

the equations O, to which they respond, by the corresponding numbers

iU)j i(2)j &c. ; finally, dispose these thus multiplied in the same order as

the quotients.

The first members of the equations disposed in this way, will form a

series of terms of the form

hWy — cO); h<2)y — c(2); h(3)y — c(3); &C. . . . (P)

in which we shall suppose h ^^\ h ^^'> positive, by changing the sign of the

terms when y has a negative coefficient. These terms are the errors of

the measured arcs, taken positively or negatively.

Then it is evident, that in making y infinite, each term of this series

becomes infinite ; but they decrease as we diminish y, and end by being

negative—at first, the first, then the second, and so on. Diminishing y
continually, the terms once become negative continue to be so, and de-

crease without ceasing. To get the value y, which renders the suuv of

these terms all taken positively a minimum, we shall add the quantities

h ('), h ^^\ &c. as far as when their sum begins to surpass the semi-sum of

all these quantities j thus calling F this sum, we shall determine r such

that

hO + hf2) + hW + + h« > ^ F;
hO) + h(2) + h(^) + + hC'-') < i F.

c(-)We shall then have y = p-r- , so that the error will be nothmg rela-

tively to the same degree which corresponds to that of the equations (O),

of which the first member equated to zei'o, gives this value of y.

To show this, suppose that we augment y by the quantity d y, so that

r-r^ + 3 y may be comprised between . ^^._,j and r—y The (r— 1) first

c (")

terms of the series (P) will be negative, as in the case of y = t-^tj; but ni

taking them with the sign -f , their sum will decrease by the quantity

jhH) + iiW h('--'>j ay.
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(.(0
The fii'st term of this series, which is nothing when v = -,— , will be-o h ^'^'

come positive and equal to h ^'^ 5 y ; the sum of this term and the follow-

ing, which are positive, will increase by the quantity

{h«+ h(^ + i^ + &c.} ay;

but by supposition we have

h(») + h(2> h^"-- ») < h« + h Cr + 1) + &c.

;

the entire sum of the terms of the series (P), all taken positively, will

therefore be augmented, and as it is equal to the sum of the errors

i(i). xC^
-f- i('^>. x^'^), &c. of the entire measured arcs, all taken with the

c ^""^

sign +, this last sum will be augmented by the supposition o{y=j-r^^+ 8y.

It is easy to prove, in the same way, that by augmentuig y, so as to be

comprised between ^^^t^tT) and ^^,_.,) , or between ^^^ and ^^^3} » &c.

the sum of the errors taken with the sign + will be greater than when

y - h(^>-

Now diminish y by the quantity 3 y so that j-r^ — By may be comprised

between r—̂ and 1777—j^, the sum of the negative terms of the series (P)

will increase, in changing their sign, by the quantity

[h'') + h(2> + h«] ay;

and the sura of the positive terms of the same series will decrease by the

quantity

JhCr + ») + h('-+'^) + &c.} 3y;

and since we have

h^') + hW + h« > h^^+') + h(^+2) 4. &c.,

it is clear that the entire sum of the errors, taken with the sign +j vtill be

augmented. In the same manner we shall see that, by diminishing y, so

(.^+^' c^'+^J c<'''+^^ c^''+'^>
that it should be between r-Tz—p, and rr;—o> j or between . ,, , .,,

and ,
, .

.

&c. the sum of the errors taken with the sign + is greater than when

V = i— ; this value of y is therefore that which renders this sum a

minimum.
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The value of y gives that of z by means of the equation

z = A — P . y.

The preceding analysis being founded on the variation of the degrees

from the equator to the poles, being proportional to the square of the sine

of the latitude, and this law of variation subsisting equally for gravity, it

is clear that it applies also to observations upon the length of the seconds'

pendulum.

The practical application of the preceding theory will fully establish its

soundness and utility. For this purpose, ample scope is afforded by the

actual admeasurements of arcs on the earth's surface, which have been

made at different times and in different countries. Tabulated below you

have such results as are most to be depended on for care in the observa-

tions, and for accuracy in the calculations.

Latitudes. Lengths of Degrees. Where made. By whom made.

oo.oooo

37 .0093

43 .5556

47 .7963

51 .3327

53 .0926

73 .7037

25538".85

25666.65
25599 .60

25640.55
25658 .28

25683 .30

25832 .25

Peru.

Cape of Good Hope
Pennsylvania.

Italy.

France.

Austria.

Laponia.

Bouguer.

La Caille.

Mason & Dixon.

Boscovich & le Maire.

Delambre & Mechain.

Liesganig.

Clairaut, &c.
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FIGURE OF THE EARTH.

585. If a fluid body had no motion about its axis, and all its parts were

at rest, it would put on the form of a sphere ; for the pressures on all the

columns of fluid upon the central particle would not be equal unless they

were of the same length. If the earth be supposed to be a fluid body,

and to revolve round its axis, each pafticle, besides its gravity, will be

urged by a centrifugal force, by which it will have a tendency to recede

from the axis. On this account, Sir Isaac Newton concluded that the

earth must put on a spheroidical form, the polar diameter being the

shortest. Let P E Q represent a section of the earth, P p the axis, E Q
the equator, (b m) the centrifugal force of a part revolving at (b). This

force is resolved into (b n), (n m), of wliich (b n) draws fluid from (b)

to Q, and therefore tends to diminish P O, and increases E Q.

It must first be considered what will be the form of the c\k\e P E p,

and then the ratio of P O : GO may be obtained.

Vol. II. X
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586. Lemma, Let E A Q, e a q, be similar and concentric ellipses, of

which the interior is touched at the extremity of the minor axis by P a L ;

draw a f, a g, making any equal angle with a C ; draw P F and P G re-

spectively parallel to a f, a g ; then will Pr+PG = af4-ag.
For draw P K, F k perpendicular to E Q, and F H, k r perpendicular to

PK, .-. FE = EK, .-. HD = Drand PD = DK, .-. PH=,Kr;
also F H = K r, .. if K k be joined, K k = P F; draw the diameter

M C z bisecting K k, G P, a g, in (m), (s), (z).

Then

Km:Kn::Ps:Pn::az:aC::ag:ab.
.-. Km4-Ps:Kn + Pn::ag:ab

but

Kn+ n P=K P=2 PD= 2aC=ab.-. Km+Ps=ag.
.•. 2 Km+ 2Ps= 2ag, or P F+P G=a g+a f.

Cor. PH + PI=2ai. For

PF:PH::PG:PI::ag:ai.
.-. PF + PG:PH + PI::ag:ai::2ag:2ai.

but

PF + PG = 2ag, .. PH+PI = 2ai.
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587. The attraction of a particle A towards any pyramid, the area of
whose base is indefinitely small, cc length, the angle A being given, and

the attraction to each particle varying as ^. ^

.

For let

a = area (v x z w)

m = (A z)

X = (A a)

Then section a b = section v x z w . (A a) ^ ax^
(Az)= m^

a X ^ x' ax'
p . attraction =

.*. attraction =

m^ x"^ m"'

a X
m^*

.*. attractions of particles at vertices of similar pyramids a lengths.

588. If two particles be similarly situated in respect to two similar solids,

the attraction to the solids a lengths of solids.

For if the two solids be divided into similar pyramids, having the par-

ticles in the vertices, the attractions to all the corresponding pyramids

oc their lengths a lengths of solids, since the pyramids being similarly

situated in the two similar solids, their lengths must be as the lengths of

the solids : .. whole attractions a lengths of the solids, or as any two

lines similarly situated in them.

CoR. 1. Attraction of (a) to the spheroid a q f : attraction of A to

A Q F : : a C : A C.

CoR. 2. The gravitation of two particles P and p in one diameter P C are

proportional to their distances from the center. For the gravitation of (p)

is the same as if all the matter between the surfaces A Q E, a q e, were

taken away (Sect. XIII. Prop. XCI. Cor. 3.) .'. P and p are similarly si-

tuated in similar solids, .-. attractions on P and p are proportional to

P C and p C, lines similarly situated in similar solids.

589. All particles equally distant from E Q gravitate towards E Q with

equal forces.
X2
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For P G and P F may be considered as the axes of two very slender

pyramids, contained between the plane of the figure and another plane,

making a very small angle with it. In the same manner we may conceive

of (a f ) and (a g). Now the gravity of P to these pyramids is as

P F + P G ; and in the direction P d is as P H + P I. Again, the

gravity of (a) to the pyramids (a f ), (a g) is as (a f + a g), or in the di-

rection (a i) as 2 a i ; but PH+PI = 2ai:.'. gravity of P in the di-

rection P d = gravity of (a) in the same direction.

It is evident, by carrying the ordinate (f g) along the diameter from (b)

to (a) ; the lines (a f ), (a g) will diverge from (a b), and the pyramids of

which these lines are the axes, will compose the whole surface of the in-

terior ellipse. The pyramids, of which P F, P G are the axes, will, in

like manner, compose the surface of the exterior ellipse, and this is true

for every section of the spheroid passing through P m. Hence the at-

traction of P to the spheroid P A Q in the direction P d equals the at-

traction of (a) to the spheroid (p a q) in the same direction.

590. Attraction of P in the direction P D : attraction of A in the same

direction : : P D : A C.

For the attraction of (a) in the direction P D : attraction of A in the

same direction : : P D : A C, and the attraction of (a) = attraction of P.

.'. attraction of P : attraction of A : : P D : A C.

Similarly, the attraction of P in the direction E C : attraction of A in

the direction E C : : P a : E C.

591. Draw M G perpendicular to the ellipse at M, and with the radius

O P describe the arc P n.

Then Q G : Q M : : Q M : Q T

. or -<3^'
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And
O Q : O P : : O P : T
^ ^ O P2

•••OQ-OT-

..yc^.QU.. Q^ OT • QT
but

OT: OQ:: OP*: QO*
.-. OT;TQ::OP': OP=^— OQ«

: : O P 2
; n Q *

:: OP'-.PQ.Qp:: OE=:
O T O E^

"TQ-QM'^-
.-.QG: QO::OE«:OP*

325

:OP

QM'

O F 2

.•.QG = ^.QO.
592. A fluid body will preserve its figure if the direction of its gravity, at

every point, be perpendicular to its surface ; for then gravity cannot put its

surface in motion.

593. If the particles of a homogeneous fluid attract each other with forces

varying as tt— ^ , and it revolve round an axis, it will put on the form

of a spheroid.

For if P E p P be a fluid, P p the axis round which it revolves, then

may the spheroid revolve in such a time that the centrifugal force of any

particle M combined with its gravity, may make this whole force act per-

pendicularly to the surface. For let E = attraction at the equator,

P = attraction at the pole, F = centrifugal force at the equator.

X3
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Then (590),

attraction ofM in the direction M R : P : : Q O : P O

.*. attraction ofM in the direction M R = ^ ^ .

Similarly, the attraction ofM in the direction M Q = ^ ^.
O E

But the centrifugal force of bodies revolving in equal times a radii.

r oc — a
r r. P2

4 <r* r
a

P»

(and P being given) a r

.*. centrifugal force ofM = F. O R
OE

.-. whole force ofM in the direction M O = ^— — ' ^ ^
.O E

Take M r = -jp^- , M g = ^^~Je^^ > complete the paral-

lelogram, and M q will be the compound force; O E and O P .*. must

have such a ratio to each other that M q may be always perpendicular to

the curve. Suppose M q perpendicular to the curve, then, by similar

triangles, qgorMr:Mg::QG:QM.
..P.QO. (E-F)OR ..OE^ OOOR

QOP. QO. OR
PO = (E--F).

OR
OE"

OE^
O P*

•. p = (E.-F) OE
• OP

.-. p : E — F:: (D E : O P,

in which no lines are concerned except the two axes ; .*. to a spheroid

having two axes in such a ratio, the whole force will, at every point, be

perpendicular to the surface, and .*. the fluid will be at rest.

P.MR
594. The attraction of any point M in the direction M R = —' ^ -

;

.*. if P be represented by P O, M R will represent the attraction ofM in

the direction M R, and M v will represent the whole attraction acting

perpendicularly to the surface.
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Draw (v c) perpendicular to M O.

Then

MO:Ma::Mv:Mc: '.attraction in the direction Mv : MO.
• .1 J- .- Ti/r/-. Mv.Ma

.*. attraction m the direction M O = —tht—^— = t

O P^ 1
QCMO "MO^MO*

By similar triangles T O y, M v R, (the angle T O y being equal to the

angle v M R.)

TO:Oy::vM:MR
.-. TO.MR = Oy.vM = Ma.Mv = TO.OF = OP^

595. Required the attraction of an oblong spheroid on a particle placed

at the extremity of the major axis, the excentricity being very small.

Let axis major : axis minor : : 1 : 1 — n. Attraction of the circle

N n (Prop XC.)

,_EL . X
* EN °^

Vn»+(1 — n)«(2n— n*)

a 1 — X {2x — n. (4x — an«;i ^

a 1— X J(2x)~* + l(2x)~2-n.(4n— 2n^)]

, V X n

\/ 2 4, V 2
. (4 V X — 2 X *)

.. A' QC x' =. -
V 2

.•.A ax IT—- X '

—iL=.(4x^x' — 2x^x0
4 V 2 ^

8_x2 4x
4 V 2 ^ 3

n / » x'^

X4
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Let X = 2 E O = 2,

.•.Ao:2-A 5_ /16j/"2 16 ^2^

34V2*^3 5/
_ 2 8 n , 4n
* 3---I5 « ^--y-

.% attraction of the oblong spheroid on E : attraction of a circum-
scribed sphere on E : : (since in the sphere n = 0.)

o

596. Required the attraction of an oblate spheroid on a particle placed

at the extremity of the minor axis.

Let axis minor : axis major : : 1 : 1 + n.

.-. A' a x'
{ Vx2 + (1 -Fn'p. (2x— x-)i

cxxjl- ^ I
I V 2x-f- 4nx— 2nx*J

a x' {l — X ((2x)"*— ~(2x)~^4nx— 2nx2)}

ax' = +
1 1 5

X ^ x' . n X 2 x' n X ^ x'

V 2 V 2 2 V 2

. V~2 . X ^
. V~2 . n X 2 n X 2~

^^'' 3—+ 8
JV2

.*. whole attraction

4 4n 4n 2.8n ,.4n
QC 2 — — 4- — QC 1- — cc 1 4-

.*. attraction of the oblate sphere on P : attraction of the sphere in-

scribed on P : : 1 + —^ : I.
o

Since these spheroids, by hypothesis, approximate to spheres, they may,

without sensible error, be assumed for spheres, and their attractions will be

nearly proportional to their quantities of matter. But oblong sphere

: oblate : : oblate : circumscribed sphere. .*. A of oblong sphere on E : A'

of oblate on E : : A' : A" of circumscribed sphere on E.

.•.A';A''::A:A':: VA: VA"::^1—^:1::1— -^-:1
5
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Also
A. Yi

atf*. of oblate sph. on P : att". of insc''. sph. on P : : 1 + -—
: 1

o

atf*. of insc''. sph. on P : att^.ofcircumsc**. sph. onE : : 1 : 1 + n
2 n

att"*. ofcircumsc**. sph. onE : attr". of oblate sph. on E : : 1 : 1 •

o
.'. attraction of the oblate sphere on P : attraction of the oblate sphere

-, , ,
4 n -—— , 2 n

onE::l M r-:I +n.l —
o 5

,,4n,,3n ,,n,
,::1 + — :1 + -^::1+ -^:1 nearly.

3 nx , . 4. n

1 +
3n
5

n
5"

5 "*" 25

25

.-. P : E : : 1 + ^ : 1 r

but (593), P:E--F::OE:OP
::l + n:l::P + F:E nearly

r+li.E^=^= P

.-.T+li.E — F — nF = P

.-. r+lT.E—nF=P+ F

and since (n) is very small, as also F compared with E,

.-. r+~^' E = P + F

.-. 1 + n : 1 : : P + F : E

...P = E + =^

.-. E+5^+ F:E:: 1 + n: 1

5

...E +^ + F = E + nE
5
4nE

..X _ g

5F
•••"= 4E
/. 4E:5F: : 1
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or " four times the primitive gravity at the equator : five times the centri-

fugal force at the equator : : one half polar axis : excentricity."

597. The centrifugal force opposed to gravity a cos.* latitude.

m n

Let (m n) = centrifugal force at (m), F = centrifugal force at E.

.*. (n r) is that part of the centrifugal force at (m) which is opposed to

gravity.

Now
F:mn::OE:Kmf.-. F:nr::Om«:Km«

and }• : : r" : cos. * lat.

m n : n r : : Om: K m
.*. m r a cos. * lat.

598. From the equator to the pole, the increase of the length of a de-

gree of the meridian a sin. * lat.

nr:Ms::nG:MG::CP:CR::l — n:].

.«. n r = 1— n . M S = 1 — n.
<f>'

sin. ^ = 1 — n . cos. ^ .
^

m r = s t = p'. cos. tf =r — sin. 6 . (f

.•.mr»= sin.^^.O*

.•.mn*= nr* + m r* = ^*. sin.« 6 + (I — n)*. cos.'tf. ^^

= 6'^ (sin. 2 5 + 1 — 2n. cos.« 6)

= 6' 2 (sin. * 6 + COS.M — 2 n . cos. * 6)

= ^2. (1 — 2 n. COS.* 6)

.-. m n = ^. (1 — n . cos. * 6)

.'. at the equator, since

tf = 0; m'n' = ^J^ (1 — n)
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.-. increase = ^ (1 — n.cos.* 6— 1 + n) = ^'. n (1 — cos.* 6)

= ^. n sin. *
6,

.'. increase « n ^. sin. ^

a sin. * ^, a sin. * latitude.

599. Given the lengths of a degree at two given latitudes, required the

ratio between the polar and equatorial diameters.

Let P and p be the lengths of a degree at the pole and equator, m and

n the lengths in latitudes whose sines are S and s, and cosines C and c.

Then as length of a degree oo radius of curvature, (for the arc of the me-

ridian intercepted between an angle of one degree, which is called the

length of a degree, may be supposed to coincide with the circle of curva-

ture for that degree, and will .*. oc radius of curvature.)

CD*

Now at the pole C D * becomes ACS and P F becomes B C

.*. length of a degree « „ ' °^
IT

»

similarly the length of a degree at the equator

^ BC* b*

"a-c'°^T'

Now

p : : -^ : — : : a^ : b^ : : 1 : (1 — n')\
'^ b a ^ '

m — p : n — p.(698) : : S* : s^

m — n : n —

p

:: S* — s*
: S*,

but

m — n.S^"-P= 8^-s' -

P— p : n — p :: 1* : s'

ra — n

m — n.S'
S*— s* '

.•.P-p =

.'. P = p +

S*—s«'

m — n

S^—

£

m — n.S *

S*-s^ = n - P.

T, m — n.S
.'. P = n —

S^— i »
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n S'—ms-

.*. P = p +
m — n __ nS' — ms' + m — n

S'^ — s« •S*—s«

_ m.(l— s')— n.(l— S'^)

m c

S'

•. P : P
mc*— nC* nS m s

nS« — ms^ :: 1 : (1 — n')': : m c* — n C
.-. (m c* — n C«) i : (n S^—m s*)| : : 1 : 1 — n'.

600. The variation in the length of a pendulum oc sin.* latitude.

Let 1 = length of a pendulum vibrating seconds at the equator.

L = length of one vibrating seconds at latitude 6.

The force of gravity at the pole = 1, .'. the force of gravity at the equator

= 1 — F, and the force of gravity in latitude 6 (603) = 1 — F. cos. * tf,

.-. L : 1 : : 1 — F. cos. » ^ : 1 — F (since a « « a F)

.-. L — 1 : 1 : : F. (1 — cos.« ^) : 1 — F : : F. sin.M : 1 — F,

T , 1 F. sin * ^ . , ,
.. L — ] = — ~- a sm. * 6.

1 —

F

From the poles to the equator, the decrease of the length of a pendu-

lum always vibrating in the same time, a cos. ^ latitude.

Let L' = length of a pendulum vibrating seconds at the pole,

.-. L' : L :: 1 : 1 — F. cos*^,

.-. L' : L' — L :: 1 : F. cos'tf,

.*. L' — L « cos. * 6.

601. The increase of attraction from the equator to the pole « sin. ' lat.

Let

O E : O P : : 1 : 1— n. P
Let

M O = a, the angle M O E = tf,

.-. MR« = ^'.{OE'=-OR«J,

or

a«.sin.»tf = (1 — n)». (1— a«cos.»^)

= 1 — 2n. (1— a«cos.*^)

.-. a*. { sin. » 6 + 1 — 2n. cos. M] = 1 — 2 n
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1— 2n 1 — 2n
.'. a "^ =

sin. '^ 6 + COS. ^ d — 2 n. cos.* 6 1 — 2 n. cos.* 6^

1 — n 1 + n.cos. M = .-
,

...
.-. a = -^ r-, = 1—n . rrj^ ^ — =1— n.(l+n cos.* ()),

1—n.cos.^tf 1*—n .cos.^^ *

= 1—n (1 — cos. 2 ^) = 1 — n-. sin. *
^,

•*• - =
^i —r^ = 1 + n . sin. ^ 6 =z , - ^ ,

a 1 — n . sin. ^ d
^ MO

but (594) the attraction in the direction M O oc ^ ,

.*. attraction in the direction M O (A) : attraction at E (A')

: : 1 + n . sin. * ^ : 1,

.-. A — A' : A' : : n . sin. * ^ : 1,

.'. A — A' = A', n . sin. *
6,

.'. increase of attraction oc sin. * ^ oc sin. * latitude.

602. Given the lengths of two pendulums vibrating seconds in two

known latitudes ; find the lengths of pendulums that will vibrate seconds

at the equator and pole.

Let L, 1 be the lengths of pendulums vibrating seconds at the equator

and pole.

L', 1' be the lengths in given latitudes whose sines are S, s, cosines C, c.

.-. L' — L : 1— L :: S^ : s'

.-. L's'— Ls«= 1' S^ — Ls^
.'. L. (S*— s^) = FS"- — Us*,

•'•^-
S* — s* •

Again

L'- L : 1 — L :: S"^: 1,

.-. L' — L = IS* — LSS
, __ L^ — L. (1 — S*)

... 1 _ g_ ,

__!.' (FS* — L^s*)(l— S*)
~ S* S*. (S* — s*)

_ L^ s *— L^ s *— r S * + 1' S ^ + L^s *— L^S * s
*

~
S*. (S*— s^)

V s* — r. s* + V. s* - L\ s* s*=
S*. (S*— s*)

'

- L^(l — s*) — F.(l — S*) _ L^c* —

r

c*
- S*— s* ~ S* — s* •
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603. Given the lengths of two pendulums vibrating seconds in two
known latitudes; required the ratio between the equatorial and polar

diameters.

Since the lengths « forces, the times being the same,

.*. L : 1 : : force at the equator : force at the pole

• • (1^) T • -n^ :
: 1 — n : 1 :

:
O P : O E,

.'. O P : O E : : polar diameter : equatorial diameter

: : L : 1 : : r S 2 — L' s 2 : L' c ^ — 1' C^.

604. To compare the space described in one second by the force of gra-

vity in any given latitude, with that which would be described in the same

time, if the earth did not revolve round its axis.

The space which would be described by a body, if the rotatory motion

of the earth were to cease, equals the space actually described by a

body at the pole in the same time ; and if the force at the pole equal 1,

the force at the latitude 6 (597) equal 1 — F . cos. ^ ^, and since S = m F T *,

and T is the same, .*. S ex F.

.•. space actually described when the earth revolves : space which

would be described if the earth were at rest : : 1 — F. cos. '^ 6 : 1.

605. Let the earth be supposed a sphere of a given magnitude, and to re-

volve round its axis in a given time ; to compare the weight of a body

at the equator, with its weight in a given latitude.

V 2 4 ^ 2
J.

The centrifugal force = —;- = —p^ = F equal a given quantity,

since (r) and P are known. Now the force at the equator =1 — F,

and the force at latitude 6 = 1 — F . cos. ^ ^, and the weight « attractive

force

.-. W : W : : 1 — F : 1 — F . cos. ^ &,

606. Find the ratio of the times of oscillation of a pendulum at the

equator and at the pole, supposing the earth to be a sphere, and to re-

volve round its axis in a given time.

L oc F T * but L is constant, .-. T ^ « y ,

.*. T. oscillation at the pole : T. oscillation at the equator

: : V force at the equator : V force at the pole

:: V i — F : 1.
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ON THE THEORY OF THE TIDES.

607. If a spherical body at rest be acted upon by some other body, it

may put on the form of a spheroid.

Let P E p be the earth at rest; (S) a body acting upon it; (O) its cen-

ter; (M) a particle on its surface.

Let P = polar,

E = equatorialial,}
attraction on the earth.

Then the attraction on M is parallel to M Q = E. OR
OE

Similarly the attraction on M is parallel to M R = — ' „ .

Let (m) = mean addititious force of S on P.

(n) =r mean addititious force of S on E.

Now since the addititious force (Sect. XI.) a distance,

m. M O
.'. the whole addititious force of S onM = PO '

and

m. MO
PO addititious force in the direction M R : : M O : MR,

.. addititious force in the direction M R =

Agsan, since

m : n : : P O : E O,

m n

m. M R m. O Q
PO PO

•• PO ~ EO'

.. whole addititious force of S on M = n.MOE O
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.-. addititious force in the direction M Q = ^\?^J^ = " • ^^ -
,

li. O h O
.-. whole disturbing force of S on M in the direction M Q = twice the

2 n. O R
addititious force in that direction, and is negative = — OE

.*. whole attraction of M in the direction M Q = JE — 2 nj.
OR
OE '

and the whole attraction ofM in the direction M R = {P + m}. ~^ .

Take M g = [E

—

Mr

= iE-2„!.g-|)

= IP H- n,! . g-lf
complete the parallelogram (m q), and produce M q to meet P p in G.

Now if the surface be at rest, M G will be perpendicular to the sur-

face.

.-. M r : M g : : g q : g M : : G Q : Q M,
or

«T) . ,
OQ j^ o ,OR OE^ _ ^_,

{P +mj .^ : fE— 2n| ^-g : : Q-p^ O Q • O F.

.-. P + m : E — 2 n : : O E : OP,

.'. figure may be an ellipse.

608. Suppose the Moon to move in the equator ; to find the greatest ele-

vation of tide.

Let A B C D be the undisturbed

sphere; M P m K u spheroid

formed by the attraction of the

Moon; M the place to which the

Moon is vertical.

Let

TA E = 1 >
<EM = 1 +a>
(e F = 1 ~/3)

Then since the sphere and spheroid have the same solid content,

. 4g. (A E) ' _ 4t.EM.(FE) * ^'

A i/

4 g _ 4 ff.(l +«). (1

3 "" 3

/3)'- 4g.(l+«)(l— 2^+^^)
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.-.1 = 1 +a_2/S — 2a/3 + i8« + a/32

= 1 4- a — 2 jS nearly, (a) and (jS) being very small,

.*. a = 2 /3 or greatest elevation = 2 X greatest depression.

614. To find the greatest height of the tide at any place, as (u)

,

Let

EP = ^— z.PEM = ^ — a + /3 = ?^ = EM — EF = M,

.-. PN^ = g2.sin.^5 = |-^. {EM*^ — EN^I

Now 7-;—;—TY-o by actual division (all the terms of two or more dimen-

sions being neglected) =r 1 — 2.(a + /3)= 1 — 2M,
.-. PN^ = gKsia.^6 = (1 — 2 M). Jl + 2a— g^cos.^^j

(since 2 a = 1? • i =^M) = (1— 2M) Jl +^— f^ cos.^^J.

(4 1VT\

1 +—3^)3

2M _ 2 IV

sin. 2 4. COS. M — 2 M . cos. ^6 1 — 2 M . cos. *=

0,

•••
^
= i-u.l.n = (' + ^- ""'' *'•(»- t) --'^

M= 1 + M . cos. 2 ^ — ^ ,

M
.'. g — 1 = M . COS. M „-= EP — En = Pn = elevation re-

quired.

M
615. Similarly if the angle M E p = ^, .-. E p = 1 + M cos.^ ^ -y

M
.'.1 — E p = p n' = depression = -5 M . cos. ^ 6

2 M 2 M= M— M.cos.'^^ — :^ = Msin.^^— ~^.

616. B M = a = i~,

.-. BM-Pn =i^+M.sin.M- ^
= M . sin.' (X sin.- ^,

Vol. II. Y
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.*. greatest elevation oc sin. * horizontal angle from the time of high tide.

617- At (O) P n = 0,

M *
.-. M . COS. " ^ _ — = 0,

O

.*. M . COS. 2 ^ = —
-

,

«5

1
.'. COS. & = -=^.

VS
.-. z= 54>° , W.

Hitherto we have considered the moon only as acting on the spheroid.

Now let the sun also act, and let the elevation be considered as that pro-

duced by the joint action of the sun and moon in their different positions.

Let us suppose a spheroid to be formed by the action of the sun, whose

semi-axis major = (1 + a), axis minor = (1 — b).

618. Let (a + b) = S, {<p) = the angular distance of any place from the

point to which the sun is vertical. It may b6 shown in the same manner

as was proved in the case of the moon, that

and

S
S . cos. ^

<p ^ = elevation due to the sun,

2 S
S . sin. 2 p' 5- = depression due to the sun,

(/) being the angular distance of the place of low water from the point to

which the sun is vertical,

- .: M . cos. ^ ^ + S . cos. 2
(p

~— = compound elevation. ,

«5

Similarly M . sin. ^
tf' + S . sin. ^ p' — f M + S = compound depres-

sion.

619. Let the sun and moon be both vertical to the same place,

.: 6 = <p = 0,

Tvr I o o
.-. M + S — "^

=-|-M + S = compound elevation,

and
&' = <?'= 90°,

.•. M+ S — §.M-hS = ^M+JS = compound depression,

.*. compound elevation + compound depression = M + S = height ol

Spring tide.

620. Let the moon be in the quadratures with the sun, then at a place

under the moon, ^

{6) = 0, and (®) = 90°,
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.*. compound elevation = M — "*"
,

also {&') = 90, and (^) = 0,

.'. compound depression = M — f . M -f- S,

.*. height of the tide at the place under the moon = 2 M — M + S
= M + S = height of neap tide.

Similarly at a place under the sun, height of tide = S M.
621. Given the elongation of the sun and moon, to find the place of com-

pound high tide.

Compound elevation = M cos. * ^ + S
M + S

cos. • p = maximum at high
3 &'

water.

.*. — 2 M COS. S sin. & 6' — 2 S
cos. p sin. p ^' r= 0,

but

(^'-f- (p) = elongation = E
= constant quantity,

.. ^ = - p',

.'. 2 M cos. 6 sin. ^ = 2 S cos. p sin. f,

.: M sin. 2 ^ = S sin. 2 p,

.-. M : S : : sin. 2 p : sin. 2 6,

.-. M + S : M — S : : sin. 2 <p + sin. 2 6 : sin. 2 p — sin. 2 0,

: : tan. (p + 6) : tan. (p — 6),

and since {p + 6) is known, .-. (p— 6) is obtained, and .-. {<p) and (6) are

found, i. e. the distance of the sun and moon from the place of compound

high tide is determined.

622. Let P be the place of high tide,

P' the place of low water, 90" distant from P,

Pm = <)— Pml = 90 + ^ = ^— Ps = f — P's

= 90 — (p = <p\

Now the greatest depression = M sin. * ^ + S sin. ' <p' — f M + S,

but

sin. * 6' = sin. * (90 + 6) = sin. ^ supplemental angle (90— 6) = cos. * tf,

and

sin. ^ <p' = sin. ' (90 — p) = cos. ^
p,

.-. the greatest depression = M cos. * ^ + S cos. ' f — | M + S,

and the greatest elevation = M cos. * tf + S cos. ' ^ — ^ M + S,

.-. the greatest whole tide = the greatest elevation + greatest depression
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= 2 M COS. ' d + 2 S COS. « p — M + S,

= M J2 COS. « <J — 1} + S (2 COS.* 9—1)
= M COS. 2 tf + S COS. 2 <p.

623. Hence Robison's construction.

A

Let A B D S be a great circle, S and M the places to which the sun

and moon are vertical ; on S C, as diameter, describe a circle, bisect S C
in (d) ; and take S d : d a : : M : S. Take the angle S C M = (p+d)t

and let C M cut the inner circle in (m), join (m a) and draw (h d) par-

allel to it; through (h) draw C h H meeting the outer circle in H; then

will H be the place of high water.

For draw (d p) perpendicular to (m a) and join (m d).

Let the angle S C H = <p, and the angle M C H i= tf. .

Since M : S : : S d : d a

.M+S:M — S::Sd + da:Sd — da
:: dm + da:dm — da

dam + dma ^ dam — dma
:

:
tan. ^ '

*«"• 2

Sdm ^ dam — dma
:: tan. ^ : tan. ^

r^ ^ TLr Sdh — nidh
: : tan. S C M : tan. ^

: : tan. S C M : tan. (S C H — H C M)
: : tan. ((p + 6) : tan. {p — 6)

.: H is the place of high water 62L

Also (ra a) equals the height of the whole tide. For (a p)= a d. cos. pad
= S. cos. S d h = S. cos. 2 p

and

(p m) = m d. COS. p m d = M. cos.m d h = M. cos. 2 6
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.. a m = a p + p m = M. cos. 2 tf
-fr S. cos. 2 p = height of the tide.

At new moon, = f = 1 ., -mt . c^ • .• i

4. £• n A n, ion« f •*• tide = M + S = sprinf; tide.
At full moon, ^ = 0, p = 180» J

• r &

When the moon is in quadratures, (m a) coincides witli C A,

.'.6 = 0,<p= 90°,
•

.*. tide = M — S = neap tide.

624. The fluxion of the tide, i. e. the increase or decrease in the height

of the tide a f. (m a) oc tp'. {M. cos. 2 ^ + S. cos. 2 ^]. But the sun

for any place is considered as constant,

.-. /. (m a) oc — M. sin. 2 6. 2 S',

..
f'. (m a) is a maximum at the octants of the tide witlj the moon

a — M. sm. 2 ^

since at the octants, 2 6 = 90°.

The fluxion of the tide is represented in the figure by (d p).

For let (m u) be a given arc of the moon's synodical motion, draw (n v)

perpendicular on (m a), .*. (m v) is the difference of the tides.

Now mu:mv::md:dp and m u and m d are constant, .*.

m V a d p and d p is a maximum, when it coincides with (d a), i. e. when

the tide is in octants ; for then 2 (ra a d) = 90°.

625. At the new and full moon, it is high water when the sun and

a

moon are on the meridian ; i. e. at noon and midnight. At the quadra-

tures of the moon, it is high water when the moon is on the meridian,

because then (m) coincides with C.

For let M. cos. * tf + S. cos.* p ^— = maximum; then since

in quadratures {^ + 6) = 90°, .-. f = 90° — 6,

.*. M. COS.* ^ + S. sin. * 6 — ]*M + S = maximum,

.'. 2 M. COS. 6. sin. 6. ff = 2 S. sin. 6. cos. 6. d\

.'. M — S. 2. sin. #. cos. 6 = M— S.sin. 2&=z 0, .•.sin.2tf = 0,

.'.6 = 0, that is, the moon is on the meridian.

Y3
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626. From the new moon to the quadratures, the place of hi^h

tide follows the moon, i.e. is westward of it; since the moon moves

from west to east, from the quadratures to the full moon, the place of

high tide is before the moon. There is therefore some place at which its

distance from the moon (6) equals a maximum.

Now (621) M : S : : sin. 2 ? : sin. 2 6

.'. M. sin. 2^ = 8. sin. 2 f>

.'. M. 2 6". cos. 2 6 =z S. 2 f\ COS. 2 p = 0,

.*. COS. 2 p = 0, .'. p = 45°.

627. By (621) M . sin. 2 ^ = S . sin. 2 p »

.'. 6'. M . COS. 2 tf = p'. S . COS. 2 f
but

<p + 6 = e, .: <p' + 6^ = e', .-. ^ = e' —- p'

.*. (e' — p') M . COS. 2 ^ = p'. S . COS. 2 p

.. e'. M . COS. 2 6 = ^. [S. COS. 2 p + M . cos. 2 6}

— e^ M . COS. 2 6

" 9 — ^ ^Q^ 2 ^ + S . COS. 2 p
*

Next, considering the moon to be out of the equator, its action on the

tides will be affected by its declination, and the action of the sun will not

be considered.

M
By Art (614) the elevation = M cos. * <J — -^

.*. elevation above low water mark = M . cos. ^
M
+ b

now

b = | = M
3

.*. elevation above low water = M . cos. * 3

= magnitude of the tide.

Let the angle Z P M which measures the time from the moon's pass-

ing the meridian equal t.

Let the latitude of the place

= 90" — P Z = 1

Let the declination

= 90° — P M = d

COS. ZM-cos. Z Pcos. PMcos.ZPM =

or

COS. t =

sin. Z P sin. Z M

COS. 6 — sui. 1 sin. d
COS. 1 COS. d

. COS. 6 — COS. t COS. 1 COS. d sin. 1 sin. d
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.*. magnitude of the tide = M. f
cos. t cos. 1 cos d + sin. 1 sin. d} ^

.'. for the same place and the same decUnation of the moon, the magni-

tude of the tide depends upon the value of (cos. t). Now the greatest

and least values of (cos. t) are (+1) and (— 1), and since the moon only

acts, it is high water when the moon is on the meridian, and the mean

•
1 _ g^'satest + least

greatest = M. Jsin. 1 sin. d + cos. 1 cos. d^ ^

least = M. Jsin. 1 sin. d — cos. 1 cos. d] *

greatest + least tit c • , i • <> i q i ? ji
... § _L = M. Jsin. ^ 1 sui. 2 d + cos. * 1 COS. ^ d]

2 sin. M = 1 — COS. 2 1

2 sin. * d = 1 — COS. 2 d

.-. 4. sin." 1 sin. " d = 1 — Jcos. 2 1 + cos. 2 d] + cos. 2 1 cos. 2 d

2. COS. 2 1 = COS. 2 1 + 1

2. COS. ^ d = COS. 2 d + 1

.*. 4. COS. 2 1 COS.* d = 1 + (cos. 2 1 + cos. 2 d) + cos. 2 1 cos. 2 d

.-. 4. {sin. 2 1 sin. « d + cos. ^ 1 cos. M} = 2 + 2. cos. 2 1 cos. 2 d

.-. mean tide = M. sin. * 1 sin. ^ d + cos. * 1 cos. * d

,,, 1 + cos. 2 1 cos. 2 d= M. —— —

—

2

It is low water at that place from whose meridian the moon is distant

90°, .*. cos. ^ = 0, .'. for low water

sin. 1 sin. d . i ^ i

cos. t = 1 J- = — tan. 1 tan. d.
COS. 1 cos. cl

When (1 + d) = 90°, .-. tan. 1 tan. d = tan. 1 tan. (90° — 1)

, , tan. 1 -

= tan. 1 cot. 1 = 7
i = 1

tan. 1

. COS. t = — 1, .'. t = 180°, .*. time from the moon's passing the meri-

dian in this case equals twelve hours, .*. under these circumstances there

is but one tide in twenty-four hours.

When 1 = d, .-. cos. t = — tan. * 1

and the greatest elevation = M {cos. t cos. 1 cos. d + sin. 1 sin. d] ^

(since cos. t = 1) = M. {cos. * 1 + sin.* IJ = M.

When d = 0, .-. greatest elevation = M cos. * 1.

When 1 = 0, .*. greatest elevation = M cos. * d.

At high water t = 0, .*. greatest elevation when the moon is in the

meridian above the horizon, or, the superior tide = M {cos. 1 cos. d +
sin. 1 sin. d} "- = M cos. * (1 — d) = T.

For the inferior tide t = 180°, .-. cos. t = — 1,

Y4,
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.*. inferior tide = M Jsin. 1 sin. d — cos. 1 cos. d} *

= M
J— 1 (cos. 1 COS. d — sin. 1 sin. d)]

«

= M COS. « (1 + d) = T'.

Hence Robison's construction.

With C P = M, as a radius, describe a circle P Q p E representing

P

a terrestrial meridian ; P, p, the poles of the earth ; E Q the equator

;

(Z) the zenith; (N) the nadir of a place on this meridian; M the place

of the moon. Then

Z Q latitude of the place = 1 \ v ivyr ^u ..u j- ^ j j-.^/-xji-- j>-.*. ZM the zenith distance = 1 — d.M Q declination = d J

Join C M, cutting the inner circle in A ; draw A T parallel to E Q.

Join C T and produce it to M' ; then M' is the place of the moon after

half a revolution, .*. M' N = nadir distance

= ME+EN=]\IQ + ZQ = l + d.

Join C Z cutting the inner circle in B; join B with the center O
and produce it to D; join A D, B T, A B, D T; and draw T K, A F
perpendiculars on B D.

^ADB = z.BCA=Z Q-M Q=l-d | ,

^TDB = 180°—^TCB=z.MCN=l+d/ ^ '

B T Z are right angles

B D : D A : = D A : D F= D^= B°l|?^£DA^ B J, ^3 , (,_„

= M COS.* (1 — d) = height of the sup^ tide.
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Again

BD:Dr::Dl:DK= „ ^- = o-yc = tJ D cos. 1 + d

= M COS. 1 + d = point of the inferior tide.

If the moon be in the zenith, the superior tide equals the maximum.

For then 1 — d = 0, .•. cos. 1 — d = maximum, and B D = D F.

If the moon be in the equator, d = 0, .'. D F = D K.

The superior tide = M cos. ^ (1 — d) = T
The inferior tide = M cos. * (1 + d) = T.

Now T > T', if (d) be positive, i. e. if the moon and place be both on

the same side of the equator.

T < T' if (d) be negative, i. e. if the moon and place be on diffh-ent

sides of the equator.

If (d) = 90° — 1, .-. D K= Mcos.«(l+90°— 1) = Mcos.«90o = 0.

If (d) = 90° + 1, and in this case (d) be positive, and (I) negative,

.-. D F = COS.* (d — 1). M = Mcos.^CgO^ + 1— 1) = Mcos.«90» = 0.





PROBLEMS
FOR

VOLUME III.

Prob. I. The altitude V 'R of the

j)ole is equal to the latitude of the place.

For Z E measures the latitude.

= P R by taking Z P from E P and

ZR.

Prob. 2. One half the sum of the

greatest and least altitudes of a cir-

cumsolar star is equal to the altitude of

the pole.

The greatest and least altitudes are at

X, y on the meridian.

Also

xR+ y R=xy+ 2y R= 2 (Py+Ry)= 2 . altitude of the pole.

Prob. 3. One half the difference of the sun's greatest and least meridian

altitudes is equal to the inclination of the ecliptic to the equator.

The sun's declination is greatest at L, at which time it describes the

parallel L r.

.*. L H is the greatest altitude,

The sun's declination is least at C, when it describes the parallel

s C.

.*. s H is the least altitude,

and

4 . (L H — s H) = ^ L s = L E.

Prob. 4. One half the sum of the sun's greatest and least meridian al-

titudes is equal to the colatitude of the place.

i(LH + sH) = i(HE + EL+HE — Es)

= ^ (2 H E) = H E.
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Prob. 5. The angle vohicJt the equator makes with the hot^izon is equal to

the colatitude = E H.

Prob. 6. When the sun describes

b a in twelve hours, he will describe c a

in six ; if on the meridian at a it be

noon, at c it will be six o'clock. Also

at d he will be due east. He travels IS**

in one hour. The angle a P x, mea-

sured by the number of degrees con-

tained in a X (supposing x equals the

sun's place), converted into the time at

the rate of 15° for one hour, gives the

time from apparent noorif or from the

sun's arrival at a.

Prob. 7. Given the sun's declinatioUy and latitude of the place ; Jind the

time ofrising, and azimuth at that time.

Given Z E, .*. Z P = colat. given.

Given be, .*. P b = codec given.

Given b Z = 90^

Required the angle Z P b, measurmg

a b, which measures the time from sun

rise to noon.

Take the angles adjacent to the side

90°, and complements of the other three

parts, for the circular parts.

.-. r . cos. Z P b= cot. Z P cot P b

or

r . cos. hour ^=taii. lat. tan. dec.

.'. log. tan. lat + log. tan. dec. — 10 = log. cos. hour l. required.

Also the angle P Z b measures b R, the azimuth referred to the north*

and
r . cos. P b = COS. P Z . cos. Z

.*. COS. Z = r . COS. p
sin. L

Prob. 7. (a) r. cos. hour ^ = tan. latitude tan. declination,/o;- sun rise.

2 . tan. lat tan, dec.

Hence the length of the day zn 2 . cos. hour l. =
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h may be found thus, from a Z P b cos. h= COS. Z b—Z cos.P. cos.P b

sin. Z P. sin. Pb
= (sinceZ b=90o,)—HHLL S^tJ^

, or since h > 90°,
^ cos. L sin. p

^

— cos. h = — tan. L . cot p, or cos. h = tan. L . cot. p.

and the angle P Z b may be similarly found,

„ COS. P b — cos. Z P . cos. Z b
r. COS. L z= :

—

^td—:—^-r
sm. Z P . sm. Z b

_ COS. p
"~

COS. L *

Prob. 8. Find the sun*s altitude at six o^clock in terms of the latitude

and declination.

The sun is at d at six o'clock. The angle Z P d = right angle.

Z p = colat. P d = codec. Required Z d (= coalt.)

r . cos. Z d = COS. Z P . cos. d P
or

r. sin. altitude = sin. latitude X sin. declination.

Prob. 9. Find the time when the sun comes to the prime vertical (that

vertical whose plane is perpendicular to the meridian as well as to the. hori-

zonJ, and his altitude at that time, in terms of the latitude and declination.

Z P = colatitude. Pg = codeclination. The angle P Z g= right angle.

Required the angle Z P g.

.-. r . COS. Z P g = tan. Z P . cot. P g.

= cot. latitude tan. declination.

Also required Z g equal to the coaltitude,

r . COS. P g = COS. P Z . COS. Z g.

r . sin. declination . , .^ ,

.*. ;—,

—

-.—

T

= sm. altitude.
sm. latitude

Prob. 10. Given the latitude, declina-

tion, and altitude of the sun ; ^nd the

hour and azimuth.

Let s be the place.

Given Z P, Z s, P s. Find the angle

ZPs.
Let Z P, Z s, P s = a, b, c, be given,

to find B.

2r
sin. B =

sin. a . sm. c
X

V s . (s — a) . (s — b) . (s

a + b + c
where s = ;;

•

c)
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Also find C . V
sin. C = 2r

(Or by Nap. 1st and 2d AnaL)

sin. a . sin. b
*

Similarly, sin. A = sin. l. of position = . ,

—

.

2r

Prob. 11. Given the error in the altitude- Find the error in the time

in terms of latitude and azimuth.

Let m n be parallel to H, and n x be

the error in the altitude.

.*. ^ m P X = error in the time = y z,

y z : m X : : rad. : cos. ra y
X n : : rad. : sin. n m x

or

mx
yz: X n COS. my. sm. n m x

n X

but

COS. m y . sm. n m x

r*. n X

COS. m y . sin. Z x P *

sin. Z X P sin. Z P
sin. X Z P

~

.-. sin. Z X P =

sin. P X

sin. P Z . sin, x Z P
cos. m y
r '. n X

.*. y z = T

—

- = nr*•' cos. L. sm. azimuth

Cor. Sin. of the azimuth is greatest when a z = 90", or when the sun

is on the prime vertical, .*. y z is then least.

Also, the perpendicular ascent of a body is quickest on the prime

vertical, for if y z and the latitude be given, n x gc azimuth, which

is the greatest.

Prob. 12. Given the latitude and

declination. Find the time 'when twilight

begins.

(Twilight begins when the sun is IS''

below the horizon.)

h k is parallel to H R and 18" below jjl

HR. hi

.*. Twilight begins when the sun is in

hk.

.-. Z 8= 90° +18°, Ps= D, Z P=colat

Find the angle Z P s.
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Prob. 13. Fijid the time 'when the

apparent diurnal motion of a Jixed star

is perpendicular to the horizon in terms of

the latitude and declination.

Let a b be the parallel described by

the star.

^ Draw a vertical circle touching it at

s.

.*. s is the place where the motion ap-

pears perpendicular to H R.

.-. Z P, P s, and z- Z S P= 900 is given.

Find Z P s.

Prob. 14. Find the time of the shortest twilight, in terms ofthe latitude

and declination-

ab is parallel to H R 18° below H R.

The parallels of declination c d, h k,

are indefinitely near each other.

The angles v P w, s P t, measure

the durations of twilight for c d, h k.

Since twilight is shortest, the incre-

ment of duration is nothing.

.-. V P w = s P t

.*. V r = w z

and r s = t z

and the angle v r s = right angle

= w z t.

.-. Z. r V s = z w t, and /L Z w c = 90" — z w t = 90" — Z w P.

.'. A z w t = Z w P.

Similarly,

/Lrvs = ZvP
.-. Z w P = Z a P.

Take v e = 90". Join P e. Draw P y perpendicular to Z c.

In the triangles ZPw, Pve, Zw=:ev, Pw=Pv, and the angles

contained are equal, ^ .*. Z P = P e.

.*. In the triangles ZPy, Pey, Z P = Pe, Py com ; and the

angles at y are right angles.

.'. Z e is bisected in y.

r . cos. P v = cos. P y . cos. v y
r . cos. P e = cos. P y . cos. y e.
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.*. COS. P V : COS. P e : : cos. v y : cos. y e

(but V y is greater than 90", .•. therefore cos. v y is negative.)

— cos. (— compl. y e) : cos. y e

sin. L. tan. y e
cos. p = i-—

SIR. y e : cos. y e

tan. y e : r.

18*^

sin. L. tan. —

-

sin.L. tan. 9°

P Z is never greater than 90°, Z y is equal to 9, .*. P y is never greater

than 90°, .*. cos. Py is always positive; v y is always greater than 90°,

.*. cos. v y is always negative, .*. cos. P v is negative, .*. the sun's decli-

nation is south.

Also, if instead of R b = 18°, we take it equal to 2 s equal the sun's

diameter, we get from the expression sin. D = sin. L. tan. s
the time

when the sun is the shortest time in bringing his body over the horizon.

Prob. 15. Find the duration of the shortest tmlight-

z- w P Z = V P e, .-. z. Z P e = V P w.

.*. 2 Z P e is equal to the duration of the shortest twilight,

r . sin. Z y = sin. Z P . sin. Z P y
or

sin. Z P y =
sin. 90° . r

cos. L.

which doubled is equal to the duration required.

Prob. (A). Given the sun's azimuth at six, and also the time when

due east. Find the latitude.

From the triangle Z P c,

r . cos. L = tan. P c . cot P Z c.

From the triangle Z P d.

r . cos. h =r cot. L . cot. Pd.

.*. tan. Pc = cos.

cot.

L
z

cot. Pd = cos.

cot.

h
L

.*. tan. Pd = cot.

cos.

L
h

cos. L cot. L
• • cot7 Z

"
cos.-h

•- si n. T. - cot. Z
cos. h
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Prob. 16. Find the declination ts^ken

it isjust twilight all 7iight.

Dec. bQ=QR — bR
= colat. — 18"

= 90° — L — 180

= 73° ^- L

Prob. 17. Given the declination,

find the latitude, the sun being due east,

when one half the time has elapsed be-

tween his rising and noon.

Given /L Z Pc, and Z P d = | Z Pc.

Given also P d = p,

and ^ P Z d right angle.

•.• by Nap-

r . cos. h = tan. Z P . cot- p

T r . cos. h
•.' cot Li = .

cot. p
If the angle Z P c be not given.

From the triangle Z P d,

. cos. Z P d z= tan. Z P . cot. p.

From the triangle Z P c,

r • cos. Z P c = cot. Z P cot- p,

or cos. h = cot. X. cot- pi

COS. 2 h = tan- X. cot. p j

= 2 cos. 2 h — 1 = 2 cot- 2 X. cot- * p — 1 =

.*. tan- ' X. cot. p = 2 cot ' p — tan- * X

2 cot- ' p —- 1

tan. ' X

.-. tan- 3 X +
tan. "

X

cot. p
— 2 cot p = 0,

fi'om the solution of which cubic equation, tan. X is found-

Prob. 18. Given the angle between i
two and three o'clock in the horizontal

dial equal to a. Find the longitude.

From the triangle P R n,

r . sin. P R=tan. R n . cot 30

= tan. Rn. V3-

From the triangle P R p,

r . sin. P R= tan. R p . cot 45

= tan R p.

Vol. II. 7.
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.". tan. n p = tan. a = tan. 11 p— 11 n

_ tan. R p— tan. R n
""

1 + tan. R p . tan. R n

^'^^O-Va)

1 +
sm. ^ X

sin.X.(V 3—1)
V 3 + sin. ^ X

Prob. 19. In what longitude is the

angle between the hour lines of twelve

and one on the horizontal dial equal

to twice the angle between the same

hour lines of the vertical sun dial ?

From the triangle P R n,

sin. X = cot. 15 . tan. R n

From the triangle p N m,

sin. p M = cot. 15 . tan- N m
R n— COS x = cot- 15. tan. —~

sin. X tan. Rn
COS. X

"
tan. R n

2

= tan. X

, Rn
. , Rn

tan. g + tan.—
1 — tan.

Rn
tan.

Rn*

tan.
Rn
2

Pkob. 20. Given the altitude, latitude, and declinatio?i of the sun, Jind

the time.

, __ COS. Z S — COS. Z P . COS. P 8
^°^* " " "

sin. Z P . sin. P S

__ sin. A — sin. L . cos. p
""

COS. L . sin. p
, COS. L. sin. p + sin. A— sin. L. cos. p

.'. 1 + cos. h = f
: ~

'

COS. L,. sm. p

— sin, (p — L)+sin. A
""

COS. L . sin. p
or

^A -f p — \u\ „;„ /A + L — p^

2
cos

2cos. *— =
--i).sin.(^

COS. L . sin. p
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\ the form adapted to the Lo-

garithmic computation, or, see Prob. ( 1 8).

Prob. 2L Given a star's right ascen-

sion and declination. Find the latitude

and longitude of the star.

Given

y b, b S, z. S b 7 right angle

.. find A. S 7 b and S y.

.-. ^SyazrSyb— Obi.

.*. S 7 is known, z. S 7 a is known

and S a 7 is a right angle,

.*. find S a = latitude

7 a = longitude.

Given the sun's right ascension and

declination. Find the obliquity of the

ecliptic.

P S being known P 7 = 90°, a S P 7
= R A,

.*. In the ASP7, z.S7Pis known.

.-. obliquity = 90° — S 7 P is

known.

Prob. 22. In what latitude does the

twilight last all night ? Declination

given.

(Twilight begins when the sun is 18°

below the horizon in his ascent, and

ends when he is there in his descent,

lasting in each case as long as he is in

travelling 18°.)

R Q = H E = colat. = b Q + b R
= D + 18°.

... 90° — 18 — D = L
= 72^ — D.

(See Prob. 16.)

12
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Find the general equation for the hour at which the twilight begins.

Z

Let the sides P Z, P S, Z S, be a b c.

'a + b + c

Then sin.* — =
Sin. f - )sin.(

a + b + c-b)
sin. a. sin. b

or

. /colat. + p + 108"
, X -^

sin.
^

2"^ ^ *• )
/sin. cotan. + p + 108° \

.h^( a -P)
Sin.* — =•

2
~

COS. L . sin. p
Prob. 24. Given the difference be-

tween the times of rising of the stars,

and their declinations : required the lati-

tude of the place.

Given P m, P n, and the /:. m P n

included.

From Napier's first and second ana-

logies, the Z- P m n is known,

.*. P m C = complement of P m n is

known,

.«. P C = 90", P m is given, and the

A P m C is found,

.'. P R = latitude is known.

' Prob. 25. Given the sun in the equa-

tor, also latitude and altitude: find the

time.

Given

Z P, ZS, PS = 90" find the z. Z P S.
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Prob. 26. The sun's decimation = 8"

south, required the latitude, when he

rises in the south-east point of the

horizon, and also the time of rising.

P S = 900 + 8°, Z S = 90", ^ S Z P
= 450 + 900.

Find Z P, and the A Z P S.

Prob. 27. Determine a point in E Q,
that the sum of the arcs drawn from it

to two given places on the earth's sur-

face shall be minimum.

Let A, B, be the spectator's situations,

whereof the latitude and longitude are

known.

Let E Q be the equator, p the point

required ; a b = diiFerence of the lon-

gitudes is known. Let a p = x.

.-. p b = a — X. Let L, L' be the la-

titudes.

In A A a p, r . cos. A p =
COS. JJ. COS. X.

In A B b p, r. cos. B p =
COS. U. COS. a — X,

.'. COS. L . COS. X -J- COS. U. COS. (a— x)

= max. «

.*. COS. L . (— sin. x) . d X -f- cos. V. X

sm. (a — x). (— d x) = 0,

... — COS. L . sin. X = cos. L'. sin. a. cos. x — cos. L'. cos. a. sin. x.

Let sin. x = y
.-. — COS. L . y = COS. U. sin. a. V 1 — y * — cos. L'. cos. a. y

.. transposing and squaring

cos. « L. y - — 2. cos. L. cos. L'. cos. * y * + cos. ' U. cos. » a. y

«

= cos. * V, sin. 2 a — cos. * \J. sin. ' a y ^

.*. y * = &c. = n. and y = V n.

Prob. 28. To a spectator situated within the tropics, the sun's azi-

muth will admit of a maximum twice every day, from the time of his leav-

ing the solstice till his declination equal the latitude of the place. Re-

quired proof.

a b the parallel of declination passing through Capricorn.

Z3
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From Z a circle may be drawn touch-

ing the parallel of the declination till

this parallel coincides with Z. .*. every

day till that time the sun will have a

maximum azimuth twice a day, and at

that time he will have it only once at Z.

(Also the sun will have the same azi-

muth twice a day, i. e. he will be twice

atf.)

Prod. 29. The true zenith distance

of the polar star when it first passes the

meridian is equal to m, and at the se-

cond passage is equal to n. Required

the latitude.

Given b Z = m, a Z = n,

Z P = colat. z= ^. m + n.

Pros. 30. If the sun's declination

E e, is greater than E Z, draw the cir-

cle Z m touching the parallel of the de-

clination,

.*. R m is the greatest azimuth that day

If Z V be a straight line drawn per-

pendicular to the horizon, the shadow

of this line being always opposite the

sun, will, in the morning as the sun

rises from f, recede from the south point

H, till the sun reaches his greatest azi-

muth, and then will approach H; also

twice in the day the shadow will be upon

every particular point, because the sun

has the same azimuth twice a day, in

this situation. .*. shadow will go back-

wards upon the horizon.

But if we consider P p a straight line or the earth's axis produced, the

sun will revolve about it, .*. the shadow will not go backwards.

r. cot. Z P q = tan. P q. cot. P Z,

or

cot. (time of the greatest azimuth) = tan. p. tan. L.

All the bodies in our system are elevated by refraction 33', and depress-

ed by parallax.
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.*. at their rise they will be distant from Z, 90^
-f-

33' — horizontal pa-

rallax.

A fix d star has no parallax, .*. distance from Z = 90^ + 33''

Prob. 31. Given two altitudes and

the time between them, and the decli-

nation. Find the latitude of the place.

Given Z c, Z d, P c, P d, z. c P d.

From A c P d, find c d, and /l P d c.

From A Z c d, find z_ Z d c,

.. Zdp = cdP — cdZ,
.-. From A Z P d, find Z P = colat.

Prob. 32. To find the time in which

the sun passes the meridian or the hori-

zontal wire of a telescope.

Let m n equal the diameter of the sun

equal d'' in space.

V V : ra n : : r : cosine declination,

m n
.-. V V = radius 1,

cosine declination

= d''. second declination in se-

conds of space,

.*. 15" in space : 1" in time

d" second dec.
: : d" second dec. :

15''

= time in seconds of passing the merid

Hence the sun's diameter in R A = V v = d". second declination.

(n X = d" = sun's diameter)

V V : m n : : r : sin. P n

m n : n X : : r : sin. x n P
"V y : n X : : r^: sin. P n . sin. Z n P,

r '. n X r * n X
.'. V V =

sin. P n . sin. Z n P
r'. d^'

"~
cos. X. sin. azimuth

.*. time of describing V v =

in. Z P . sin. P Z nsm

d"

15". cos. X. sin. azimuth

which also gives the time of the sun's rising above the horizon.

Z4

>i
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Prob. 33. Flamtead's method of determining the right ascension of a
star*

Lemma. The right ascension of stars

passing the meridian at different times,

differs as the difference of the times of
their passing.

For the angle a P b measures the dif-

ference of the times of passing, which is

measured byab = ay — by.
Hence, as the interval of the times

of the succeeding passages of any fixed

star : 360 (the difference of its right

ascensions between those times) : : the

interval between the passages of any two fixed stars : to the difference of
their right ascensions.

Let A G c be the equator, ABC
the ecliptic, S the place of a star, S m
a secondary to the equator. Let the sun
be near the equinox at P, when on the

meridian.

Take C T = P A, .-. the sun's de-

clination at T = that at P. Draw PL,
T Z, perpendicular to A G c.

.*. Z L parallel to A C.

Observe the meridian altitude of the

sun at P, and the time of the passage

of his center over the meridian.

Observe what time the star passes over the meridian, thence find the

apparent difference of their right ascensions.

When the sun approaches T, observe his meridian altitude on one day,

when he is close to T, and the next day when he has passed through T,

so that at t it may be greater, and at e less than the meridian altitude at

P. Draw t b, and e s, perpendiculars.

Observe on the two days before mentioned, the differences b m, s m, of

the sun's right ascension, and that of the star.

Draw s v parallel to A C.

Considering the variation of the right ascension and declination to be uni-

form for a short time, v b (change of the meridian altitudes in one day) : o b

difference of the declinations) ::sb (=sm — bm):Zb. Whence Z b.

Add or substract Z b to or from T m. Whence Z m. Add, or take the
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difference of, (according to circumstances), Z m, L ra, whence Z L,

.*. gives A L, the sun's right ascension at the time of the first

observation.

.. A L + L m = the star's right ascension. Whence the right ascen-

sion of all the stars.

Prob. 34. Given the altitudes of two known stars. Find x.

Right ascensions being known, .*. a b

= the difference of right ascensions, is

known,

••. A a P b is known.

.*. From AsPff, /isffPis known,

and e s.

From aZs(j, A sffZis known,

'•. L Z <j P is known,

.•• from A Z a P, Z P is known.

Pros. 35. Given the apparent diameter of a planet, at the nearest and

most distant points of the earth's orbit. Required the radius of the planet's

orbit.

D a -jT— ; D greatest, D' nearest diameter.

.-. D : D' : : E P : E' P
::EP — EC:CP+EC,

.-. D C P + D E C = D' C P — D' E C,

...CP = EcgA^.
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Prob. 36. Given the sun*s greatest apparent diameter, and least, as 101

and 100. Find the excentricity of the earth's orbit.

D a —-r : the sun at S, P P' the earth's orbit,
rad.

'

100 : 101 : : S P : S F : : C P — C S : C P + C S

.-. 100 C P + 100 C S = 101 C P — 101 C S
.-. 201 C S = C P

C P
.*. C S = „„- , on the same scale of notation.

Prob. 37. Two places are on the same meridian.

Find the hour on a given day, when

the sun will have the same altitude at

each place.

Z Z', two zeniths of places, .*. Z Z' is

known, S the place of the sun in the

parallel a b, Z S = S Z'.

From S draw perpendicular S D,

.-. Z D = Z' D,

.-. P Z +
ZZ' = P D, is known,

P S is known, ^ S D P right l,

.'. ^ D P S = hour is known.

Prob. 38. Find the time in which

the sun passes the vertical wire of a te-

lescope.

Meridian = the vertical wire,

.. the time of passing the meridian =
the time of passing the vertical wire.

Take m n = the sun's diameter = d.

V V : m n : r : cos. declination,

d r

cos. dec.

'

Vv =

.'. V V converted into the time at the

rate of 15' for V = the time required.

Prob. 40. If a man be in the arctic circle, the longest day = 24 hours,

the shortest = 0.
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P Z = obliquity = Q R,

.-. Z R = P Q = 90

Z H = P Q = 90«

,*. H R is the horizon, and the

nearest parallel touches at R,

.'. the day = 24 hours, and the far-

thest parallel touches at H,

.'. the day = hours.

Prob. 41. Given the sun's meridian

altitude = 62", midnight depres.sion

= 22". Find the longitude and declina-

tion.

Qa = bQ
orHa — HQ = RQ — Rb

= H Q — R b,

Ha-t- Rb
2

= H Q B cos. X

= 42", .-. X = 48",

.-. D = 62 — 42 = 20.

Prob. 42.Given the sun's declination,

apparent diameter, altitude, and longi-

tude. Find the time of passing the

horizontal wire of a telescope,

s = the place of the sim.

Take s n in a vertical circle = the

sun's diameter = d.

Draw n a parallel to the horizon,

V V : (J s : : r : cos. dec.

as : n s : : r : sin. n s P,

.*. V V : d : : r *
: sin. P s sin. n s P

: : r 2
: sin. Z P sin. P Z s,

d r*^Vv = con-
sin, cos. X sin. azimuth,

verted into the time, gives the time re-

quired
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Prob. 43. Given the longitude,

right ascension, and dechnation of two

stars; find the time when both are

on tlie same azimuthal circle, and also

of the azimuth.

Given P S, P S', and .l S P S' =
difference of right ascension.

.•• z- P S S' is known,

••• /L P S Z is known,

and Z P given, and P S given,

.'. z. P Z S, is known = azimuth,

and Z P S = time for the first star,

or (Z P S + S P S') = time for the

second star.

Prob. 44. Given the longitude and

declination. Find the time when the

sun ascends perpendicular to H R.

D must be greater than X, or a Q
greater than Z Q.

Draw the vertical circle tangent to

the parallel of declination, at d.

P Z given, P d given, z. P d Z is a

right ^,

.'. ^ Z P d is known.

Prob. 45. Find the length of the

longest day in longitude = 45".

Q d = obliquity,

.-. P d = 90 — obliquity = P c,

Z P = 45,

Z c = 90,

•. 2 hours is known-
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Prob- 46. Find the right ascension

and declination of a star, when in a

line with two known stars, and also in

another line with two other known

stars.

The star is in the same line with S, S',

and in the same line with s, a,

.'. in the intersection s

Prob. 47. The least error in the time due to the given error in altitude

= b". Find the longitude.

n X is the given error in altitude,

V V : m n : : r : cos. declination,

m n : n X : : r : sin. x n P.

V V : n X : : r *
: sin. P n sin. Z n P,

n X r^Vv =
sin. P n sin. Z n P

n X r

sin. Z P sin. P Z n

n X r^
"~

cos. X sin. azimuth*

.•. V V is least when the sin. azimuth

is greatest, or the azimuth = 90**, i. e. the prime vertical,

n X r*
•• b =

cos. X =

cos. X
'

n X r'

Prob. 48. Given two altitudes, and

two azimuths ofthe sun. Find the longi-

tude.

Z S is known, Z S' is known, z- S Z S'

= difference of the azimuth,

••• /L Z S S' is known,

.-. z. Z S P = Z S S'— 90" is known,

.-. Z S P, Z S, S Z P, known,

find Z P.



866 PROBLEMS

Pros. 49. Near the solstice, tho declination oc longitude, nearly.

r sin. D = sin. L sin. 7,

.*. r d (D) COS. D = sin. 7 d (L) cos. L
d (D) _ sin. y cos. L

"' ^ d~(lT
" cosTD

sin. 7 COS. 90 — d (L) . -^= :

—

-—i—
' , since D

COS- 7

may be considered the measure of 7,

= tan. 7 sin. d (L)

= tan. 7 d (L), since d (L) small, *

d(D) tan. 7 , ^
•••

, \^ L =: '- = constant quantity,

•• d (D) ad (L) nearly.

Prob. 60. Given the apparent time T of the revolution of a spot on

the sun's surface, find the real time.

Considering the spot as the inferior planet in inferior conjunction,

P PT = p—^-— where P equals the earth's periodic time, p equals the planet's,

.-. T P — T p = P p,

TP

Prob. 51. The sun's declination equal 8 south, find the latitude of the

place where he rises in the south east point, and also the time of his

rising.

Z c = 90", P c = 98°, ^ c Z S = 133°,

whence Z P, and u h
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oA^^
I c/

^Q

H

Prob. 52. How high must a man be raised to see the sun at mid-

night ?

Z P = R Q. Take P d = Q b

.-. b d = 90^

Draw X d to the tangent at d,

.*. if the person be raised to Z x, he will

see the sun at b,

z. d C b = 90" = X C R,

.'. X C d = R C b measured by R b

given.

.*. in the rectilinear AxdC, £.xdC
rr right angle,

/. X C d being known from the dec.

- C d = radius of the earth.

.*. C X being known,

.-. C X — 90", or Z X is known.

Prob. 53. Given the latitudes and

longitudes oftwo places, find the straight

line which joins them. They lie in the

same declination of the circle.

V V : A B : : 1 : cosine declination,

.*. A B is known,

and the straight line joining A, B, is the

A B
chord of A, B, = 2 sin. —5—

,

Prob. 54. A clock being properly adjusted to keep the sidereal time,

required to find when 7 is on the meridian.

>

t 1

^^
^

y c ^^ Q

Observe the sun's center on the meridian, when the declination = x y,

is known.
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^ X y 7 = right angle

X 7 y = I, being known,

X y is known.

Whence y y = time from noon to y being on the meridian, or from y

being on the meridian to noon, whence two values of y y are found.

If the declination north and before solstice the > value gives the time,

after <<

If the declination south and before 12+<
after 12+>

Prob. 55. Given the sun's declina-

tion, and longitude, find his right ascen-

sion, his oblique ascension, his azimuth

and amplitude, and the time of his rising,

and the length of the day.

7 C is given, from a c C d, c d is given ;

I. and right angle, find c d.

.*. C 7 = R A, C d = oblique asc"*.

and C d measures ^ C P c,

. . 90" + C P c = time of rising,

2 (900 + C P c) = length of the day.

(Thelwall.)
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NOTES.

To show that (see p. 16.)

xdy— ydx. dx dy
2 ./(A X 2. /A

^-jY^^
|-2.^yX2.At^^— 2.MX X 2 A-r^

. ^^., ir(x^-x)(d/-dy)-(/-y)(dx--^dx) l

Not considering the common factor -r-, we have

2./iX2./«'(xdy — ydx)
= (,'-4 + ^' + A*'' + . . .) J^ (x d y—yd x)

+ /x' (x' d y' — y' d x') + /<*" (x' d y'' — /' d x") + &c.|

_ /it (x dy — y d x) + /!*'« (x' d y' — y' d x')

+ (m" 2 (x'' d y''— y'' d x'O + &c.

+ fi,u/ {xdy— y d X + x' d y' -— y' d x')

4- At (<*" (x d y— y d X + x'' d y"— y' d x") + &c.

+ y fi" (x' d y'— y' d xO + (x" d y" — y" d x'')

+ /!t' tif" (x' d y'— y' d x' + x'" d y'" — y'" d x"0 + &c

+ IJ," yf" (x" d y"— y'' d x';+ x"' d y'" — y'" d x'") + &c.

&c.

the law of which is evident

Again,

2. /Ay X2.,«.dx — 2./ix X 2.(tidy

= (/iy + /i' y' + (jI' y" + ....) (^ d X + / d x' + /*" d x" + .... &C.)

— (/ix + /Vx^+ /a"x'' + ....) (A^dy + /a'dy' + /i"dy"+
)

= — /x» (x d y — y d x) — ^'
»
(x' d y'— y' d x') — &c.

+ ^ /i' (y d x'— X d y' + y' d X— x' d y)
'

+ /ti (i" (y d x"— X d y" + y" d x — x" d y) +& c.

+ (if (*/' [y' d •%."— x' d y" + y" d x' — x" d y')

+ t^'
y^'" {y' d x'" — x' d y'" + y'" d x' — x" d y') + &c.

+ &c. 2 a
Vol. II.
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Hence by adding together these results the aggregate is

/»/*'(xdy—ydx + x'dy'— y'dx' + y dx'— x dy' + y'dx— x'd y)

+ (U /*'' (x d y — y d X + &c.) + &c.

/*' /tt" (x' d / — y' d x' + x" d y"— y" d x ' + y' d x"— x' d y"

+ y" d x' — x'' d y') + &c.

&c.

But

X d y — y d x + x' d y'— y' d x' + y d x'— x d y' + y' d x— x' d y
= dy (x — xO + d X (y- — y) + d / (x' — x) + d x' (y — y')

= (x' — x) d y' — d y) — (y' — y) (d x' — d x)

;

and in like manner the coefficients of fi [//', (i fj/" iJ /x", fj/ ij/'\

&c. are found to be respectively

(x" — x) (d y" — d y) — (y'' — y) (d x'' — d x),

(x''' — x) (d y'" — d y) — (y'^' — y) (d ^"' — d x),

(x" — x) d y" — d y') — (y" — y') (d x"— d x'),

(x"' — x') (d y'" — d y') — \y"' — y') (d x'^' — d x')

&c
Hence then the sura of all the terms in /i/i', //..a" (t.' y.'\ (i! ^"

n" (if", (j! yJ'" is briefly expressed by

l,,{Lu! J(x' — x) (d y'— d y) — (y' — y) (d x' — d x)]

and the suppressed coefficient -,— being restored, the only difficulty of p.

16 will be fully explained.

That 2 . (^^ =0, &c. has been shown,

2. To show that /( 2 2 . /(* d x X 2 . /* d * x) = (2 . /* d x) «

page 17.

2 . /t d» x = /tt d' X + / d* x' + &c.

= d . At d X + d ./x' d x' + &c.

= d (/ti d X + // d x' + &c.)

=: d . 2 . z'* d X. •

Hence

/(2 2 ./*dx X 2 ./xd*x) =r/2.2|!tdx X d%2 .^d X

= (2 . /ti d xj *

being of the foriny2 n d u = u *.
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3. To show that (page 17).

2 .^ X 2 .^ (tl x« + dy» + dz*)

— {{2./xdx)' + (2.^dy)« + (2./*dz)»}

= 2./* At' {(dx'— dx)« +(dy' — dy)* + (dz'--dz)«j.

Since the quantities are similarly involved, for brevity, let us find the

value of 2 . /tt X 2 . /i d X * — (2 . jU- d x) *.

It = {(Ji> + fi' + fj." + ....) (At d X* + /i' d x' " + fi.'' dx'' « + ....)

— (/xdx + im' dxf + ^''dx''+ ....)*;

Consequently when the expression is developed, the terms ict'dx',

^' * d x' S fj/'
* d x'' % &c. will be destroyed, and the remaining ones will

be

^ .(*' (d x 2 + d x' * — .2 d X d xO = /* /*' (d X' — u x) 2

A6/t"(dx« + dx''«— 2 dxdx") =/*/»'' (d x''— d x)
*

ti'/i" (d x'« + d x" 2 _ 2 d x' d x'O = fjf It!' (d x" — d x')«

li!l,I" (d x'2 + d x"' 2 — 2 d x' d x"') = fil fif" (d •&!"— d x')

'

li." {,!" (d x" « + d x'" * — 2 d x" d x'") = (jJ' yJ" (d f' — d x'') *

&c.

Hence, of the partial expression

2 . /A X 2 . /i d X * — (2 . /c* d x) ' = 2 . i"- At' (d x' — d x) *.

In like manner

2./t X 2./Ady* — (2./Ady)* = 2./(i/(A'(dy'— dy)*

2./* X 2./idz* — (2./Adz)* = 2.j!A|«''(dz'-^dz)*

and the aggregate of these three, whose first members amount to the pro-

posed form, is

2 . ^/i' J(d x' — d x) ' + (d y' — d y) » + (d z' — d z) «]

4. To show that (p. 19.)

^ AiX

nearly.

It is shown already in page 19 that

3 \ 2
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X X oX... , irx
P = (Vp — (7p

('^ ^' + y y^ + ^ '''^•

But since x, = x — x\ y^ = y — y\ z, = z — 2\ by substitution

and multiplying both members by /i, we get

At X A* X 3 xV
^ , ^ , ^

. , 8 x^-p-=^3-^(^'-/^x + y\^y + z^..^z) + -,p- .^

nearly.

Similarly

/*' x' fi'x' 3 xV
^ , , , ^ , , , ^ , ,. , 3 x^

7-3- =
(7p-'(gr

('^ •'" ^ + y"^ ^ + z^/.'z) + ^.p
.,-

nearly.

&c.

Hence

But by the property of the center of gravity,

2 . ,y, X = 0, 2 , |t4 y = 0, 2 . a, z = 0.

Hence
/-i. X 3 x^ ^ ,

2--p-=(7p-X 2.anearly.

5. To show that (p. 22.)

- d'x ^--^d'^y + ^d«z = d*j — ,^d v^cos.*^ — f d^*

and that

s \TT) "*"

f
Vdy ./

"*"

g Vdzy/ - U^r
First, we have

xd'^x + yd*y + zd-z

= d (x d X + y d y + z d z) — (d X 2 + d y « + d z«).

But

x^+ y« + z« = s%
xdx + ydy + zdz = gdg

and because

x = g COS. 6 X COS. V

y — g COS. tf X sin. v

z = J sin. ^.
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.*. d x»^ + d y * = Jd (^ COS. 6) . cos. v — f
cos. ^ X d v sin. \\

*

+ {{b cos. 6) sin. V + g cos. ^ d v cos. v}*

= (d . g cos. 6)^ + g » d V » cos. * d,

.-. dx* + dy' + 'l^'= (d.gsin. ^)2+ M. gcos. ^)2 +e' d v' cos.%

= dg2 + gM^* + g*d v^cos.*^^.

Hence, since also

d.gdg = dg^^ gd*g,

xd^x + yd'y + zd'^z ^ J, ^ _ ^ ^ ^, ^^3 , ^ - g d ^^

Secondly, since g is evidently independent of the angles S and v, the

three equations (1), give us

f
-J- J

= cos. 6 cos. V = —^,
ig/ f

^ ,-^^ = cos. 6 sin. V = - ,

vd g/ g

/d z\ . . z

Heiice

= (^)(r.) + (^)(-di) + C^)(:lp-

But since Q is a function of g (observe the equations 1), and g is a func-

tion of X, y, z, viz. Vx^ + y * + z*,

But

''='0(^3=''-(u-l)=''^(^^)(d^)
and like transformations may be effected in the other two terms. Conse-

quently we have

^ = ^^ (d~f) (^) +
" ^ (d-f) (If)

+
" ^ (di) l-af

)•

Hence and from what was before proved, we get
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6. To show that xd«y — yd'x = d (^«dv cos.* 6), and that

First, since

xd*y = d.xdy — dxdy
yd^x = d.ydx — dxdy,

.*. X d * y — y d '^ X = d . (x d y— y d x).

But from equations (1), p. 22,

d y = sin. v . d (j cos. ^ + ^ cos. 6 . cos. v d v

il X = sin. V . d (» COS. 6) — g cos. S • sin. v d v,

1
• d (f*COS.«^) £ J

'

.-. X d y = sin. v cos. v .
—^^ + g cos. ' a cos. ^ v d v

, . d (p- COS.* 6) 2 . • , Jvd K = sin. V COS. V .
—^^

f ' COS. ^ 6 sin. * v d v
J z ^

the difference of which is

g« COS.* d X d V.

Consequently

xd*y — yd*x = d.(f*d v cos. * d).

Secondly by equations (1) p. 22, we have

(-j-^ j = g COS. d cos. V = X

(j^) = — g COS. 8 sin. V = — y,

/d Q\ /d Q\ /d v\ /d Q\ , /d x\ /d Qn
•"• '^ (dj) -y (cTt) = (art) (dy) + (in;) (ar)-

But since dividing the two first of the equations (1) p. 22, we have —

r= tan. v, v is a function of x, y only. Consequently, as in the note pre-

ceding this it may be shown that
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(V?) = (rD ('!>?) + (r:) (If)'

Hence

di Uy;-

7. To find the value of f -ry )in terras off, v, 6, (see the last line but

two of p. 22)

Since tf is a function of x, y, z, we have

.
Q) = (ft! ) (fn) + (^) GH) + Caf) (fn)-

But fi-om equations (1) p. 22, we get

Chi ) = - ^
''"• ^ '°'- "^

Cil)
=-^'^"-^ '"'•''

' Hence multiplying the values of

/dQx /dQv /dQx
' VdlT;' Vdy.'' Vdz>''

d 2 X d 2 y d ' z
,

_ ..

dT^' dl^' ^ (see.p. 22),

by the partial differences we get

f-j^ j = -i—j^d * z f cos. ^ — d " y . 3 sin. ^ sin. v — d '^ x j sin. 6 cos. v|

Now the first term gives

f COS. ^ . d '^ z = * {d '
f sin. 6 cos. D \- 2 d ^ d () cos. '^

tf

+ f cos. * ^ d * ^— f d ^ * sin. ^ cos. (Jj,

and the two other terms gives wlien added, by means of the equations (1)

p. 22,

si"' ^ / 1 o . 1 o \ sin. dr.,, « V / , - . 1 .X

,
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But

d(ydy + xdx) = ^d.(d. x^-+ y^) = ^d* (^ « cos.' ^
= d ^g COS. ^ d (g COS. 6)]

= (d . « Cos. ^) ' + f COS. < d ' (g COS. i)

End

dx' + dy' = (d.g COS. ^) * + g ' cos. ' 5 . d v *.

Hence

sin. ^

cos. ^
(yd'^yH- xd«x)

= '—,
Iz cos. 6 d^ (p COS. tf) — e^ cos. ' ^ d v •?

•cos. 6 ' v!> / i J

= — g sin. ^ Jd '^

(p COS. 6) — g cos. ^ d v 'J

= — g sin. 6 [d^ § COS. ^ — 2 d g d ^ sin. 6 — d * ^ g sin. S

— d ^2 + d v^^gcos. 6],

Adding this value to the preceding one of the first term, we have

(in) = ^t^ IS'^'^ + ^'^S^^ + i d v= sin. 6 cos. 6}

, d'6
,

^dv« . .

, ,
2gdgdO

the value required.

8. To develope :; , in terms of -the cosines of ^ and of itsmul-
1 + e cos. S

tiples, see p. 25.

If c be the member whose hyperbolic logarithm is unity, we know that

COS. i =

which value of cos. 6 being substituted in the proposed expression, we

have

1 2 c » *'-

1

1 + e cos. 6 ec8«^-^ + 2c''^-' + e

2
C«» V-lA. -c * ^-'-f I

But since

2
« « v'-n I _c 9 V- 1 r 1=0

e
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gives

1 + n^ I Tl _ v^ i _ e »>V-i — ^sl^-^ = -lB''~-)e Ve* ^e4-

and since, if we make

1 .
e

— (1 — VI — e*"* = X which also = ,
- -

.

" 7-7-
" --

, »
e ^

1 + VI — e*

we also have

-L(l+^l_e.) = l
;

the expression proposed becomes

1 2 c «
<^'

1
X

1 + e cos. 9 e

2\

(C«v'-1 + X) (c«V-i + -)

e ^ (I +\ c» ^-^) (1 + X c-«^^')

-e(l — x*;^ U4-xc»v'-i i4-xc-«v-rry

But

1

e 1 4. VI — e-'

and

1 + VI— e*

. 1 =__J__x / 1
^^"'"'^^

\•*l+ecos.^ V(l — e*) U + Xc«^-i l + Xc-^v'-V*

which when 6 = v — w is the same expression as that in page 26.

Again by division

f^= l_Xc ev^i + X«c««^^'^i — &c.
1 + Xc« V

and

Y+l~c-e~^^
=Xc'ev=l^y^f^-2ev^+Scc.

Taking the latter from the former, we get

VI — e^ _ i_x (c« v'-i^. c-B V-i\ . x« (c«9^'-l + c-^ev-u
I + e cos. 6

^ / I
\

= 1 — 2 X cos. tf 4- 2 X* COS. 2 ^ — 2 X» cos. 3 ^ + &c.
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and substituting for ^ the value v — w, we get the expression in page

25.

9. To demonstrate the Tlieorem of page 28. , .

Let us take the case of three variables x, y, z. Thaa our system ol

differential equations is

in which F, G, H, are symmetrical functions of x, y, z ; that is such as

would not be altered by substituting,^ x for y, and y for x; and so on for

the other variables taken in pairs ; for instance, functions of this kind

Vx*+ y*+ z* + t*, (X y -f x z + x t + y z + y t + z t) £,

(x y z + X z t + y z t),

log. (x y z t) and so on.

Multiply the first of the equations by the arbitrary a, the second by |S,

and the third by y and add them together; the result is

0=«(.x+/3y+yz) + G («^^ + /3^^' + 7^)

Ndw since a, ^, y, are arbitrary, we may assume

ax+/3y + 7Z=0,
which gives

d X ^ d y d z

"dT + ^dt + Mt = ^"

d«x
,

• d'y
,

d^z ^

d ' x d * X
and substituting forx, ~,—

, -j—^ , their values hence derived in the first

«)f the proposed equations, we have
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—^ X —^ X = 0.
a a

In the same it will appear that

verifies each of the other two equations. It is therefore the integi'al of

each of them, and may be put under the form

z = a X + b y
in valuing only two arbitraries a and b, which are sufficient, two arbitra-

ries only being required to complete the integral of an equation of the

second order.

In the equations (0) p. 27.

~= H, G = and F = 1

i

3

and §' being = (x- + y ' + z^y is symmetrical with regard to x, y, z.

Hence the theorem here applies and gives for the integral of any of the

equations

z = a X 4- b y,

see page 28.

Again, let us now take four variables x, y, z, u ; then the theorem pro-

poses the integration of

= H. + G§| + F'^^

= Hu + G^ + F,^.
Multiplying these by the arbitraries «, /3, 7, 3 and adding them we get,

as before

= H (ax + jSy + yz + au)

, ^ / d X . - d y . d z . . d u\

d^x
. od*y . d'^z . d u>

^ ^ v" dt* + ^dt^ + ^dt== + ^it^y
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Assume

and upon trial it will be found as before, that this equation satisfies each

of the four proposed equations, or it is their integrals supposing them

to subsist simultaneously. As before, however, there are more arbitraries

than are necessary for the integral of each, two only being required.

Hence the integral of each will be of the form

X'+y + 7Z + 5u = 0.

This form might have been obtained at once, by adding the two last of

the proposed equations multiplied by 7 and d to the two first of them, and

. assuming the coefficient of H = 0, as before.

In the same manner if we have (n) differential equations ofthe i-th order,

the order involving the n variables x^'^, x^^5 . .. .
^W^ and of the general

form

TT r.^ .
r-dxW d«xW . d^-'xW , d'xM= Hx« + G-j^ + F-^^ + .... A-^P^^ + _j^

we shall find by multiplying i of them (for instance the i wherein first

s = 1, 2 . . . . i) by the arbitraries a O, a^^ a W; adding these results

together and their aggregate to the sum of the other equations ; and as-

suming the coefficient of H = 0, that

a (') x(^> + « (^ xC^ + .... a « X « + X '+> + x' + 2 ^ x ° =

V ill satisfy each of the proposed differential equations subsisting simulta-

neously ; and since it has an arbitrary for every integration, it must be

the complete integral of any one of them.

This result is the same in substance as that enunciated in the theorem

of p. 28,^ inasmuch as it is obtained by adding together the equations

whose first members are x C^, x '•^\ &c. and making such arrangements as

are permitted by a change of the arbitraries. In short if we had multi-

plied the i last equations instead of the i. first by the arbitraries, and

added the results to the n — i first equations, our assumption would have

been

X(')4.x(2)+ x^*-*) +a (Ox(°-' + >5+aWx ("»-•**)+.... a' X''= 0.... (a)

which is derived at once by adding together the n — i equations in page

28.
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If we wish to obtain these n — i equations from the equati'. n (a), it

may be effected by making assumptions of the required form, provided by

so doing we do not destroy the arbitrary nature a C^, a ^^), a ^'\ 1'he

\iecessary assumptions do, however, evidently still leave them aiijitrary^

Those assumptions are therefore legitimate, and will give the forms of

Laplace.

END OF VOLUME SECOND.

.>°^.-
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